CN109946249B - 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法 - Google Patents

一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法 Download PDF

Info

Publication number
CN109946249B
CN109946249B CN201910201539.6A CN201910201539A CN109946249B CN 109946249 B CN109946249 B CN 109946249B CN 201910201539 A CN201910201539 A CN 201910201539A CN 109946249 B CN109946249 B CN 109946249B
Authority
CN
China
Prior art keywords
tns
nano
hydrogen sulfide
intelligent equipment
taking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910201539.6A
Other languages
English (en)
Other versions
CN109946249A (zh
Inventor
唐盛
祁桐
许孟婵
许孟媛
朱安妮
沈薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Science and Technology
Original Assignee
Jiangsu University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Science and Technology filed Critical Jiangsu University of Science and Technology
Priority to CN201910201539.6A priority Critical patent/CN109946249B/zh
Publication of CN109946249A publication Critical patent/CN109946249A/zh
Priority to US17/440,189 priority patent/US11965826B2/en
Priority to PCT/CN2020/077103 priority patent/WO2020186995A1/zh
Application granted granted Critical
Publication of CN109946249B publication Critical patent/CN109946249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/02Food
    • G01N33/04Dairy products
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/75Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
    • G01N21/77Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
    • G01N21/78Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
    • G01N21/783Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour for analysing gases
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2202Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling
    • G01N1/2214Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption
    • G01N2001/2217Devices for withdrawing samples in the gaseous state involving separation of sample components during sampling by sorption using a liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/2226Sampling from a closed space, e.g. food package, head space
    • G01N2001/2229Headspace sampling, i.e. vapour over liquid

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开了一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法,包括以下步骤:以银‑金核核壳三角形纳米薄片(Ag@Au TNS)作为纳米检测探针,结合顶空单滴微萃取(HS‑SDME)的分析方法,使待测样品中挥发出的H2S被纳米检测探针特异性萃取,取萃取后的样本,借助智能设备拍照功能和取色软件对H2S进行检测。相对于现有技术,本发明采用智能设备比色法,检测极限为65nM左右,线性范围为0.1μM‑100μM,所建立的方法能够应用于测定实际样品如蛋清及牛奶等不透明样本中的H2S,具有流程少、操作简单、检测效率高等优点。

Description

一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢 的方法
技术领域
本发明涉及一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法,属于硫化氢检测技术领域。
背景技术
硫化氢(H2S)是一种无色酸性气体,具有臭鸡蛋特有的气味。据了解,食品加工业,煤气化厂,以及原油炼制过程中可产生的H2S。它是继一氧化氮和一氧化碳之后的第三种有毒气体信号分子。在许多心血管疾病中具有重要的病理生理学作用,如心脏缺血,血管舒张和神经调节等。越来越多的证据表明,H2S的异常水平与糖尿病、阿尔茨海默病和唐氏综合症密切相关。当硫化氢浓度上升到15ppm时,暴露于其中的人将失去意识,并患有呼吸暂停和嗅觉系统失活,浓度超过320ppm可导致死亡。鸡蛋、牛奶等食物的变质过程也会产生H2S。因此,快速、灵敏地检测H2S对于预警食品变质或污染事件具有重要意义。
迄今为止,报道了许多经典测定H2S的方法,如气相色谱(GC)、电化学、化学发光等。一般来说,上述方法都是测定H2S较好的自动化仪器方法。然而,它们需要中等复杂的仪器和繁琐的预处理过程,以及气体(氦或氮)作为流动相和参考气体混合物进行分析系统校准。荧光法也被广泛应用于生物样品中H2S的检测和实时成像。近年来,荧光检测方法被广泛应用于H2S检测和实时成像。但该技术在实际应用中仍存在局限性,如低选择性、低光稳定性和难以分离未反应物质等。
近年来,越来越多的研究集中在利用纳米材料在气相和生物系统中检测H2S,如碳纳米结构、金属纳米颗粒、金属氧化物纳米颗粒和量子点。这些材料作为微型传感器具有高选择性,可以实时应用,以及其他突出优点。例如,银/金纳米材料已经被报道通过表面等离子体共振信号的抑制和移位,或作为电化学传感器检测血清或HeLa细胞中的H2S。然而,在这些方法中,纳米级传感器直接与样品混合,存在严重的基体干扰。生物样品的潜在基质效应会导致对H2S的选择性较低。因此,有必要采用新的分析方法来消除基体效应。
单滴微萃取(SDME)是一种液相微萃取方法,它是一种有效的液相和气体分析的分析物萃取方法。顶空(HS)-SDME对挥发性化合物最为有效。因为挥发性化合物可以从样品中分离到顶空,萃取过程中溶剂和样品之间没有任何接触。因此,完全避免了复杂系统的干扰问题。然而,分析单个液滴是一个挑战。在传统的HS-SDME中,尤其是使用微注射器进行分析时,一般要结合气相色谱法或液相色谱法对液滴进行分析。否则,很难使用其他分析方法。近年来,许多仪器公司研制了几种纳米液滴探测器,用于分析萃取剂液滴。然而,这些检测器是特殊应用的,相对昂贵,并且获取也并不方便。
发明内容
发明目的:为了解决上述技术问题,本发明提供了一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法。
技术方案:为了实现上述目的,本发明采用以下技术方案:
一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法,包括以下步骤:
以银-金核核壳三角形纳米薄片(Ag@Au TNS)作为纳米检测探针,结合顶空单滴微萃取(HS-SDME)的分析方法,使待测样品中挥发出的H2S被纳米检测探针特异性萃取,取萃取后的样本,借助智能设备拍照功能和取色软件对H2S进行检测。
作为优选:
所述银-金核核壳三角形纳米薄片的制备方法包括以下步骤:
(1)取硝酸银,柠檬酸钠和双氧水加入到去离子水中搅拌,之后快速加入NaBH4,同时停止搅拌,一定时间后离心,清洗,即得银三角形纳米薄片(Ag TNS),备用;
(2)将上述Ag TNS重新分散于去离子水中,加入PVP和抗坏血酸,随后依次滴加硝酸银溶液、柠檬酸钠溶液以及硝酸银和柠檬酸钠的混合溶液,混合均匀后,经离心后用去离子水清洗。
(3)通过再次加入PVP、二乙胺、抗坏血酸以及含金溶液,使金层沉淀在Ag TNS表面,最后将产物离心,去离子水洗涤,去除AgNO3沉淀和多余的PVP,即得所述银-金核核壳三角形纳米薄片(Ag@Au TNS)。
进一步优选,步骤(1)中硝酸银,柠檬酸钠和双氧水的摩尔比为1:(10-20):(200-360),混合溶液与NaBH4的体积比=(1.3-2.5):1。
进一步优选,步骤(2)中PVP和抗坏血酸、硝酸银溶液、柠檬酸钠溶液按照常规的用量即可。
进一步优选,步骤(3)中所述PVP、二乙胺和抗坏血酸的体积比为(1-9):(0.25-1.25):1,含金溶液的成分包括PVP、KI、HAuCl4和超纯水,Ag和Au的总物质量之比为(10-4):1。
所述纳米检测探针特异性萃取的方法包括以下步骤:
将待测样品加入带盖容器中,取下盖子,将微量Ag@Au TNS溶液滴到盖子内表面,随后将盖子盖在到容器上,静置一段时间,确保H2S从样品中释放出来后被萃取液滴充分提取,结束后,打开盖子,内表面液滴即为所述萃取后的样本。
所述借助智能设备拍照功能和取色软件对H2S进行检测的方法包括以下步骤:
测取数据:RGB的值由取色软件通过拍摄的图像直接提供
绘制标曲:将计算得的RGB值的差值作为纵坐标,浓度的对数为横坐标得出标准曲线。
读取数据:通过得到的标准曲线,根据LOD=3δblack/k,得出最低检测限浓度。其中LOD是指最低检测限,δblack是空白溶液的标准偏差,k是标准曲线的斜率。
所述智能设备包括智能手机、平板电脑。
所述取色软件为EKColorPicker软件、取色器软件或ChemEye。
本发明中所述采用智能设备(如智能手机)作为一种新型的分析设备,为诊断和环境监测提供了一个有趣的平台。基于智能设备摄像头这一优秀的彩色成像传感器,在智能设备上开发的分析方法大多是比色法和宏观特征成像。通过使用一些取色器软件,可以对颜色进行分析,找到与分析浓度相对应的关系。此外,该智能设备摄像头还适用于拍摄单个溶剂液滴的图像,就像SDME中存在的那样。
本发明方法利用预先加入SDME的萃取剂Ag@Au TNS被H2S蚀刻引起的紫外可见(UV-vis)信号抑制,测量H2S浓度。金层的包覆不仅保证了纳米材料的高稳定性,而且提高了对H2S的选择性。HS-SDME法工艺简单,只需一滴溶剂即可完成分析。
有益效果:相对于现有技术,本发明采用智能设备比色法,检测极限为65nM左右,线性范围为0.1μM-100μM,所建立的方法能够应用于测定实际样品如蛋清及牛奶等不透明样本中的H2S,具有流程少、操作简单、检测效率高等优点。
附图说明
图1:利用银-金核壳三角形纳米薄片顶空单滴液相微萃取后检测H2S方法机理图
图2:制备的Ag TNS和三种不同金层厚度的Ag@Au TNS的TEM图:I(B and C),II(D,E and F),III(G and H);其中A为Ag TNS的TEM图;B和C为I层金的Ag@Au TNS的TEM图;D,E和F为II层金的Ag@Au TNS的TEM图;G和H为III层金的Ag@Au TNS的TEM图。
图3:Ag@Au TNS在100μM H2S分别孵化5、10、15、20min的TEM图和反应前、后的EDXmapping。其中,1)为Ag@Au TNS在100μM Na2S分别孵化5、10、15、20min的TEM图;2)为Ag@AuTNS在100μM H2S反应前的EDX mapping;3)为Ag@Au TNS在100μM H2S反应后的EDX mapping。
图4:Ag@Au TNS经100μM Na2S HS-SDME 20分钟后的紫外-可见吸收光谱变化图。
图5:Ag@Au TNS在100μM Na2S,孵化温度从15℃到35℃;目标物溶液的pH从5到9;孵化时间从0min到20min的优化图。
图6:Ag@Au TNS分别在10mM CO2、SO2、NO、HBr、HCl、NH3和100μM H2S等挥发性气体中选择性检测图
图7:Ag TNS、Ag@Au TNS I,II,III分别在100μM Na2S溶液(蓝色)和100μM Na2SO3酸性溶液(红色)经HS-SDME 20分钟后吸收光谱的变化图。
图8:H2S紫外检测的校准曲线。条件:100μM H2S,pH 6,30℃,孵化20min;
图9:H2S智能手机纳米比色检测的校准曲线。条件:100μM H2S,pH 6,30℃,孵化20min;
图10:不同浓度的H2S对应的紫外光谱图。
图11:牛奶在10天内分别保存在4℃和25℃时硫化氢浓度变化曲线;
图12:鸡蛋在10天内分别保存在4℃和25℃时硫化氢浓度变化曲线。
具体实施方式
以下结合附图和具体实施例,对本发明方法做出进一步说明。
实施例1利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法
(1)取50mL烧杯,将40μL硝酸银(0.1M),600μL柠檬酸钠(0.1M),112μL双氧水(30%),加入去离子水至39.6mL,利用磁力搅拌器,在30℃下快速搅拌10min,之后快速加入400μL NaBH4(0.1M),同时停止搅拌,此时溶液会形成一个淡黄色的溶液。1-2min后,溶液由黄色逐渐变为红色、绿色、蓝色,说明Ag TNS制备完成。离心后使用去离子水清洗3次,使用前储存在4℃的黑暗中。
(2)将制备好的Ag TNS(20mL)离心洗涤后重新分散于4.5mL去离子水中,对Ag TNS进行横向和纵向的生长,方法如下:加入500μL PVP(乙烯基吡咯单体浓度为17.5mM)、18.7μL抗坏血酸(0.5M)加入到Ag TNS水溶液中,利用1mL一次性注射器将300μL硝酸银(0.6mM)以0.1mL/min加入到Ag TNS中。随后将150μL柠檬酸钠(0.1M)利用1mL一次性注射器以0.1mL/min加入到Ag TNS中,15min后利用2mL一次性注射器以0.1mL/min将1.5mL硝酸银和柠檬酸钠的混合溶液加入Ag TNS溶液中。溶液混合均匀后,不需进一步纯化,经离心和去离子水清洗后,通过再次加入500μL PVP、75μL二乙胺、100mL抗坏血酸(0.5M)以及含金溶液500μL,使金层沉淀在Ag TNS表面。最后,将产物(Ag@Au TNS)离心,常温下用去离子水洗涤几次,去除AgNO3沉淀和多余PVP。Ag@Au TNS使用前储存在4℃黑暗中。如图2所示是制备的Ag TNS和三种不同金层厚度的Ag@Au TNS的TEM图。从图2A中可观察到Ag TNS的平均边长约为55nm。Ag@Au TNS的三种不同Au层的厚度分别为0.8nm、1.58nm和2.7nm,如图2B-H所示。
(3)制备样品溶液,由于Na2S的不稳定性,其水溶液需新鲜配置并在4℃下黑暗中储存。新鲜的牛奶和鸡蛋是直接从超市购买的,没有进一步加工。每个实际样本类型分为两组分别存储在环境温度(25℃)和4℃。如图3所示是Ag@Au TNS萃取H2S,5、10、15、20min的TEM图,以及Ag@Au TNS萃取前后的EDX mapping.Ag@Au TNS与H2S接触后虽然边缘萎缩变形,但TNS的总体形状仍保持不变。EDX结果表明,边缘与拐角的元素硫分布无明显差异。
(4)如图1所示,是利用银-金核壳三角形纳米薄片顶空单滴液相微萃取后检测H2S方法机理图。首先,将1.0mL不同浓度的Na2S溶液或实际样品加入1.5mL带盖聚丙烯离心管中,然后将3.0μL Ag@Au TNS溶液,滴到顶端盖子内部。借助水的表面张力和分子间作用力,液滴不会轻易从顶部跌落,除非离心管剧烈震动。因此,以这种方式进行SDME是可行的。将盖子快速而轻柔地盖在到离心管上,使离心管静置20分钟,确保H2S从样品中被释放出来,被萃取液滴充分提取。SDME之后,小心地打开离心管盖,将3.0μL萃取剂使用移液枪转移至NanoPhotometer紫外可见分光光度计分析其紫外可见光信号。对于SNC来说,液滴的照片是由智能手机摄像头拍摄的。该图像的RGB(红、绿、蓝)颜色由EKColorPicker进行分析。图像的R(红色)值直接由EKColorPicker软件提供,用来表示颜色的强度。
加入的PVP、抗坏血酸和柠檬酸钠分次添加均需间隔10min。
硝酸银和柠檬酸钠的混合溶液中的硝酸银浓度为0.75mM,柠檬酸钠浓度为1.13mM。
所述含金溶液为:400μL PVP(乙烯基吡咯单体浓度为0.5M),80μL KI(0.2M),20μLHAuCl4(0.25M),3mL超纯水。且以0.05mL/min速度添加。
所述NaBH4(0.1M):为冰水制备且现配现用。
(5)数据处理
测取数据:RGB的值由取色软件通过拍摄的图像直接提供,通过测取R(红色)值的数据绘制标准曲线。
绘制标曲:将计算得的R值的差值作为纵坐标,取0.01μM-100μM浓度的对数为横坐标得出标准曲线。
读取数据:通过得到的标准曲线,根据LOD=3δblack/k,得出最低检测限浓度。其中LOD是指最低检测限,δblack是未反应的Ag@Au TNS的标准偏差,k是标准曲线的斜率。图5为优化实验图,得到最优的实验条件为pH 6,30℃,萃取20min。图8、9分别为H2S紫外检测的校准曲线和H2S智能手机纳米比色检测的校准曲线。检测极限分别为7nM和65nM左右,线性范围为10nM-10μM和0.1μM-100μM。图10为不同浓度的H2S对应的紫外光谱图。
为评估Ag@Au TNS的选择专一性,对10mM CO2、SO2、NO、HBr、HCl、NH3和100μM H2S分别萃取研究,如图6所示,对H2S效果最佳。由于Au层厚度在H2S的成功检测中起着关键作用,本文还对该参数对灵敏度和选择性的影响进行了评价。在这里,SO2被用作干扰素。如图7所示,随着Au层厚度的增加,灵敏度略有下降,但选择性增强如图7所示为四种材料在H2S和SO2条件下萃取,可得Ag@Au II TNS是最佳的萃取剂。
实施例2牛奶中H2S的检测实例:
为了检测牛奶中H2S含量的变化趋势,对鲜牛奶样品中的H2S进行了测定并连续监测10天。将从超市直接购得的鲜牛奶放置在两个烧杯中进行储存,分别放置在4℃冰箱和室温25℃下保存。使用紫外可见分光光度计测量实验数据,得到牛奶中的H2S在10天内的变化趋势图,如附图11。为了评估基质效应,这些样品分别加入0.02μM、0.2μM和2μM H2S,经紫外-可见分光光度计检测;分别加入0.2μM、2μM和20μM、H2S经智能手机纳米比色法检测。结果分别如表1、2所示,获得了较好的回收率(97-105%)。HS-SDME,完全避免了基质干扰问题,其测取数据和计算方法类似水溶液中的H2S测定方式。
表1用HS-SDME-UV-vis法测定新鲜牛奶样品中添加的酸性不稳定硫化物的含量
Figure BDA0001997612720000071
a相对回收率=(总浓度-空白浓度)/掺入浓度
表2用HS-SDME-SNC法测定新鲜牛奶样品中添加的酸性不稳定硫化物的含量
Figure BDA0001997612720000072
实施例3鸡蛋中H2S的检测实例:
为了检测鸡蛋中H2S含量的变化趋势,对鸡蛋样品中的H2S进行了测定并连续监测10天。将从超市直接购得的鸡蛋分别放置在4℃冰箱和室温25℃下保存。在鸡蛋壳一端打开直径为5mm的天窗。使用紫外可见分光光度计测量实验数据,得到鸡蛋中的H2S在10天内的变化趋势图,如附图12。为了评估基质效应,这些样品分别加入0.02μM、0.2μM和2μM H2S,经紫外-可见分光光度计检测;分别加入0.2μM、2μM和20μM、H2S经智能手机纳米比色法检测。结果分别如表3、4所示,获得了较好的回收率(95-104%)。
表3用HS-SDME-UV-vis法测定鸡蛋样品中添加的酸性不稳定硫化物的含量
Figure BDA0001997612720000073
Figure BDA0001997612720000081
表4用HS-SDME-SNC法测定鸡蛋样品中添加的酸性不稳定硫化物的含量
Figure BDA0001997612720000082

Claims (7)

1.一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法,其特征在于,包括以下步骤:
以银-金核核壳三角形纳米薄片Ag@Au TNS作为纳米检测探针,结合顶空单滴微萃取HS-SDME的分析方法,使待测样品中挥发出的H2S被纳米检测探针特异性萃取,取萃取后的样本,借助智能设备拍照功能和取色软件对H2S进行检测;
所述纳米检测探针特异性萃取的方法包括以下步骤:
将待测样品加入带盖容器中,取下盖子,将微量Ag@Au TNS溶液滴到盖子内表面,随后将盖子盖到容器上,静置一段时间,确保H2S从样品中释放出来后被萃取液滴充分提取,结束后,打开盖子,内表面液滴即为所述萃取后的样本。
2.根据权利要求1所述的测定硫化氢的方法,其特征在于,所述银-金核核壳三角形纳米薄片的制备方法包括以下步骤:
(1)取硝酸银,柠檬酸钠和双氧水加入到去离子水中搅拌,之后快速加入NaBH4,同时停止搅拌,一定时间后离心,清洗,即得银三角形纳米薄片Ag TNS,备用;
(2)将上述Ag TNS重新分散于去离子水中,加入PVP和抗坏血酸,随后依次滴加硝酸银溶液、柠檬酸钠溶液以及硝酸银和柠檬酸钠的混合溶液,混合均匀后,经离心后用去离子水清洗;
(3)通过再次加入PVP、二乙胺、抗坏血酸以及含金溶液,使金层沉淀在Ag TNS表面,最后将产物离心,去离子水洗涤,去除AgNO3沉淀和多余的PVP,即得所述银-金核核壳三角形纳米薄片Ag@Au TNS。
3.根据权利要求2所述的测定硫化氢的方法,其特征在于,步骤(1)中硝酸银,柠檬酸钠和双氧水的摩尔比为1:(10-20):(200-360),混合溶液与NaBH4的体积比为(1.3-2.5):1。
4.根据权利要求2所述的测定硫化氢的方法,其特征在于,步骤(3)中所述PVP二乙胺和抗坏血酸的体积比为(1-9):(0.25-1.25):1,含金溶液的成分包括 PVP、 KI、HAuCl4和超纯水,Ag和Au的总物质量之比为(10-4):1。
5.根据权利要求1所述的测定硫化氢的方法,其特征在于,所述借助智能设备拍照功能和取色软件对H2S进行检测的方法包括以下步骤:
测取数据:RGB的值由取色软件通过拍摄的图像直接提供;
绘制标曲:将计算得的R值的差值作为纵坐标,浓度的对数为横坐标得出标准曲线;
读取数据:通过得到的标准曲线,根据LOD=3δ black / k,得出最低检测限浓度;其中LOD是指最低检测限,δ black是空白溶液的标准偏差,k是标准曲线的斜率。
6.根据权利要求1所述的测定硫化氢的方法,其特征在于,所述智能设备包括智能手机或平板电脑。
7.根据权利要求1所述的测定硫化氢的方法,其特征在于,所述取色软件为EKColorPicker软件、取色器软件或ChemEye。
CN201910201539.6A 2019-03-18 2019-03-18 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法 Active CN109946249B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910201539.6A CN109946249B (zh) 2019-03-18 2019-03-18 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法
US17/440,189 US11965826B2 (en) 2019-03-18 2020-02-28 Method for determining hydrogen sulfide by headspace single-drop liquid phase microextraction and intelligent device colorimetry
PCT/CN2020/077103 WO2020186995A1 (zh) 2019-03-18 2020-02-28 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910201539.6A CN109946249B (zh) 2019-03-18 2019-03-18 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法

Publications (2)

Publication Number Publication Date
CN109946249A CN109946249A (zh) 2019-06-28
CN109946249B true CN109946249B (zh) 2021-06-01

Family

ID=67008842

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910201539.6A Active CN109946249B (zh) 2019-03-18 2019-03-18 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法

Country Status (3)

Country Link
US (1) US11965826B2 (zh)
CN (1) CN109946249B (zh)
WO (1) WO2020186995A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109946249B (zh) * 2019-03-18 2021-06-01 江苏科技大学 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法
CN113640240B (zh) * 2021-08-09 2022-10-14 江苏科技大学 一种基于金银纳米星刻蚀的智能手机紫外检测so2的方法
CN114018892B (zh) * 2021-11-19 2024-01-30 江苏科技大学 磁性单滴微萃取荧光开关结合pda涂层囊泡检测gst的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029872A (zh) * 2006-11-30 2007-09-05 白莉 硫化氢试验测试液及其比色测试管
CN101706483A (zh) * 2009-11-19 2010-05-12 吉林大学 水发食品中甲醛浓度的检测方法
CN103120862A (zh) * 2013-01-23 2013-05-29 宁波大学 一种声表面波加速的顶空单液滴微萃取装置及方法
CN105866301A (zh) * 2016-06-17 2016-08-17 中华人民共和国金华出入境检验检疫局 一种离子液体单滴微萃取-气质联用检测水基食品模拟物中邻苯二甲酸酯的方法
CN106442816A (zh) * 2016-11-30 2017-02-22 中国人民解放军63977部队 一种基于萃取溶剂挥发的动态顶空液相微萃取方法
CN108444995A (zh) * 2018-03-19 2018-08-24 上海应用技术大学 一种酒中二氧化硫的现场快速检测方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3766634A (en) * 1972-04-20 1973-10-23 Gen Electric Method of direct bonding metals to non-metallic substrates
US3993411A (en) * 1973-06-01 1976-11-23 General Electric Company Bonds between metal and a non-metallic substrate
JP3217868B2 (ja) * 1992-09-21 2001-10-15 日本酸素株式会社 硫化水素分析方法
JP2009533545A (ja) * 2006-03-08 2009-09-17 ノースウエスタン ユニバーシティ ナノプリズムを形成するための2種類の成分からなるナノ粒子中における金の光誘起相分離
US20100304173A1 (en) * 2007-07-26 2010-12-02 Northwestern University Plasmonic-Driven Synthesis of Nanoprisms from Isotropic and Anisotropic Gold Cores
US9441301B2 (en) * 2012-12-06 2016-09-13 Nanyang Technological University Method for forming a bimetallic core-shell nanostructure
WO2016036409A1 (en) * 2014-09-05 2016-03-10 California Institute Of Technology Surface enhanced raman spectroscopy detection of gases, particles and liquids through nanopillar structures
CN105806815B (zh) * 2016-03-14 2019-04-05 首都师范大学 一种检测硫化氢的荧光纳米探针及其制备方法与应用
CN106248633A (zh) * 2016-07-25 2016-12-21 兰州大学 一种原位高通量检测芯片的制备方法
CN107607515A (zh) * 2017-07-19 2018-01-19 南京邮电大学 一种基于Au@AgNCs检测硫离子的方法
KR102051757B1 (ko) * 2018-08-16 2019-12-03 숙명여자대학교산학협력단 황화수소 검출용 신규 화합물 및 이를 이용한 황화수소 검출용 센서 키트
CN109946249B (zh) * 2019-03-18 2021-06-01 江苏科技大学 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法
CN112138428B (zh) * 2020-09-18 2021-12-31 华中科技大学 一种平板膜式液相微萃取方法及其在药物萃取中的应用
CN113640240B (zh) * 2021-08-09 2022-10-14 江苏科技大学 一种基于金银纳米星刻蚀的智能手机紫外检测so2的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101029872A (zh) * 2006-11-30 2007-09-05 白莉 硫化氢试验测试液及其比色测试管
CN101706483A (zh) * 2009-11-19 2010-05-12 吉林大学 水发食品中甲醛浓度的检测方法
CN103120862A (zh) * 2013-01-23 2013-05-29 宁波大学 一种声表面波加速的顶空单液滴微萃取装置及方法
CN105866301A (zh) * 2016-06-17 2016-08-17 中华人民共和国金华出入境检验检疫局 一种离子液体单滴微萃取-气质联用检测水基食品模拟物中邻苯二甲酸酯的方法
CN106442816A (zh) * 2016-11-30 2017-02-22 中国人民解放军63977部队 一种基于萃取溶剂挥发的动态顶空液相微萃取方法
CN108444995A (zh) * 2018-03-19 2018-08-24 上海应用技术大学 一种酒中二氧化硫的现场快速检测方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H2S detection;Yuan Zhao;《Biosensors and Bioelectronic》;20180525;第117卷;第1-24页 *
Headspace single drop microextraction combined with mobile phone-based on-drop sensing for the determination of formaldehyde;Ali Shahvar et al;《Sensors and Actuators B: Chemical》;20180712;第273卷;第1474-1478页 *
Microvolume turbidimetry for rapid and sensitive determination of the acid labile sulfide fraction in waters after headspace single-drop microextraction with in situ generation of volatile hydrogen sulfide;I. Lavilla, F et al.;《Analytica Chimica Acta》;20090606;第647卷;第112-116页 *
Silver/Gold Core–Shell Nanoprism-Based Plasmonic Nanoprobes for Highly Sensitive and Selective Detection of Hydrogen Sulfide;Xinjian Yang et al.;《Chem. Eur. J.》;20151231;第21卷;第988-992页 *
Smartphone Nanocolorimetry for On-Demand Lead Detection and Quantitation in Drinking Water;Hoang Nguyen et al.;《Anal. Chem.》;20180902;第90卷;第11517-11522页 *
单滴微萃取在实际样品分析中的研究进展;王丽 等;《分析科学学报》;20180831;第34卷(第04期);第560-564页 *
顶空单液滴微萃取在挥发生成分分析中的应用进展;王帅斌 等;《专题论述》;20071231;第25-29页 *

Also Published As

Publication number Publication date
WO2020186995A1 (zh) 2020-09-24
CN109946249A (zh) 2019-06-28
US11965826B2 (en) 2024-04-23
US20220155222A1 (en) 2022-05-19

Similar Documents

Publication Publication Date Title
CN109946249B (zh) 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法
Zhang et al. A smartphone-integrated colorimetric sensor of total volatile basic nitrogen (TVB-N) based on Au@ MnO2 core-shell nanocomposites incorporated into hydrogel and its application in fish spoilage monitoring
Shrivas et al. Food safety monitoring of the pesticide phenthoate using a smartphone-assisted paper-based sensor with bimetallic Cu@ Ag core–shell nanoparticles
Choudhary et al. Green biomimetic silver nanoparticles as invigorated colorimetric probe for Hg2+ ions: A cleaner approach towards recognition of heavy metal ions in aqueous media
Luo et al. An ultrasensitive fluorescent sensor for organophosphorus pesticides detection based on RB-Ag/Au bimetallic nanoparticles
Miao et al. Exploring a new rapid colorimetric detection method of Cu2+ with high sensitivity and selectivity
Bordbar et al. Structural elucidation and ultrasensitive analyses of volatile organic compounds by paper-based nano-optoelectronic noses
CN103743735B (zh) 一种比色法检测、富集与分离水环境重金属Hg2+的方法
CN114518358B (zh) 农药残留检测用三色传感探针及其制备方法、应用和深度学习的视觉智能监测装置及方法
US11543358B2 (en) Selective detection of alkenes or alkynes
CN112394095B (zh) 一种选择性检测亚硝酸根离子的电化学传感器及其制备方法与应用
Liu et al. A handheld multifunctional smartphone platform integrated with 3D printing portable device: On-site evaluation for glutathione and azodicarbonamide with machine learning
Amourizi et al. Electrostatically controlled plasmonic effects of gold nanoparticles with indigo-carmine functionation for rapid and straightforward colorimetric detection of Cu2+ ions
Liu et al. Selective and ratiometric fluorescence sensing of bisphenol A in canned food based on portable fluorescent test strips
Mousavizadeh et al. A sensitive dual mode turn-on fluorescence and colorimetric nanosensor for ultrasensitive detection of trace amount of gluten proteins in bread products based on crystalline nano cellulose and gold nanoparticles
CN113640240B (zh) 一种基于金银纳米星刻蚀的智能手机紫外检测so2的方法
Huanan et al. Rapid and sensitive smartphone non-enzymatic colorimetric assay for the detection of glucose in food based on peroxidase-like activity of Fe3O4@ Au nanoparticles
WO2011074742A1 (ko) 나노 하이브리드형 일산화질소 검출센서 및 그의 제조방법
Kim et al. Tuning stable and unstable aggregates of gallic acid capped gold nanoparticles using Mg2+ as coordinating agent
Karakuş et al. Cubic-shaped corylus colurna extract coated Cu2O nanoparticles-based smartphone biosensor for the detection of ascorbic acid in real food samples
Huanan et al. A smartphone-integrated dual-mode nanosensor based on Fe3O4@ Au for rapid and highly selective detection of glutathione
CN113155824B (zh) 一种传感薄膜、制备方法及其在食品安全检测中的应用
CN108949528B (zh) 可视化检测铜、铅、汞离子的多元体积柱芯片及其检测方法
Qiao et al. Rapid and sensitive determination of ascorbic acid based on label-free silver triangular nanoplates
Lv et al. A stable and sensitive Au metal organic frameworks resonance Rayleigh scattering nanoprobe for detection of SO32–in food based on fuchsin addition reaction

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant