CN105806815B - 一种检测硫化氢的荧光纳米探针及其制备方法与应用 - Google Patents

一种检测硫化氢的荧光纳米探针及其制备方法与应用 Download PDF

Info

Publication number
CN105806815B
CN105806815B CN201610143481.0A CN201610143481A CN105806815B CN 105806815 B CN105806815 B CN 105806815B CN 201610143481 A CN201610143481 A CN 201610143481A CN 105806815 B CN105806815 B CN 105806815B
Authority
CN
China
Prior art keywords
aqueous solution
fluorescence
hydrogen sulfide
probe
quantum dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610143481.0A
Other languages
English (en)
Other versions
CN105806815A (zh
Inventor
林雨青
毕新雨
王超
罗静轩
韩伊婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital Normal University
Original Assignee
Capital Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital Normal University filed Critical Capital Normal University
Priority to CN201610143481.0A priority Critical patent/CN105806815B/zh
Publication of CN105806815A publication Critical patent/CN105806815A/zh
Application granted granted Critical
Publication of CN105806815B publication Critical patent/CN105806815B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种检测硫化氢的荧光纳米探针及其制备方法与应用。该荧光探针由含氮元素的碳量子点与纳米银的水溶液通过简单混合而成。本发明将碳量子点‑纳米银荧光探针组装后,进行表征、优化检测硫化氢的实验条件。后进行对硫化氢的线性检测以及干扰物分析,最后可应用于实际生物样品中硫化氢的检测分析。该荧光探针检测硫化氢的灵敏度、稳定性优良,检测低限达91pM,并可用于实际样品硫化氢的检测。

Description

一种检测硫化氢的荧光纳米探针及其制备方法与应用
技术领域
本发明属于分析领域,涉及一种检测硫化氢的荧光纳米探针及其制备方法与应用。
背景技术
硫化氢,是一种有毒的气体,但作为最新发现的内源性气体信号分子,具有重要的生物学活性,广泛参与机体的多种生理和病理过程[Kimura H,Nagai Y,Umemura K,KimuraY.Antioxid.Redox.Sign.,2005,7:795.]。硫化氢不仅对全身多系统的缺血性等疾病有治疗作用,且与神经性及炎症性疼痛的双向性调节作用有密切关系。因此,有必要发展一种具有高度选择性和快速灵敏检测硫化氢的传感分析方法。目前已经被实际应用的几种检测H2S的方法有:电化学法、电致发光法、高效液相色谱法、比色法体外检测法等。上述方法存在样品的前处理,有机液相的浪费,这些都会提高成本。荧光探针检测法具有高灵敏度以及在活细胞或组织中可直接检测等优点已经成为分析各种生理活性物种重要的检测手段。应生物体系中H2S浓度水平检测的要求,需要设计选择性好、灵敏度高检测H2S的荧光探针,使其能够应用于实际生物样品的检测。
发明内容
本发明的目的是提供一种检测H2S的荧光纳米探针及其制备方法与应用。
本发明提供的制备所述荧光探针的方法,包括如下步骤:
将所述含氮元素的碳量子点与所述纳米银的水溶液混合,得到所述荧光探针。
上述方法中,所述含氮元素的碳量子点与纳米银的水溶液的体积比为100-0.4:1,具体为0.5-2:1,具体可为2:1、1:1、0.67:1、0.5:1,最优选1:1;
所述混合步骤中,温度为常温。
所述含氮元素的碳量子点的粒径为2-4nm,平均粒径为3.15nm;
所述纳米银的粒径为10-20nm,平均粒径为15nm。
所述方法还包括如下步骤:在所述混合步骤之后,待体系由无色变为黄色且稳定,即制备完毕。
所述含氮元素的碳量子点为按照包括如下步骤的方法制备而得:
将Tris(也即三羟甲基氨基甲烷)加热熔融后取出,置于水中稀释,同时检测由水和Tris组成的体系的荧光强度,不断加水至所述体系的荧光强度达到最大值时停止加入,得到所述含氮元素的碳量子点(CQDs);
具体的,所述含氮元素的碳量子点的制备步骤中,加热熔融的温度为220℃-240℃,具体为230℃;
时间为15-30min,具体为20min;
所述水具体可为二次水。
所述纳米银的水溶液为按照包括如下步骤的方法制备而得:将AgNO3的水溶液与NaBH4的水溶液中混合,体系颜色由无色变为黄色时,即得所述纳米银(AgNPs)的水溶液;
具体的,所述纳米银的水溶液的制备步骤中,混合的温度为0℃;混合的时间为10-20min,具体为15min;
所述AgNO3的水溶液的浓度为0.5-1.5mM,具体为1mM;
所述NaBH4的水溶液的浓度为1-3mM,具体为2mM;
所述AgNO3的水溶液与NaBH4的水溶液的体积比为1:2-6,具体为1:4。
另外,按照上述方法制备得到的荧光探针及该荧光探针在检测硫化氢含量或在制备检测硫化氢含量的产品中的应用以及含有该荧光探针的检测硫化氢含量的产品,也属于本发明的保护范围。
其中,所述荧光探针的最大激发波长为350nm,最大发射波长为440nm;待检测样品为含有S2-的水溶液,具体可为Na2S的水溶液或含有H2S的脑透析液;
所述待检测样品的pH值为1-14,具体可为4、6、7、8、10,优选为4-8,更优选为6-8,最优选为7。
所述检测步骤中,所用标准曲线的横坐标为C,纵坐标为(F1-F0)/F0
其中,F0及F1为加入所述待检测样品前后所述荧光探针在最大发射波长处荧光发射光谱的荧光强度;
C代表所述待检测样品中S2-的浓度。
具体的,所述标准曲线对应的拟合方程为(F1-F0)/F0=1.189*10-4C+0.07274;
所述C的检测限为91pM;
线性范围为1-1900nM。
上述本发明提供的荧光探针,在检测硫化氢时,荧光探针的传感过程如图1所示,首先,CQDs-AgNPs纳米探针直接由CQDs与AgNPs混合而成,且体系颜色由黄色变为浅粉色,因为当纳米银与含氮碳量子点通过Ag-N键作用复合后发生团聚现象,使得CQDs与AgNPs的间距更小,且CQDs与AgNPs的紫外吸收光谱有部分吸收峰位置重叠,所以荧光共振能量转移更易发生,从而造成CQDs的荧光被AgNPs猝灭,即得到CQDs-AgNPs纳米探针。
其次,由于银原子与硫原子间的结合能力强于银原子与氮原子间的结合能力,故当H2S存在于CQDs-AgNPs纳米探针体系内时,AgNPs便与H2S以Ag-S键结合,而CQDs与AgNPs间的部分Ag-N键即断裂,从而使部分CQDs被重新释放,且AgNPs由团聚状态重新分散开,最终使得体系的荧光得以恢复。
本发明具有的优势在于:
1)该碳量子点-纳米银探针制备简便,且利用了碳量子点来检测生理环境中的生理小分子。
2)该碳量子点-纳米银探针检测灵敏度较高,检测限低于91pM。
附图说明
图1为碳量子点-纳米银荧光探针检测硫化氢传感策略图;
图2为实施例1所得CQDs以及AgNPs的透射电子显微镜(TEM)表征图,其中,A为CQDs;B为AgNPs;
图3为对探针的光谱表征数据。其中A图为紫外可见光谱图,其中a为Tris分子;b为CQDs;c为AgNPs;d为CQDs-AgNPs纳米探针;B图为荧光激发及发射光谱,其中a为CQDs激发光谱;b为CQDs在350nm激发下的发射光谱;C图为傅里叶变换红外光谱图。其中a为Tris分子;b为CQDs;c为CQDs-AgNPs纳米探针;
图4为对实验条件优化图。其中,A图为CQDs及AgNPs的配比(体积比)对CQDs-AgNPs纳米探针的影响,其中CQDs的浓度为8.33mg/mL,AgNPs的浓度为1mM。B图为pH值对CQDs(a)及CQDs-AgNPs纳米探针(b)的影响,各点均为在440nm处荧光发射光谱强度;曲线c为向曲线b各1mL样品中加入100nM的Na2S溶液100μL后,在440nm处荧光发射光谱强度;
图5为荧光发射光谱,其中,A图所示为不同浓度1至1900nM的0.1mL的Na2S溶液加入到CQDs-AgNPs纳米探针1.0mL中,在350nm激发下的荧光发射光谱。B图为在荧光发射光谱中440nm处,分别加入了Na2S溶液浓度为1,5,10,50,100,500,800及1900nM的荧光恢复响应比值(F1-F0)/F0,其中F0及F1为加入Na2S溶液前后CQDs-AgNPs纳米探针在荧光发射光谱中440nm处的荧光强度。
图6为对H2S检测的干扰物荧光图谱分析。对应的物质及浓度如下:1.L-Cys(100nM);2.GSH(100nM);3.AA(10μM);4.DA(200nM);5.DOPAC(1μM);6.UA(10μM);7.Glucose(10μM);8.H2O2(1μM);9.K+(2.4mM);10.Na+(128mM);11.Ca2+(100μM);12.Mg2+(1.5μM);13.Fe3+(10μM);14.Co2+(2μM);15.Ni2+(2μM);16.Cu2+(5μM);17.Zn2+(5μM);18.HPO4 2-(10μM);19.H2PO4 -(10μM);20.SO4 2-(10μM);21.HCO3-(10μM);22.NO3 -(10μM);23.Na2S(100nM)。
具体实施方式
下面结合具体实施例对本发明作进一步阐述,但本发明并不限于以下实施例。所述方法如无特别说明均为常规方法。所述原材料如无特别说明均能从公开商业途径获得。
下述实施例中的试剂来源为:三羟甲基氨基甲烷(Tris);抗坏血酸(AA);多巴胺(DA);3,4-二羟基-苯乙酸(DOPAC);尿酸(UA);谷胱甘肽(GSH);L-半胱氨酸(L-Cys);葡萄糖(Glucose);硼氢化钠(NaBH4);过氧化氢(H2O2);盐酸(HCl,37%);氯化钠(NaCl);氯化钾(KCl);氯化钙(CaCl2);二水氯化铜(CuCl2·2H2O);二水硫酸镁(MgSO4·2H2O);六水三氯化铁(FeCl3·6H2O);六水氯化镍(NiCl2·6H2O);六水氯化钴(CoCl2·6H2O);氯化锌(ZnCl2);硫化钠(Na2S);硝酸银(AgNO3);硫酸钠(Na2SO4);硝酸钾(KNO3);碳酸氢钠(NaHCO3);磷酸氢二钠(Na2HPO4);磷酸二氢钠(NaH2PO4)。所有试剂均为分析纯,溶剂均为二次水。
实施例1
第一步,前体的制备和表征
(a)碳量子点的制备:将1g Tris粉末置于10mL烧杯中,用加热套加热至230℃并维持20分钟使其熔融,当熔融物由无色变为深红色时取出,置于二次水中稀释。利用荧光分光光度计检测由二次水和Tris组成的体系的荧光强度,不断加水至体系的荧光强度达到最大值时停止加入二次水,即得含氮元素的碳量子点,也即CQDs,pH值为10。
CQDs的表征:利用透射电子显微镜对CQDs进行表征,所得结果如图2A所示。由图可知,CQDs在水相中分布均匀,且粒径均一。据统计分析,CQDs的粒径分布在2-4nm,平均粒径为3.15nm。
(b)纳米银的水溶液的制备:将在0℃冰水浴,磁力搅拌下,逐滴加入10mL、1mM的AgNO3的水溶液到40mL、2mM的NaBH4的水溶液中,并维持磁力搅拌15分钟,溶液由无色变成黄色时即得。
纳米银的表征:利用TEM进行表征,所得结果如图2B所示;由图可知,纳米银在水相中同样分布均匀,且无团聚现象的发生。统计分析结果可知,该实施例所得AgNPs的粒径分布在10-20nm,平均粒径为15nm。
据此得知,该实施例制备得到了粒径均一的CQDs以及AgNPs,且其尺寸均在纳米级别。
第二步,荧光纳米探针的合成及其表征
探针的制备:将上述制得的含氮元素的碳量子点与纳米银的水溶液按体积比2:1于常温混合,在磁力搅拌下维持15分钟,待溶液由无色变为黄色且稳定时,即得到本发明提供的碳量子点-纳米银纳米探针(CQDs-AgNPs),该探针的pH值为10。
如图3所示,利用紫外可见光谱(图3A)、傅立叶变换红外光谱(图3C)及荧光分光光谱(图3B)分别对所得CQDs-AgNPs进行了表征。结果证明了猝灭现象的发生,保证了探针的稳定性。
利用该实施例所得探针对硫化氢进行检测,具体步骤如下:
将上述制得的CQDs放入荧光分光光度计中检测其荧光强度,记为Fa
取1mL该实施例所得CQDs-AgNPs放入荧光分光光度计中检测其荧光强度,记为F1。则猝灭过程△FL=F1-Fa=1050a.u。
检测完成后,向该实施例所得CQDs-AgNPs中加入100nM的Na2S水溶液100μL,摇匀后静置,放入荧光分光光度计检测其荧光强度,记为F2,得到探针荧光恢复值△FL’=F2-F1=20a.u。
实施例2
保持实施例1中的步骤不变,固定CQDs与AgNPs的水溶液的体积比2:1,仅将CQDs的pH控制在1-14之间的7个实验值:1、4、6、7、8、10、14,以便优化检测硫化氢的实验条件,使Na2S完全转化为H2S。
利用荧光分光光度计在350nm激发下测试各样品的发射光谱,并记录在最大发射位置即440nm处的荧光强度数值,再将其与pH值作图,如图4B所示,为pH值对CQDs(a)及CQDs-AgNPs纳米探针(b)的影响,各点均为在440nm处荧光发射光谱强度;曲线c为向曲线b各1mL样品中加入100nM的Na2S溶液100μL后,在440nm处荧光发射光谱强度。
由图可知,在CQDs-AgNPs纳米探针中各加入Na2S后(c),各点均出现荧光恢复的现象,其中在pH值为7.0处荧光恢复程度最大。这是由于当pH值过大时,Na2S没有完全转化为H2S,从而不能与纳米探针完全接触;而当pH值过小时,S2-全部转化为H2S,由于H2S气体极易挥发,使得体系内的H2S含量变少,故荧光恢复响应程度不高。因此选择pH值为7.0时,为最适宜检测H2S的条件。
故调整实施例1所得探针的pH值为7.0后,进行硫化氢的检测,具体步骤如下:
调整实施例1所得CQDs的pH值为7.0后,将其放入荧光分光光度计中检测其荧光强度,记为Fa
取1mL探针(pH值为7.0)放入荧光分光光度计中检测其荧光强度,记为F1。则猝灭过程△FL=Fa-F1=1500a.u.。
检测完成后,向探针中加入100nM的Na2S的水溶液100μL后,摇匀静置,放入荧光分光光度计检测其荧光强度,记为F2,得到探针荧光恢复值△FL’=F2-F1=150a.u。可见,探针的pH值为7时,荧光恢复值要高于实施例1所得pH值为10的探针。
实施例3
保持实施例1中的步骤不变,仅将探针的pH值调整为7且将CQDs与纳米银的水溶液的体积比控制在1000:1至2:5之间的9个实验值:100:1、50:1、20:1、10:1、5:1、2:1、5:4、1:1、2:3、1:2、2:5。
利用荧光分光光度计在350nm激发下测试各样品的发射光谱,并记录在最大发射位置即440nm处的荧光强度数值F1,将其与CQDs初始值Fa相减,得到荧光猝灭差值ΔF=Fa-F1,再将ΔF和CQDs、AgNPs的配比作图。如图4A所示,并分析得到以下结论:
当CQDs占有较大比例时,猝灭效果不明显;而当AgNPs比例大于CQDs时,猝灭效果变化程度趋于稳定。
故选择按体积比1:1时为最佳的含氮元素的碳量子点与纳米银的水溶液的配比,即节省了试剂的用量,又保证了猝灭的最大程度,利于对硫化氢的检测。
利用该实施例所得探针进行对硫化氢的检测,具体步骤如下:
检测pH值为7的CQDs的荧光强度,记为Fa
将实施例1所得CQDs与纳米银的水溶液以体积比1:1混合,得到碳量子点—纳米银纳米探针(CQDs-AgNPs)。
取1mL该探针放入荧光分光光度计中检测其荧光强度,记为F1。△FL=Fa-F1=1400a.u.。
检测完成后,向探针中加入100nM的Na2S溶液100μL后,摇匀静置,放入荧光分光光度计检测其荧光强度,记为F2。得到探针荧光恢复值ΔFL’=F2-F1=465a.u.可见,当CQDs与纳米银的水溶液的体积比为1:1,且探针的pH值为7时,荧光恢复值最大,具有最好的检测效果。
实施例4
在优化过的实验条件下(纳米探针按CQDs与AgNPs体积比1:1混合,体系的pH值为7.0),利用CQDs-AgNPs纳米探针来检测H2S。
1)确定对H2S的检测限:
当1-1900nM的Na2S加入到CQDs-AgNPs纳米探针中后,440nm处荧光发射光谱的荧光强度逐渐增加,如图5A所示。将荧光恢复比值(F1-F0)/F0与加入的Na2S的浓度作图,其中F0及F1为加入Na2S前后的CQDs-AgNPs纳米探针在440nm处荧光发射光谱的荧光强度,如图5B所示。插图为荧光恢复比例与Na2S浓度的线性关系图,线性范围为1-1900nM,线性方程为(F1-F0)/F0=1.189*10-4C+0.07274,相关系数为0.997,方程中C代表加入的Na2S浓度。检测时,CQDs-AgNPs纳米探针与Na2S溶液的体积比为10:1,相当于每一份Na2S样品被稀释了11倍,所以本发明对H2S的检测限为91pM。
2)在干扰物存在的条件下分析探针的传感专一性
为了探究该H2S荧光探针的传感专一性能,以及后续的实际生物样品的应用。根据人工脑透析液中存在离子及其对应的浓度,并在与线性检测相同的实验条件下进行测试。利用在加入不同干扰物质前后,440nm处荧光发射光谱的荧光强度F0及F1,计算出荧光变化比值(F1-F0)/F0,用此来描述荧光探针对H2S响应的专一程度。设计的干扰物包括生理小分子如:L-Cys(100nM);GSH(100nM);AA(10μM);DA(200nM);DOPAC(1μM);UA(10μM);Glucose(10μM);H2O2(1μM)等;金属离子如K+(2.4mM);Na+(128mM);Ca2+(100μM);Mg2+(1.5μM);Fe3+(10μM);Co2+(2μM);Ni2+(2μM);Cu2+(5μM);Zn2+(5μM)等;以及酸根阴离子如:HPO4 2-(10μM);H2PO4 -(10μM);SO4 2-(10μM);HCO3 -(10μM);NO3 -(10μM)等;最后100nM的Na2S作为对照。如图6所示,只有Na2S具有较高的荧光恢复响应;而这些干扰物的响应具有差异,出现的原因可能为FRET现象或为弱相互作用,包括:螯合作用、氢键作用,或刻蚀作用。据此表明了本发明所得荧光传感探针可应用于复杂的生物环境或生物样品中H2S的检测分析。
3)设置大鼠脑缺血实验模型,利用优化条件下的探针(探针的pH值为7,CQDs与AgNPs的体积比为1:1)检测含有H2S的脑透析液:
分别在正常及脑缺血后的情况下对大鼠的脑区进行微透析,得到不同状态下含有H2S的脑透析液,并测试其荧光光谱并进行加标实验。利用本发明提供的探针测定得到:在正常状态下大鼠脑中H2S平均含量为3.08±0.10μM,脑缺血状态下大鼠脑中H2S平均含量为4.67±0.07μM。该测定数值与已报道文献相近,且说明了脑缺血状态下,硫化氢的含量会增加,进一步可为预测神经性中毒等过程提供数据支持。由此证明了本发明提供的荧光探针具有对H2S的高选择性及高灵敏检测的能力,并能够成功应用于实际生物样品的动物模型中,进一步体现了该探针的实际应用能力。

Claims (13)

1.一种制备荧光探针的方法,包括如下步骤:将含氮元素的碳量子点与纳米银的水溶液混合,得到所述荧光探针;
所述含氮元素的碳量子点为按照包括如下步骤的方法制备而得:
将Tris加热熔融后取出,置于水中稀释,同时检测由水和Tris组成的体系的荧光强度,不断加水至所述体系的荧光强度达到最大值时停止加入,得到所述含氮元素的碳量子点。
2.根据权利要求1所述的方法,其特征在于:所述含氮元素的碳量子点与纳米银的水溶液的体积比为100-0.4:1;
所述混合步骤中,温度为常温。
3. 根据权利要求1所述的方法,其特征在于:所述含氮元素的碳量子点的粒径为2-4nm,平均粒径为3.15 nm;
所述纳米银的粒径为10-20nm,平均粒径为15nm。
4.根据权利要求1所述的方法,其特征在于:所述含氮元素的碳量子点的制备步骤中,加热熔融的温度为220℃-240℃;
时间为15-30min。
5.根据权利要求1-4中任一所述的方法,其特征在于:所述纳米银的水溶液为按照包括如下步骤的方法制备而得:将AgNO3的水溶液加入到NaBH4的水溶液混合,体系颜色由无色变为黄色时,即得所述纳米银的水溶液。
6.根据权利要求5所述的方法,其特征在于:所述纳米银的水溶液的制备步骤中,混合的温度为0°C;混合的时间为10-20min;
所述AgNO3的水溶液的浓度为0.5-1.5 mM;
所述NaBH4的水溶液的浓度为1-3 mM;
所述AgNO3的水溶液与NaBH4的水溶液的体积比为1:2-6。
7.权利要求1-6中任一所述方法制备得到的荧光探针。
8.根据权利要求7所述的荧光探针,其特征在于:所述荧光探针的最大激发波长为350nm,最大发射波长为440nm。
9.权利要求7或8任一所述荧光探针在检测硫化氢含量或在制备检测硫化氢含量的产品中的应用。
10.根据权利要求9所述的应用,其特征在于:待检测样品为含有S2-的水溶液;
所述待检测样品的pH值为1-14;
所述检测步骤中,所用标准曲线的横坐标为C,纵坐标为(F 1 -F 0 )/F 0
其中,F 0 F 1 为加入所述待检测样品前后所述荧光探针在最大发射波长处荧光发射光谱的荧光强度;
C代表所述待检测样品中S2-的浓度。
11.根据权利要求10所述的应用,其特征在于:所述待检测样品的pH值为7。
12.根据权利要求10或11所述的应用,其特征在于:所述标准曲线对应的拟合方程为(F 1 -F 0 )/F 0 =1.189*10-4 C+0.07274;
所述C的检测限为91 pM;
线性范围为1-1900 nM。
13.含有权利要求7或8所述荧光探针的检测硫化氢含量的产品。
CN201610143481.0A 2016-03-14 2016-03-14 一种检测硫化氢的荧光纳米探针及其制备方法与应用 Expired - Fee Related CN105806815B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610143481.0A CN105806815B (zh) 2016-03-14 2016-03-14 一种检测硫化氢的荧光纳米探针及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610143481.0A CN105806815B (zh) 2016-03-14 2016-03-14 一种检测硫化氢的荧光纳米探针及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN105806815A CN105806815A (zh) 2016-07-27
CN105806815B true CN105806815B (zh) 2019-04-05

Family

ID=56468273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610143481.0A Expired - Fee Related CN105806815B (zh) 2016-03-14 2016-03-14 一种检测硫化氢的荧光纳米探针及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN105806815B (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106442448B (zh) * 2016-09-28 2019-01-22 安徽师范大学 一种快速检测硫离子的方法
CN106872427B (zh) * 2017-01-20 2019-04-30 北京理工大学 一种碳量子点靶向检测溶酶体中h2s的方法
CN107525790B (zh) * 2017-06-28 2020-07-31 昆明理工大学 基于磁固相微萃取-碳量子点荧光猝灭检测叶酸的方法
CN107525791B (zh) * 2017-08-17 2020-04-03 南开大学 甲巯咪唑的检测方法
CN108760702B (zh) * 2018-05-29 2021-08-27 安徽师范大学 一种硫离子的检测方法
CN109609121A (zh) * 2018-11-09 2019-04-12 西安理工大学 一种碳量子点/纳米银复合溶液及其制法和应用
CN111189968A (zh) * 2018-11-14 2020-05-22 中国石油化工股份有限公司 一种检测硫化氢吸消液性能的装置
CN109946249B (zh) * 2019-03-18 2021-06-01 江苏科技大学 一种利用顶空单滴液相微萃取法和智能设备比色测定硫化氢的方法
CN110205115B (zh) * 2019-07-15 2022-08-26 太原理工大学 一种“开关”型CQDs@Ag核壳纳米荧光探针及其制备方法和应用
CN111777767B (zh) * 2019-08-29 2022-05-13 湖南科技大学 一种肝靶向零串扰比率检测硫化氢的荧光纳米探针及制备与应用
CN110554074B (zh) * 2019-09-12 2020-06-30 江南大学 检测内源性h2s的电化学传感器的构建方法及其应用
CN110687086A (zh) * 2019-10-14 2020-01-14 浙江工业大学上虞研究院有限公司 一种比色检测硫离子及浓度的方法及其检测试纸的制备
CN111103243B (zh) * 2019-12-03 2022-12-27 首都师范大学 用于检测硫化氢含量的显色剂及其制备方法和利用其检测硫化氢含量的方法和装置
CN111474146B (zh) * 2020-03-19 2021-11-19 中国石油大学(北京) 氮硫掺杂碳量子点及其制法和在检测银纳米颗粒中的应用
CN112410018B (zh) * 2020-11-05 2022-12-20 徐州医科大学 一种用于可视化定量检测乳酸的比率荧光探针及其应用
CN114216885B (zh) * 2021-11-18 2022-07-12 广州大学 一种硫离子的荧光检测方法及其应用
CN114958362B (zh) * 2022-06-08 2024-01-26 岭南师范学院 一种血管紧张素转化酶抑制剂
CN116333732B (zh) * 2023-03-14 2024-05-17 百色学院 一种氮掺杂碳点及其制备方法和在Fe3+检测中的应用
CN116465872B (zh) * 2023-05-09 2023-11-28 临沂大学 一种快速检测微囊藻毒素方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN104568876A (zh) * 2014-12-24 2015-04-29 复旦大学 薄层石墨烯荧光猝灭结合纳米金属阵列进行单分子荧光观测的方法
CN104946236A (zh) * 2015-04-28 2015-09-30 上海大学 银石墨烯包覆二氧化硅复合上转换纳米晶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103286308A (zh) * 2012-02-24 2013-09-11 中国科学院理化技术研究所 一种金属/石墨烯纳米复合材料及其制备方法
CN104568876A (zh) * 2014-12-24 2015-04-29 复旦大学 薄层石墨烯荧光猝灭结合纳米金属阵列进行单分子荧光观测的方法
CN104946236A (zh) * 2015-04-28 2015-09-30 上海大学 银石墨烯包覆二氧化硅复合上转换纳米晶及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Novel sensor for sensitive and selective detection of iodide using turn-on fluorescence grapheme quantum dots/Ag nanocomposite;xianghong xu,yanhui wang;《analytical sciences》;20150810;第31卷;第787页第"introduction"节-第791页第"result and discussion"节
Silver Nanoparticles/N-Doped Carbon-Dots Nanocomposites Derived from Siraitia Grosvenorii and Its Logic Gate and Surface-Enhanced Raman Scattering Characteristics;Yubin Su,et.al;《ACS sustainable Chemistry engineering》;20160122;第4卷;第1738页第"INTRODUCTION"节,第1730页第"EXPERIMENTAL SECTION"节,"Supporting Information" Figure S3.
高量子产率的碳量子点的合成及其在叶酸检测中的应用;郑翠,安学勤;《中国化学会第十五届胶体与界面化学会议论文集(第五分会)》;20150717;第111页

Also Published As

Publication number Publication date
CN105806815A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
CN105806815B (zh) 一种检测硫化氢的荧光纳米探针及其制备方法与应用
Shi et al. N, S-self-doped carbon quantum dots from fungus fibers for sensing tetracyclines and for bioimaging cancer cells
Dugandžić et al. A SERS-based molecular sensor for selective detection and quantification of copper (II) ions
Li et al. An efficient “off–on” carbon nanoparticle-based fluorescent sensor for recognition of chromium (VI) and ascorbic acid based on the inner filter effect
Wu et al. A colorimetric and fluorescence turn-on probe for the detection of ascorbic acid in living cells and beverages
Zhang et al. A selective sensor for cyanide ion (CN−) based on the inner filter effect of metal nanoparticles with photoluminescent carbon dots as the fluorophore
Luo et al. Fluorescent and visual detection of methyl-paraoxon by using boron-and nitrogen-doped carbon dots
Aziz et al. Effect of Engineered Nickel Oxide Nanoparticles on Antioxidant Enzymes in Freshwater Fish, Labeo rohita.
KR101496677B1 (ko) 금 나노입자를 이용한 수은이온의 색변환 측정
Gupta et al. PC12 live cell ultrasensitive neurotransmitter signaling using high quantum yield sulphur doped carbon dots and its extracellular Ca2+ ion dependence
Wang et al. Carbon quantum dots-Ag nanoparticle complex as a highly sensitive “turn-on” fluorescent probe for hydrogen sulfide: a DFT/TD-DFT study of electronic transitions and mechanism of sensing
CN111807993B (zh) 一种用于特异性检测肼的近红外荧光化合物及制备方法
Sun et al. Pb (ii) detection and versatile bio-imaging of green-emitting carbon dots with excellent stability and bright fluorescence
Li et al. Manganese oxide doped carbon dots for temperature-responsive biosensing and target bioimaging
Yao et al. Persistent luminescence nanoparticles/hierarchical porous ZIF-8 nanohybrids for autoluminescence-free detection of dopamine
Hu et al. Electrosynthesized metal-organic framework: A dual-modality readout platform for Cu (II), coenzyme A and histone acetyltransferase analysis
CN109705111A (zh) 一种汞离子检测探针及其制备方法和应用
Song et al. Natural deep eutectic solvent-assisted preparation of nitrogen-doped carbon dots for ratiometric determination of pirimicarb and pH
Dai et al. A novel highly fluorescent S, N, O co-doped carbon dots for biosensing and bioimaging of copper ions in live cells
KR20160004463A (ko) 은이온에 특이적 형광 증대 현상을 보이는 디옥시리보 핵산 기반의 은나노클러스터와 이의 제조 방법 및 이에 따른 은이온 감응 센서
CN113713860B (zh) 一种催化发光的铜簇纳米酶及其制备方法和应用
Li et al. The sensitive fluorescence assay of phosphates and alkaline phosphatase based on terbium nanocomplexes synthesized via ligand proportion regulation
Zhang et al. Zeolitic imidazolate framework-8 encapsulating gold nanoclusters and carbon dots for ratiometric fluorescent detection of adenosine triphosphate and cellular imaging
CN111795958A (zh) 特异性检测Ag+的CdSe量子点的制备及其检测方法和应用
CN108707644B (zh) 一种基于dna模板化铜簇探针检测焦磷酸根及碱性磷酸水解酶的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190405

CF01 Termination of patent right due to non-payment of annual fee