CN109988139A - 一种黄酮衍生物及其医药用途 - Google Patents
一种黄酮衍生物及其医药用途 Download PDFInfo
- Publication number
- CN109988139A CN109988139A CN201711499830.3A CN201711499830A CN109988139A CN 109988139 A CN109988139 A CN 109988139A CN 201711499830 A CN201711499830 A CN 201711499830A CN 109988139 A CN109988139 A CN 109988139A
- Authority
- CN
- China
- Prior art keywords
- compound
- dmso
- cell
- nmr
- synthesis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/22—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
- C07D311/26—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
- C07D311/28—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
- C07D311/30—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/12—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
本发明提供一种黄酮衍生物及其医药用途,属于医药技术领域。具体涉及式I所示化合物及其具有的提高胰岛素抵抗HepG2细胞葡萄糖消耗量的药理作用。药理实验结果表明,式I所示衍生物能不同程度地提高胰岛素抵抗HepG2细胞葡萄糖消耗量,促进葡萄糖摄取,抑制糖异生过程从而调控糖代谢起到抗糖尿病作用。该类化合物还可降低3T3‑L1成熟脂肪细胞内的甘油三酯含量,提高3T3‑L1成熟脂肪细胞外的游离脂肪酸含量,表明本发明的黄酮衍生物促进脂肪分解,从而减少脂质堆积,调控脂代谢起到抗肥胖作用。
Description
技术领域
本发明属于医药技术领域,具体涉及一种黄酮衍生物及其医药用途。
背景技术
世界卫生组织(WHO)于2016年4月7日公布了首份《全球糖尿病报告》,该报告指出世界各地的糖尿病患者数量正在增加。目前,约有5亿中国成年人处于糖尿病前期,具有很高的2型糖尿病风险。2012年,中国糖尿病导致死亡人数约为23万人,高血糖导致死亡人数约为74万人。糖尿病与肥胖具有密切关系,在世卫组织公布的《全球糖尿病报告》当中指出,2014年全球每3个成年人当中就有1人及以上超重,每10人就有1人及以上肥胖,中国的超重发生率已经达到了35.4%(高于全球平均水平),肥胖发生率达到7.3%,另有23.8%的人群缺乏身体活动。从这份世卫组织的报告中不难看出,糖尿病与肥胖已经成为危害人类健康的重大慢性疾病。糖尿病和肥胖都和胰岛素抵抗,肝脏的糖脂代谢密切相关。因此,针对胰岛素抵抗和糖脂代谢寻找安全有效的抗糖尿病抗肥胖药物是全球药物研发工作者不断追求的目标。
本发明人前期公开了一类可以促进促进胰岛素抵抗HepG2细胞葡萄糖消耗的黄酮衍生物(中国发明专利ZL201080070092.0),其中代表性化合物Fla-CN通过多种途径展示出抗糖尿病抗肥胖药理作用(Nan Qin,Ying Chen,Mei-Na Jin,et al.Anti-obesity andanti-diabetic effects of flavonoid derivative(Fla-CN)via microRNA in high fatdiet induced obesity mice.European Journal of Pharmaceutical Sciences 82(2016)52-63;Chun-Chun Gan,Tian-Wen Ni,Yang Yu,et al.Flavonoid derivative(Fla-CN)inhibited adipocyte differentiation via activating AMPK and up-regulatingmicroRNA-27 in 3T3-L1 cells.European Journal of Pharmacology 797(2017)45-52.)。随后,发明人对该类化合物进行了深入研究,制备了大量的黄酮衍生物,经过多方面活性筛选,发现了活性突出的新化合物,其活性水平超过之前公开的黄酮衍生物,具体化学结构如式1和表1所示。
发明内容
本发明的目的之一在于公开了式1所示的一类黄酮衍生物,其中R1-R4基团可以相同也可以不同,可独立为氢,氨基,硝基,卤素,氰基,羧基,羧酸酯基,取代哌啶基,取代哌嗪基,吡咯基,吗啉基,取代炔基,取代酰胺基,三氮唑。该结构突破了原有文献报道,充分体现了本发明的新颖性。
式1所述化合物的制备方法如式2所示
表1式2所示化合物的结构
本发明的目的之二在于公开了式I所示化合物在抗糖尿病抗肥胖领域中的应用。其特征在于,该类化合物可以提高胰岛素抵抗HepG2细胞葡萄糖消耗量,促进糖原合成,促进葡萄糖摄取,抑制糖异生过程从而调控糖代谢起到抗糖尿病作用。该类化合物还可降低3T3-L1成熟脂肪细胞内的甘油三酯含量,提高3T3-L1成熟脂肪细胞外的游离脂肪酸含量。在脂肪细胞中,脂肪分解是甘油三酯(TG)水解成游离脂肪酸(FFA)和甘油的过程。存储在脂肪细胞中的TG通过脂解反应释放游离脂肪酸FFA到循环中,并将所得的FFA运输到其他组织作为能源。脂肪细胞脂解的失调可能是导致肥胖及肥胖相关化的关键因素。在临床研究中发现,肥胖患者体内的脂解能力下降,且脂肪分解限速酶HSL的mRNA表达和蛋白表达均下降。本发明实验结果显示,黄酮衍生物降低成熟脂肪细胞内TG的含量,提高细胞外FFA的含量,表明本发明的黄酮衍生物促进脂肪分解,从而减少脂质堆积,调控脂代谢起到抗肥胖作用。
部分化合物的活性水平超过发明人之前公开的类似黄酮衍生物,这充分体现了本发明的创造性。鉴于胰岛素抵抗和糖脂代谢在肥胖和糖尿病发病机制中的重要地位,上述研究结果显示了本发明所公开的黄酮衍生物的抗糖尿病抗肥胖应用前景,这体现了本发明的实用性。
附图说明
图1化合物W2对HepG2细胞糖原含量的影响(**与对照组相比P<0.01,***与对照组相比P<0.001)
图2化合物W2对HepG2细胞糖异生的影响(*与对照组相比P<0.05,**与对照组相比P<0.01,***与对照组相比P<0.001)
图3化合物W2对HepG2细胞糖摄取的影响(*与对照组相比P<0.05,**与对照组相比P<0.01,***与对照组相比P<0.001)
图4化合物W2对3T3-L1成熟脂肪细胞内甘油三酯含量的影响(*与对照组相比P<0.05,**与对照组相比P<0.01,***与对照组相比P<0.001)
图5化合物W2对3T3-L1成熟脂肪细胞外游离脂肪酸含量的影响(*与对照组相比P<0.05,**与对照组相比P<0.01,***与对照组相比P<0.001)
具体实施方式
实施例1:化合物A1-A34的制备方法
称取1当量取代苯甲醛(140mg,0.76mmol),2当量吗啉三氟乙酸盐于反应瓶中,加入5-10mL丙酮分散原料,在70℃下搅拌24h后停止反应。反应液经快速硅胶柱色谱纯化(流动相,石油醚∶乙酸乙酯=4∶1-3∶1)得产物A1-A34。
实施例2:化合物B1-B34的制备方法
称取1当量A1-A34于反应瓶中,加入2mL四氢呋喃分散原料,反应液在30℃下搅拌下滴加1.2当量的吡咯烷酮三溴氢化物(PHT)的四氢呋喃溶液,16h后停止反应。反应液过滤后经快速硅胶柱色谱纯化(流动相,石油醚∶乙酸乙酯=4∶1-3∶1)得产物B1-B34。
实施例3:化合物W1-W34的制备方法
称取1当量B1-B34,2当量山奈酚,2当量无水碳酸钾于反应瓶中,加入1,4-二氧六环分散原料,反应液在80℃下搅拌24h后停止反应。向反应液中先加入0.6mol/L的稀盐酸调pH至弱酸性,然后加入10ml蒸馏水,用乙酸乙酯萃取水相三次,收集有机相用无水硫酸镁干燥,浓缩有机层得粗品黄色固体,粗品经HW-40C凝胶柱色谱纯化(流动相,二氯甲烷∶甲醇=2∶1)和制备薄层色谱纯化(展开剂,二氯甲烷∶甲醇=19∶1)得淡黄色固体W1-W34。
3.1 化合物W1的合成
收率5.8%。1H NMR(400MHz,DMSO-d6):δ12.53(1H,s,OH),10.87(1H,s,OH),10.24(1H,s,OH),8.03(2H,d,J=8.8Hz),7.68(2H,d,J=8.0Hz),7.65(1H,d,J=16.4Hz),7.52(2H,d,J=8.0Hz),7.07(1H,d,J=16.4Hz),6.92(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.07(2H,s),4.36(1H,s).13C NMR(100MHz,DMSO-d6)δ194.5,177.4,164.2,161.1,160.2,156.3,155.2,141.4,136.2,134.6,132.2,130.5,128.7,123.7,123.3,120.5,115.5,104.0,98.7,93.7,83.2,83.0,75.3.
3.2 化合物W2的合成
收率12.3%。1H NMR(400MHz,DMSO-d6):δ12.53(1H,s,OH),10.87(1H,s,OH),10.24(1H,s,OH),8.26(2H,d,J=8.8Hz),8.04(2H,d,J=8.4Hz),7.95(2H,d,J=8.4Hz),7.75(1H,d,J=16.0Hz),7.23(1H,d,J=16.0Hz),6.92(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.11(2H,s).13C NMR(100MHz,DMSO-d6)δ194.5,177.4,164.2,161.1,160.2,156.3,155.2,148.1,140.7.139.7,136.2,130.5,129.5,126.1,124.0,120.5,115.5,104.0,98.7,93.7,75.4.
3.3 化合物W3的合成
收率15.0%。1H NMR(400MHz,DMSO-d6):δ12.56(1H,s,OH),10.88(1H,s,OH),10.26(1H,s,OH),9.65(1H,s,NH),8.05(2H,d,J=8.8Hz),7.60(1H,d,J=16.0Hz),7.59(2H,d,J=8.8Hz),7.52(2H,d,J=8.8Hz),6.92(2H,d,J=8.8Hz),6.91(1H,d,J=16.0Hz),647(1H,d,J=2.0Hz),6.22(1H,d,J=2.0Hz),5.04(2H,s),1.49(9H,s).13C NMR(100MHz,DMSO-d6)δ194.2,177.5,164.2,161.1,160.2,156.3,155.2,152.5,142.6,142.1,136.3,130.5,129.5,127.8,120.5,120.1,117.9,115.5,104.0,98.6,93.7,79.5,75.1,28.0.
3.4 化合物W4的合成
收率8.1%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.88(1H,s,OH),10.26(1H,s,OH),8.04(2H,d,J=8.4Hz),7.64(1H,d,J=16.0Hz),7.63(2H,d,J=8.0Hz),7.39(2H,d,J=8.0Hz),7.05(1H,d,J=16.0Hz),6.92(2H,d,J=8.4Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.06(2H,s),1.30(9H,s).13C NMR(100MHz,DMSO-d6)δ194.4,177.5,164.2,161.1,160.2,156.3,155.2,141.6,136.3,133.6,131.7,130.5,128.6,125.3,122.7,120.5,115.5,104.0,101.0,98.7,93.7,78.8,75.3,30.6,27.7.
3.5 化合物W5的合成
收率5.3%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.89(1H,s,OH),10.27(1H,s,OH),8.04(2H,d,J=8.8Hz),7.64(1H,d,J=16.0Hz),7.64(2H,d,J=8.0Hz),7.43(2H,d,J=8.0Hz),7.05(1H,d,J=16.0Hz),6.92(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.06(2H,s),4.91(1H,m,OH),3.59(2H,m),2.58(2H,m).13C NMR(100MHz,DMSO-d6)δ194.4,177.5,164.2,161.1,160.2,156.3,155.2,141.6,136.3,133.7,131.8,130.5,128.6,125.3,122.8,120.5,115.5,104.0,98.7,93.7,91.3,80.9,75.3,59.6,23.4.
3.6 化合物W6的合成
收率5.6%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.89(1H,s,OH),10.29(1H,s,OH),8.04(2H,d,J=8.8Hz),7.67(2H,d,J=8.4Hz),7.65(1H,d,J=16.4Hz),7.44(2H,d,J=8.4Hz),7.06(1H,d,J=16.4Hz),6.92(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.07(2H,s),5.52(1H,d,J=5.2Hz,OH),4.60(1H,dd,J1=5.2Hz,J2=6.8Hz),1.38(3H,d,J=6.8Hz).13C NMR(100MHz,DMSO-d6)δ194.5,177.4,164.2,161.1,160.2,156.3,155.2,141.5,136.2,134.0,131.7,130.5,128.7,124.5,123.0,120.5,115.5,104.0,98.7,95.7,93.7,81.9,75.3,56.7,24.5.
3.7 化合物W7的合成
收率2.9%。1HNMR(400MHz,DMSO-d6):δ12.58(1H,s,OH),10.90(1H,s,OH),10.27(1H,s,OH),8.04(2H,d,J=8.4Hz),7.51(1H,d,J=16.0Hz),7.35(2H,d,J=8.8Hz),6.92(2H,d,J=8.8Hz),6.70(1H,d,J=16.0Hz),6.56(2H,d,J=8.4Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.91(2H,s,NH),4.95(2H,s).13C NMR(100MHz,DMSO-d6)δ193.7,177.5,164.2,161.1,160.2,156.3,155.2,152.1,144.2,136.3,130.8,130.5,121.2,120.5,115.5,113.6,104.0,98.6,93.7,75.0,11.0.
3.8 化合物W8的合成
收率6.1%。1H NMR(400MHz,DMSO-d6):δ12.53(1H,s,OH),10.92(1H,s,OH),10.28(1H,s,OH),8.04(2H,d,J=8.8Hz),8.35-7.50(3H,m),7.65(1H,d,J=16.4Hz),7.16(1H,d,J=16.4Hz),6.90(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.08(2H,s).13C NMR(100MHz,DMSO-d6)δ194.4,177.4,164.2,161.1,160.2,156.3,155.2,142.1,139.1,136.2,135.8(d,J=9.0Hz),133.9,130.5,124.4,120.5,117.3(d,J=20.0Hz),115.4,113.6,104.0,98.7,93.7,75.3.
3.9 化合物W9的合成
收率2.2%。1H NMR(400MHz,DMSO-d6):δ12.52(1H,s,OH),10.93(1H,s,OH),10.26(1H,s,OH),8.03(2H,d,J=8.8Hz),8.50-7.50(3H,m),7.63(1H,d,J=16.4Hz),7.29(1H,d,J=16.4Hz),6.90(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.08(2H,s).13C NMR(100MHz,DMSO-d6)δ194.5,177.4,164.2,161.1,160.2,156.3,155.2,136.1,134.1,131.9,130.5,126.8,120.4,117.7,115.4,104.0,98.7,93.7,75.5.
3.10 化合物W10的合成
收率4.6%。1H NMR(400MHz,DMSO-d6):δ12.51(1H,s,OH),10.90(1H,s,OH),10.25(1H,s,OH),8.01(2H,d,J=8.8Hz),7.99-7.76(3H,m),7.66(1H,d,J=16.4Hz),7.27(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.10(2H,s).13C NMR(100MHz,DMSO-d6)δ195.0,177.4,164.3,161.2(d,J=252.0Hz),,161.1,160.2,156.3,155.2,136.2,132.2,130.4(d,J=17.3Hz),129.0,127.6,127.5,127.1(d,J=12.0Hz),120.4,120.2(d,J=25.0Hz),117.4,115.5,113.8(d,J=12.0Hz),103.9,98.7,93.8,75.6.
3.11 化合物W11的合成
收率12.6%。1H NMR(400MHz,DMSO-d6):δ12.52(1H,s,OH),10.90(1H,s,OH),10.26(1H,s,OH),8.03(2H,d,J=8.8Hz),8.00-7.70(3H,m),7.67(1H,d,J=16.4Hz),7.25(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.46(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.11(2H,s).13C NMR(100MHz,DMSO-d6)δ194.5,177.4,164.2,162.0(d,J=254.0Hz),161.1,160.2,156.3,155.2,142.1(d,J=9.0Hz),139.1,136.2,134.3,130.5,126.7,125.4(d,J=3.0Hz),120.4,115.6,115.4(d,J=9.0Hz),113.9,104.0,101.1(d,J=15.0Hz),98.7,93.7,75.4.
3.12 化合物W12的合成
收率9.8%。1H NMR(400MHz,DMSO-d6):δ12.53(1H,s,OH),10.90(1H,s,OH),10.26(1H,s,OH),8.04(2H,d,J=8.8Hz),8.10-7.90(3H,m),7.64(1H,d,J=16.4Hz),7.26(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.46(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.10(2H,s).13C NMR(100MHz,DMSO-d6)δ194.4,177.4,164.2,162.0(d,J=246.0Hz),161.1,160.2,156.3,155.1,138.8,138.3(d,J=9.0Hz),136.2,130.5,128.8,125.8,120.4,120.0(d,J=12.0Hz),117.2(d,J=3.0Hz),115.4,113.4(d,J=9.0Hz),104.0,98.6,93.7,75.3.
3.13 化合物W13的合成
收率2.5%。1H NMR(400MHz,DMSO-d6):δ12.51(1H,s,OH),10.91(1H,s,OH),10.26(1H,s,OH),8.02(2H,d,J=8.8Hz),8.20-7.50(3H,m),7.82(1H,d,J=16.0Hz),7.22(1H,d,J=16.0Hz),6.91(2H,d,J=8.8Hz),6.47(1H,s),6.21(1H,s),5.10(2H,s).13C NMR(100MHz,DMSO-d6)δ194.4,177.4,164.2,161.1,160.2,156.3,155.2,136.2,136.0,135.7,133.7,132.6,130.5,128.4,127.0,120.4,115.8,115.5,104.0,98.7,93.7,75.6.
3.14 化合物W14的合成
收率2.3%。1H NMR(400MHz,DMSO-d6):δ12.52(1H,s,OH),10.92(1H,s,OH),10.27(1H,s,OH),8.04(2H,d,J=8.8Hz),8.50-7.70(3H,m),7.79(1H,d,J=16.4Hz),7.33(1H,d,J=16.4Hz),6.90(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.09(2H,s).13C NMR(100MHz,DMSO-d6)δ194.4,164.2,161.1,160.2,156.3,155.2,138.8,136.2,134.7,134.6,133.4,132.1,131.3,130.5,127.1,120.5,117.6,115.4,111.0,104.0,93.7,75.6.
3.15 化合物W15的合成
收率2.4%。1H NMR(400MHz,DMSO-d6):δ12.55(1H,s,OH),10.91(1H,s,OH),10.28(1H,s,OH),8.05(2H,d,J=8.8Hz),7.79(2H,d,J=8.4Hz),7.72(2H,d,J=8.4Hz),7.69(1H,d,J=2.0Hz),7.65(1H,d,J=2.0Hz),7.11(1H,d,J=16.4Hz),6.93(2H,d,J=8.8Hz),6.74(1H,d,J=16.4Hz),6.47(2H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.09(2H,s),3.74(3H,s).13C NMR(100MHz,DMSO-d6)δ194.5,177.5,166.5,164.2,161.1,160.2,156.3,155.2,143.5,141.6,136.3,136.1,136.0,130.5,129.0,128.9,123.3,120.5,119.0,115.5,104.0,98.7,93.7,75.3.
3.16 化合物W16的合成
收率3.0%。1H NMR(400MHz,DMSO-d6):δ12.51(1H,s,OH),10.90(1H,s,OH),10.26(1H,s,OH),8.04(2H,d,J=8.8Hz),8.02-7.62(4H,m),7.77(1H,d,J=16.0Hz),7.34(1H,d,J=16.0Hz),6.92(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.09(2H,s).13C NMR(100MHz,DMSO-d6)δ194.4,177.4,164.2,161.1,160.2,156.3,155.2,136.6,136.4,136.2,133.6,131.0,130.5,127.2,126.2,120.5,117.1,115.5,112.1,104.0,98.7,93.7,75.7.
3.17 化合物W17的合成
收率4.4%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.39(1H,s,OH),10.35(1H,s,OH),8.04(2H,d,J=8.8Hz),7.74(2H,d,J=8.8Hz),7.65(2H,d,J=8.8Hz),6.48-6.26(3H,m),7.62(1H,d,J=16.4Hz),6.92(2H,d,J=8.8Hz),6.96(1H,d,J=16.4Hz),6.46(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.79(1H,dd,J=2.0Hz),5.05(2H,s).13C NMR(100MHz,DMSO-d6)δ194.3,177.4,163.3,161.1,160.2,156.3,155.2,142.3,141.3,136.2,131.6,130.5,129.5,129.2,127.5,120.8,120.5,119.3,115.5,98.7,93.8,75.2.
3.18 化合物W18的合成
收率2.3%。1H NMR(400MHz,DMSO-d6):δ12.53(1H,s,OH),10.95(1H,s,OH),10.29(1H,s,OH),8.02(2H,d,J=8.8Hz),7.78-7.52(3H,m),7.78(1H,d,J=16.4Hz),7.12(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.10(2H,s),3.74(4H,t),2.91(4H,t).13C NMR(100MHz,DMSO-d6)δ194.8,177.4,164.2,161.1,160.2,156.3,155.2,152.4,137.4,136.2,132.5,130.5,129.1,126.3,125.0,122.7,120.5,118.6,115.5,113.1,104.0,98.7,93.7,75.4,66.1,52.3.
3.19 化合物W19的合成
收率5.2%。1H NMR(400MHz,DMSO-d6):δ12.55(1H,s,OH),10.90(1H,s,OH),10.27(1H,s,OH),8.09(1H,d,J=1.6Hz),8.02(2H,d,J=8.8Hz),7.80(1H,dd,J1=1.6Hz,J2=8.4Hz),7.68(1H,d,J=16.4Hz),7.21(1H,d,J=8.4Hz),7.12(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.07(2H,s),3.75(4H,t),2.99(4H,t).13C NMR(100MHz,DMSO-d6)δ194.7,177.4,164.2,161.1,160.2,156.3,155.5,155.1,137.6,136.2,134.5,132.6,130.5,127.8,124.1,120.5,119.5,118.8,115.4,104.4,104.0,98.7,93.7,75.3,66.0,52.0.
3.20 化合物W20的合成
收率1.8%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.94(1H,s,OH),10.27(1H,s,OH),8.04(2H,d,J=8.8Hz),7.76(1H,d,J=8.0Hz),7.66(1H,d,J=16.4Hz),7.46(1H,d,J=0.8Hz),7.40(1H,dd,J1=0.8Hz,J2=8.0Hz),7.19(1H,d,J=16.4Hz),,6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.11(2H,s),3.77(4H,t),3.18(4H,t).13C NMR(100MHz,DMSO-d6)δ194.4,177.4,164.2,161.1,160.2,155.2,140.9,139.9,136.2,134.7,130.5,125.5,121.5,120.5,118.9,118.0,115.5,105.6,104.0,98.7,93.7,75.3,66.1,51.3.
3.21 化合物W21的合成
收率6.8%。1H NMR(400MHz,DMSO-d6):δ12.55(1H,s,OH),10.91(1H,s,OH),10.27(1H,s,OH),8.08(1H,d,J=2.0Hz),8.05(2H,d,J=8.8Hz),7.89(1H,dd,J1=2.0Hz,J2=8.8Hz),7.60(1H,d,J=16.0Hz),7.17(1H,d,J=8.8Hz),7.04(1H,d,J=16.0Hz),,6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.05(2H,s),3.76(4H,t),3.28(4H,t).13C NMR(100MHz,DMSO-d6)δ194.2,177.5,164.2,161.1,160.2,156.3,155.8,155.2,140.3,136.2,135.1,133.9,130.5,127.4,121.7,120.5,119.0,117.9,115.5,104.0,103.5,98.6,93.7,75.2,65.9,50.8.
3.22 化合物W22的合成
收率2.5%。1H NMR(400MHz,DMSO-d6):δ12.56(1H,s,OH),10.90(1H,s,OH),10.26(1H,s,OH),8.03(2H,d,J=8.8Hz),7.90(1H,d,J=16.0Hz),7.83(1H,d,J=2.0Hz),7.56(1H,dd,J1=2.0Hz,J2=8.8Hz),6.91(2H,d,J=8.8Hz),6.85(1H,d,J=8.8Hz),6.77(1H,d,J=16.0Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.04(2H,s),3.40(4H,t),1.88(4H,t).13C NMR(100MHz,DMSO-d6)δ194.2,177.5,164.2,161.1,160.2,156.3,155.1,151.5,141.3,136.2,133.8,133.5,130.5,122.0,121.2,120.5,119.6,115.5,115.0,104.0,98.6,98.0,93.7,75.1,51.9,25.4.
3.23 化合物W23的合成
收率4.6%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.37(2H,s,OH),8.02(2H,d,J=8.8Hz),7.85(1H,d,J=16.0Hz),7.55(1H,d,J=8.0Hz),7.21(1H,d,J=1.2Hz),7.15(1H,d,J=8.0Hz),6.91(2H,d,J=8.8Hz),6.84(1H,d,J=16.0Hz),6.46(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.04(2H,s),3.28(4H,t),1.87(4H,t).13C NMR(100MHz,DMSO-d6)δ194.5,177.4,164.3,161.1,160.2,156.3,155.2,149.6,140.8,136.2,130.5,130.0,126.7,122.9,120.9,120.5,119.0,118.2,115.5,112.6,104.0,98.7,93.7,75.3,52.0,25.2.
3.24 化合物W24的合成
收率3.5%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.91(1H,s,OH),10.28(1H,s,OH),8.04(2H,d,J=8.0Hz),7.60(1H,d,J=16.0Hz),7.50(1H,d,J=8.0Hz),7.10(1H,d,J=16.0Hz),7.04(1H,s),6.99(1H,d,J=8.0Hz),6.91(2H,d,J=8.0Hz),6.47(1H,s),6.22(1H,s),5.10(2H,s),3.54(4H,s),1.95(4H,s).13C NMR(100MHz,DMSO-d6)δ194.5,177.5,164.2,161.1,160.2,156.3,155.2,149.8,141.6,139.0,136.2,135.6,130.5,124.8,120.6,120.5,119.6,115.8,115.5,104.0,98.6,94.2,93.7,75.3,49.6,25.2.
3.25 化合物W25的合成
收率6.8%。1H NMR(400MHz,DMSO-d6):δ12.55(1H,s,OH),10.89(1H,s,OH),10.26(1H,s,OH),8.05(2H,d,J=8.8Hz),7.60(1H,d,J=16.0Hz),7.32(1H,s),7.13(1H,d,J=16.0Hz),7.09(1H,s),6.92(1H,s),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.10(2H,s),3.27(4H,s),1.96(4H,s).13C NMR(100MHz,DMSO-d6)δ194.3,177.5,164.2,161.1,160.2,156.3,155.1,147.8,141.5,136.2,136.0,130.5,123.9,120.5,119.1,117.4,115.8,115.4,112.4,104.0,98.6,93.7,90.6,75.2,48.5,24.9.
3.26 化合物W26的合成
收率9.6%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.85(1H,s,OH),10.36(1H,s,OH),8.03(2H,d,J=8.8Hz),7.85-7.40(3H,m),7.76(1H,d,J=16.4Hz),7.12(1H,d,J=16.4Hz),6.92(2H,d,J=8.8Hz),6.46(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.07(2H,s),2.88(4H,m),1.66(4H,m),1.53(2H,m).13C NMR(100MHz,DMSO-d6)δ194.8,177.4,164.2,161.1,160.2,156.3,155.2,153.7,137.6,136.2,132.4,130.5,128.8,125.6,124.4,122.6,120.5,118.7,115.5,113.0,104.0,98.7,93.7,75.4,53.4,25.6,23.4.
3.27 化合物W27的合成
收率10.3%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.87(1H,s,OH),10.26(1H,s,OH),8.04(2H,d,J=8.8Hz),7.71(1H,d,J=8.0Hz),7.65(1H,d,J=16.4Hz),7.42(1H,s),7.34(1H,d,J=8.0Hz),7.17(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.22(1H,d,J=2.0Hz),5.10(2H,s),3.16(4H,m),1.68(4H,m),1.57(2H,m).13C NMR(100MHz,DMSO-d6)δ194.4,177.5,164.2,161.1,160.2,156.4,155.2,141.0,139.7,136.2,134.5,130.5,125.3,120.7,120.5,119.0,118.1,115.5,105.6,104.0,98.7,93.7,75.3,52.4,25.6,23.4
3.28 化合物W28的合成
收率12.6%。1H NMR(400MHz,DMSO-d6):δ12.55(1H,s,OH),10.89(1H,s,OH),10.26(1H,s,OH),8.06(1H,d,J=8.4Hz),8.04(2H,d,J=8.8Hz),7.75(1H,dd,J1=2.0Hz,J2=8.4Hz),7.65(1H,d,J=16.4Hz),7.17(1H,d,J=8.4Hz),7.12(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.07(2H,s),2.97(4H,m),1.67(4H,m),1.55(2H,m).13C NMR(100MHz,DMSO-d6)δ194.6,177.4,164.2,161.1,160.2,156.6,155.1,137.8,136.2,134.3,132.3,130.5,127.6,123.3,120.5,119.0,118.9,115.4,104.0,103.6,98.6,93.7,75.3,53.0,48.6,25.5,23.4.
3.29 化合物W29的合成
收率4.9%。1H NMR(400MHz,DMSO-d6):δ12.60(1H,s,OH),10.52(2H,s,OH),8.09(2H,d,J=8.8Hz),8.07(1H,s),7.87(1H,d,J=8.4Hz),7.63(1H,d,J=16.0Hz),7.17(1H,d,J=8.4Hz),7.05(1H,d,J=16.0Hz),6.96(2H,d,J=8.8Hz),6.51(1H,s),6.26(1H,d,J=1.2Hz),5.09(2H,s),3.30(4H,m),1.72(4H,m),1.63(2H,m).13C NMR(100MHz,DMSO-d6)δ194.1,177.5,164.3,161.1,160.2,156.7,156.3,155.1,140.6,135.2,133.6,130.5,126.4,121.1,120.5,118.9,118.1,115.5,104.0,103.1,98.7,93.7,75.2,51.8,48.6,25.5,23.4.
3.30 化合物W30的合成
收率3.1%。1H NMR(400MHz,Pyr-d6):δ13.25(1H,s,OH),12.63(1H,s,OH),8.47(1H,s),8.35(2H,d,J=8.8Hz),8.15(2H,d,J=8.4Hz),8.00(1H,d,J=16.4Hz),7.45(2H,d,J=8.4Hz),7.39(1H,d,J=16.4Hz),7.27(2H,d,J=8.8Hz),6.80(1H,d,J=2.0Hz),6.74(1H,d,J=2.0Hz),5.36(2H,s).13C NMR(100MHz,Pyr-d6)δ195.6,179.1,166.5,163.3,162.4,158.0,156.6,143.3,137.9,131.9,130.2,127.2,123.4,122.0,117.0,105.8,100.3,95.1,76.8,41.5.
3.31 化合物W31的合成
收率13.0%。1H NMR(400MHz,DMSO-d6):δ12.52(1H,s,OH),10.89(1H,s,OH),10.26(1H,s,OH),8.02(2H,d,J=8.8Hz),7.80-7.50(3H,m),7.81(1H,d,J=16.4Hz),7.11(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.46(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.09(2H,s),3.48(4H,t),2.88(4H,t),1.41(9H,s).13C NMR(100MHz,DMSO-d6)δ194.8,177.4,164.2,161.1,160.2,156.2,155.2,153.9,152.3,137.4,136.2,132.7,130.5,129.0,126.4,125.3,123.1,120.5,118.5,115.5,113.0,104.0,98.6,93.7,79.1,75.3,51.8,48.6,28.0.
3.32 化合物W32的合成
收率12.8%。1H NMR(400MHz,DMSO-d6):δ12.52(1H,s,OH),11.00(1H,s,OH),10.35(1H,s,OH),9.14(2H,s,NH),8.02(2H,d,J=8.0Hz),7.80-7.50(3H,m),7.79(1H,d,J=16.4Hz),7.13(1H,d,J=16.4Hz),6.93(2H,d,J=8.0Hz),6.50(1H,s),6.23(1H,s),5.10(2H,s),3.26(4H,t),3.15(4H,t).13C NMR(100MHz,DMSO-d6)δ194.8,177.4,164.3,161.1,160.3,156.3,155.2,151.3,137.0,136.2,132.7,130.5,129.2,127.0,125.7,123.1,120.5,115.5,113.1,104.0,98.7,93.8,75.4,48.9,42.9.
3.33 化合物W33的合成
收率16.5%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),10.46(2H,s,OH),8.10(1H,d,J=1.2Hz),8.03(2H,d,J=8.8Hz),7.80(1H,dd,J1=1.2Hz,J2=8.4Hz),7.68(1H,d,J=16.4Hz),7.21(1H,d,J=8.4Hz),7.11(1H,d,J=16.4Hz),6.91(2H,d,J=8.8Hz),6.47(1H,d,J=2.0Hz),6.21(1H,d,J=2.0Hz),5.09(2H,s),3.49(4H,t),2.96(4H,t),1.41(9H,s).13C NMR(100MHz,DMSO-d6)δ194.7,177.4,164.3,161.1,160.2,156.3,155.4,155.1,153.8,137.5,136.2,134.5,132.5,130.5,128.0,124.4,120.5,119.8,118.7,115.4,104.6,104.0,98.7,93.7,79.1,75.2,62.7,51.5,28.0.
3.34 化合物W34的合成
收率15.3%。1H NMR(400MHz,DMSO-d6):δ12.54(1H,s,OH),11.02(1H,s,OH),10.35(1H,s,OH),9.22(2H,s,NH),8.15(1H,d,J=1.6Hz),8.04(2H,d,J=8.8Hz),7.84(1H,dd,J1=1.6Hz,J2=8.4Hz),7.66(1H,d,J=16.0Hz),7.29(1H,d,J=8.4Hz),7.14(1H,d,J=16.0Hz),6.93(2H,d,J=8.8Hz),6.51(1H,d,J=2.0Hz),6.24(1H,d,J=2.0Hz),5.10(2H,s),3.27(4H,t),3.23(4H,t).13C NMR(100MHz,DMSO-d6)δ194.6,177.5,164.3,161.1,160.3,156.3,155.2,154.5,137.0,136.2,134.6,132.6,130.5,128.2,124.8,120.5,119.9,118.6,115.5,105.3,104.0,98.7,93.8,75.3,48.6,42.7.
实施例4:化合物对胰岛素抵抗HepG2细胞葡萄糖消耗量的促进作用
实验用高浓度胰岛素刺激HepG2细胞,造成胰岛素抵抗(IR)模型,再给药治疗,采用葡萄糖氧化酶法,测定培养液中葡萄糖剩余量,葡萄糖剩余量=实验组OD值/葡萄糖标准品OD值×5.55mmol/L。葡萄糖消耗量=培养液中葡萄糖总量-葡萄糖剩余量;葡萄糖消耗量的增长率(%)=(实验组葡萄糖消耗量-IR组葡萄糖消耗量)/IR组葡萄糖消耗量×100
HepG2胰岛素抵抗模型的建立
1)细胞前期培养:用含10%FBS的DMEM培养(含酚红)。
2)细胞接种:将长到80%-90%的HepG2细胞用0.25%含EDTA的胰酶消化2-3min,再用含10%FBS的DMEM培养液终止消化,将细胞吹打均匀,计数,调整细胞密度为1×104/孔,将调整好密度的细胞悬液种于96孔板,每孔0.2mL,让细胞单层贴壁36~48h(此时铺板所用的培基为含10%FBS的含酚红DMEM培养)。
造模:待细胞单层贴壁后,吸去含FBS的培养基,每孔加入0.2mL不含酚红的高糖DMEM,再次将板子倒扣于卫生纸上,吸去培基,将板子倾斜,用枪将残余的培基吸去,之后每孔加入0.2mL含10-7mol/L胰岛素的无酚红的高糖DMEM培养基(无血清),至于孵箱,培养36h。
加药:36h后,将板子倒扣于吸水纸上,吸去培养基,然后每孔加入0.2mL pH=4的无酚红高糖DMEM,2~3min后将板子倒扣于吸水纸上,吸去培养基,重复上述过程四遍,之后每孔再加入0.2mL的Hank’s液或RPMI 1640或高糖DMEM,加好后轻摇混匀,吸去培基,再重复一遍,之后用枪头将残余培基吸去,最后每孔加含探针的无酚红高糖DMEM,每孔0.3mL继续置于孵箱孵育24h。
供试液的制备
精密称取一定量的待测试化合物,加入DMSO溶解(DMSO的终浓度≤0.1%),在无菌1.5mL EP管中用无酚红的DMEM培养液稀释,无菌保存备用。
实验分组
实验分为正常细胞组,胰岛素抵抗组及加药组,单次实验5复孔/组
葡萄糖消耗量的测定
按照葡萄糖检测试剂盒说明书所述实验步骤,加药24h后,从每孔中取出5μL剩余培养液,加入到1.5mL EP管中,每个EP管再加入750μL的工作液,37℃孵育10min后,从每个EP管中取出200μL加入到一个新的96孔板中,选择505nm波长,在酶标仪上测定各孔吸光值(OD值),记录结果。
统计学处理
实验数据OD值按照公式计算葡萄糖消耗量增长率,用统计学软件SPSS 16.0计算半数有效浓度(EC50)。
实验结果
部分化合物对胰岛素抵抗的HepG2细胞葡萄糖消耗量的影响如表2所示。
表2化合物对胰岛素抵抗的HepG2细胞葡萄糖消耗量的影响
*Met,二甲双胍
实施例5:化合物W2对HepG2细胞糖原含量的影响
将细胞用胰蛋白酶消化,弃去胰蛋白酶后,用含10%胎牛血清的培养液,终止消化,吹打混匀,得到细胞悬液,计数,调节细胞密度为1x105个/mL。加于6孔板,每孔2mL,置于37℃,5%CO2的孵箱培养。
待细胞密度长至80%,弃去旧的培养液,换上高糖无血清DMEM新培养液,同时加药,预留1个孔为正常对照组(N组),1个孔为阳性对照组(Ins,胰岛素组),置于37℃,5%CO2的孵箱中培养。24h后,将6孔板置于冰上冷却(终止反应)。每孔500μL的PBS洗一遍,加入500μL的胰蛋白酶消化,消化结束后直接加入500μL的培养液终止消化。
用移液器将细胞吹打下来,并转移到2mL的EP管中,3000rpm,4℃离心5min,而后弃去上清液,加入500μLPBS重悬,再次离心(3000rpm,4℃,5min),弃去上清液,加入500μL30%的KOH溶液重悬。
使用超声破碎仪,功率30%,充分超声至悬液呈现透明状。而后100℃,加热煮沸20min(每5min震摇一次,使其充分混匀,均匀加热);加热后,待EP管冷却至室温,加入900μL的无水乙醇,用移液器吹打混匀,8000rpm,4℃离心10min,而后弃去上清液,加入300μL的ddH2O,根据糖原测试盒说明书,每管加入400μL的蒽酮显色液,加热煮沸5min,待冷却至室温,测定波长为620nm处的吸光度。
计算公式:
糖原含量=(测定管OD值/标准管OD值)×标准管含量×样品测试前稀释倍数/1.11
(标准管含量:0.01mg;1.11为此法测定葡萄糖含量换算成糖原含量的系数,即100μg糖原用蒽酮试剂显色的颜色相当于111μg葡萄糖用蒽酮试剂显色的颜色)
化合物W2对HepG2细胞糖原含量的影响如图1所示,结果表明该化合物可提高糖原生成。
实施例6:化合物对W2对HepG2细胞糖异生过程影响
胰蛋白酶消化细胞后,吸弃消化液,用含血清的培养基终止消化,反复吹打混匀细胞成细胞悬液,计数,调整细胞密度为2×104个/mL。
将细胞悬液加入6孔板,2mL/孔,置于37℃,5%CO2培养箱中培养,待细胞密度长至孔板的80%,吸弃旧的培养基,预热的PBS洗2次,换成含不同浓度梯度化合物的0.25%BSA的低糖DMEM培养基,预留1个孔为正常对照组(Con组),1个孔为阳性对照组(Met,二甲双胍组),继续置于37℃,5%CO2培养箱中培养24h,之后吸弃上清液,预热的PBS洗2次,无糖DMEM培养基清洗1次,小心吸净洗液,加入预先配好的葡萄糖生成缓冲溶液,继续孵育4h。之后轻轻晃匀6孔板里的上清液,每孔取50μL上清液于1.SmLEp管中,并每管分别加入50μL MasterReaction Mix(配制方式见表3),充分混匀,37℃避光孵育60min。先用glucose assaybuffer和标准溶液调零,然后酶标仪波长570nM处测量每管吸光度值,绘制标准曲线并计算葡萄糖浓度。
表3 Master Reaction Mix配制比例
化合物W2对HepG2细胞糖异生过程的影响如图2所示,结果表明该化合物能抑制细胞糖异生过程。
实施例7:化合物W2对HepG2细胞糖摄取的影响
将细胞用胰蛋白酶消化,弃去胰蛋白酶后,用含10%胎牛血清的培养液,终止消化,吹打混匀,得到细胞悬液,计数,调节细胞密度为1x105个/mL。加于12孔板,每孔1mL,置于37℃,5%CO2的孵箱培养。
待细胞密度长至60%到70%左右,弃去旧培养液,加入300μL含10%FBS的α-MEM,加入1.5μL浓度为20mM的2-NBDG,同时加药,预留一个空白对照孔(Normal),一个阳性对照孔(Insulin,100nM)置于37℃,5%CO2的孵箱中培养。12h后,加入300μL的PBS洗3遍,弃去后,加入300μL的无糖无血清DMEM的培基。饥饿3h,加入300μL的PBS洗两遍,加入300μL的无糖无血清DMEM培基,其中含100μM的2-NBDG,100nM短效胰岛素,作用30min。而后每孔加入300μL的PBS洗一遍,加入300μL的胰蛋白酶,消化结束后,加入300μL的培养液终止反应。
用移液器吹打混匀,转移至EP管中,5000rpm,4℃离心5分钟,弃去上清液,加入210μL的PBS重悬,充分混匀后,取200μL悬液至96孔板中。在激发波长/发射波长为488/520的条件下测定吸光度值,通过检测细胞内荧光强度变化来评估HepG2细胞摄取2-NBDG的情况。
化合物W2对HepG2细胞葡萄糖摄取的影响如图3所示,结果表明该化合物能提高HepG2细胞葡萄糖摄取。
实施例8:化合物W2对3T3-L1成熟脂肪细胞内甘油三酯含量的影响
待3T3-L1细胞密度长至培养瓶底的80%-90%,胰蛋白酶消化细胞后,吸弃消化液,用含血清的培养基终止消化,反复吹打混匀细胞成细胞悬液,计数,调整细胞密度为2×104个/mL。
将细胞悬液加入24孔板,500μL/孔,置于37℃,5%CO2培养箱中培养,待细胞长满并接触抑制2天,更换培养基为1诱导分化液,每隔一天换次1诱导分化液,4天后培养基更换为2诱导分化液,每隔一天换次2诱导分化液,第8天以后更换为含10%FBS的高糖DMEM培养基继续培养1~4天,每隔一天换次液,待细胞完全成熟后准备后续实验。3T3-L1小鼠成纤维细胞分化成熟后,小心吸弃旧培养基,PBS洗2次,换成不含酚红、无血清的培养基,加入不同浓度的待测化合物,置于37℃,5%CO2培养箱孵育24h。
将24孔板中每孔加入60μL的裂解液,置于冰上30min。30min后将充分裂解的细胞用细胞刮板刮下并转移至1.5mL的EP管中。静置10min,取适量上清液转移到1.5mL的EP管中(其中取5μL的上清液用BCA法蛋白定量试剂盒进行蛋白定量),70℃加热10min,2000rpm离心5min,上层清夜即可用于酶学测定,550nM测定吸光度值。用蒸馏水将4mM的甘油标准品倍比稀释为1000、500、250、125、62.5、31.35、15.625、7.8125μmol/L绘制标准曲线后用于计算测定吸光度值对应的甘油三酯浓度。
化合物W2对3T3-L1成熟脂肪细胞内甘油三酯含量影响如图4所示,结果表明该化合物能降低脂肪细胞内甘油三酯含量。
实施例9:化合物W2对3T3-L1成熟脂肪细胞外甘油三酯含量的影响
待3T3-L1细胞密度长至培养瓶底的80%-90%,胰蛋白酶消化细胞后,吸弃消化液,用含血清的培养基终止消化,反复吹打混匀细胞成细胞悬液,计数,调整细胞密度为2×104个/mL。
将细胞悬液加入24孔板,500μL/孔,置于37℃,5%CO2培养箱中培养,待细胞长满并接触抑制2天,更换培养基为1诱导分化液,每隔一天换次1诱导分化液,4天后培养基更换为2诱导分化液,每隔一天换次2诱导分化液,第8天以后更换为含10%FBS的高糖DMEM培养基继续培养1~4天,每隔一天换次液,待细胞完全成熟后准备后续实验。3T3-L1小鼠成纤维细胞分化成熟后,小心吸弃旧培养基,PBS洗2次,换成不含酚红、无血清的培养基,加入不同浓度的待测化合物,置于37℃,5%CO2培养箱孵育24h。
孵育24h后,小心吸取上清液并将其转移至1.5mL的EP管中,4℃,12000rpm,离心5min,参见表4置于96孔板中进行加样。
表4细胞外游离脂肪酸测定试剂
计算公式:
游离脂肪酸浓度(mmol/g)=(ΔA样本-ΔA空白/ΔA标准品-ΔA空白)x标准品浓度/待测样本蛋白浓度。(标准品浓度:1.00mmol/L)
化合物W2对3T3-L1成熟脂肪细胞外游离脂肪酸含量的影响如图5所示,结果表明该化合物能提高脂肪细胞外游离脂肪酸含量。
本发明所合成的黄酮衍生物,其化学结构的设计实在本实验室获得授权的上一个发明专利(中国发明专利ZL201080070092.0)基础上,对黄酮衍生物的3位侧链苯环进行不同取代基团的衍生合成,合成了34个具有不同取代基团的、未见文献报道的新黄酮衍生物。本实验结果表明,大多数化合物能够不同程度地增加胰岛素抵抗细胞Hep-G2葡萄糖消耗量,增加葡萄糖的利用,22个化合物的半数有效浓度均比阳性对照药物二甲双胍高两个数量级。发明人认为,研究人员一直在寻找具有抗糖尿病活性的化合物,每获得一类具有可接受活性水平的化合物结构对于制备抗糖尿病的药物都具有重要的意义。尤其是,本发明人获得了具有这样出人意料的优异抗糖尿病活性的化合物结构,这是本领域技术人员根据现有技术无法推测和可以预见的。
实际上,本发明人通过研究进一步发现,虽然很多黄酮类似物都具有潜在的抗糖尿病作用,但是其活性的强弱水平很大程度上受到了所选择取代基不同组合形式的影响。即使是相同母核结构,不同类型的取代基都可能对其活性造成巨大的改变,因此,本发明人将要求保护的化合物结构限定为式I所示的情况,并且对其上的取代基进行了限定。相对于具有一般意义上的抗糖尿病活性化合物来说,本发明所获得的具有很强抗糖尿病活性的化合物具有明显更加重要的应用价值。
Claims (5)
1.一种黄酮衍生物或其药学上可接受的盐,其结构如式1所示:
2.如权利要求1所述的黄酮衍生物或其药学上可接受的盐,其选自W2-W5,W9-W14,W18,W20-23,W26-W29,W31-W34。
3.如权利要求2所述的黄酮衍生物或其药学上可接受的盐,其选自W2。
4.如权利要求1-3任意一项所述的黄酮衍生物或其药学上可接受的盐在制备治疗抗糖尿病药物中的用途。
5.如权利要求1-3任意一项所述的黄酮衍生物或其药学上可接受的盐在制备治疗抗肥胖药物中的用途。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711499830.3A CN109988139A (zh) | 2017-12-29 | 2017-12-29 | 一种黄酮衍生物及其医药用途 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711499830.3A CN109988139A (zh) | 2017-12-29 | 2017-12-29 | 一种黄酮衍生物及其医药用途 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109988139A true CN109988139A (zh) | 2019-07-09 |
Family
ID=67111228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711499830.3A Pending CN109988139A (zh) | 2017-12-29 | 2017-12-29 | 一种黄酮衍生物及其医药用途 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109988139A (zh) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103393637A (zh) * | 2011-01-06 | 2013-11-20 | 复旦大学 | 黄酮类化合物在制备抗代谢性疾病药物中的用途 |
CN103209971B (zh) * | 2010-11-12 | 2014-08-20 | 天津医科大学 | 黄酮衍生物、制备方法及其医药用途 |
-
2017
- 2017-12-29 CN CN201711499830.3A patent/CN109988139A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103209971B (zh) * | 2010-11-12 | 2014-08-20 | 天津医科大学 | 黄酮衍生物、制备方法及其医药用途 |
CN103393637A (zh) * | 2011-01-06 | 2013-11-20 | 复旦大学 | 黄酮类化合物在制备抗代谢性疾病药物中的用途 |
Non-Patent Citations (5)
Title |
---|
CHEN YING等: "Flavonoid derivative exerts an antidiabetic effect via AMPK activation in diet-induced obesity mice", 《NATURAL PRODUCT RESEARCH》 * |
QIN NAN等: "synthesis and biological activity of novel tiliroside derivatives", 《EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY》 * |
SHI LIHUAN等: "Tiliroside-derivatives enhance GLUT4 translocation via AMPK in muscle cells", 《DIABETES RESEARCH AND CLINICAL PRACTICE》 * |
YING CHEN等: "Flavonoid derivatives synthesis and anti-diabetic activities", 《BIO-ORGANIC CHEMISTRY》 * |
周雯: "委陵菜黄酮衍生物抗糖尿病活性及其作用机制研究", 《中国博士学位论文全文数据库》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Holder et al. | Quantification of soy isoflavones, genistein and daidzein, and conjugates in rat blood using LC/ES-MS | |
CN105255698B (zh) | 一种富含功能活性因子的萌动荞麦醋及其制备方法 | |
CN108079317A (zh) | 口服活性受体激活剂治疗肥胖相关疾病方法与系统 | |
CN104173418B (zh) | 杜仲和续断的组合物及用途 | |
CN102264716B (zh) | 用于预防和治疗骨相关疾病的取代的苯并呋喃并色烯和相关化合物 | |
CN109988139A (zh) | 一种黄酮衍生物及其医药用途 | |
CN105560220A (zh) | 新型sgk1抑制剂emd638683在制备治疗急性心肌梗死药物中的应用 | |
CN104383370A (zh) | 一种建曲及其制备方法和质量检测方法 | |
CN106543197B (zh) | 一种补骨脂素席夫碱类衍生物及用途 | |
CN109044999A (zh) | 贯叶金丝桃素在制备促进白色脂肪棕色化并且提高棕色脂肪活性的药物中的用途 | |
CN101856438A (zh) | 一种治疗婴幼儿哮喘的药物组合物及其制备方法和用途 | |
CN101793656B (zh) | 一种中药汤剂煎煮率试验方法 | |
CN108795846A (zh) | 用于评价改善胰岛素抵抗产品功效的细胞模型及评价方法 | |
CN107496428B (zh) | 毛蕊异黄酮衍生物在制备促进内皮细胞增殖药物中的应用 | |
CN108642128A (zh) | 一种平阴玫瑰细胞液的体外美白功效评价方法 | |
KR101326932B1 (ko) | 퍼옥시좀 증식체 활성화 수용체 델타의 활성촉진 조성물 | |
CN102247471B (zh) | 一种生地黄水提物在制备雌激素药物中的应用 | |
CN109988138A (zh) | 一种黄酮衍生物及其医药用途 | |
WO2013166833A1 (zh) | 包含有人环氧酶及阿霉素或类阿霉素的药用组合物、其制备方法及在制备多种药物的应用 | |
CN102805760A (zh) | 怀牛膝水提物在制备雌激素类药物中的应用 | |
CN107586284A (zh) | 一种2‑芳基苯并呋喃类衍生物在制备痛风药物中的用途 | |
CN103623150B (zh) | 一种降低泽泻肾脏毒性的炮制新工艺 | |
CN103735736B (zh) | 一种舒肝片的制备方法和应用 | |
CN107298686B (zh) | 一种补骨脂素胺类衍生物及用途 | |
CN102805778B (zh) | 一种地骨皮水提物在制备雌激素类药物中的应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190709 |
|
WD01 | Invention patent application deemed withdrawn after publication |