CN109936349A - 一种提高电力电子开关器件开关速度的设计和应用 - Google Patents

一种提高电力电子开关器件开关速度的设计和应用 Download PDF

Info

Publication number
CN109936349A
CN109936349A CN201910259042.XA CN201910259042A CN109936349A CN 109936349 A CN109936349 A CN 109936349A CN 201910259042 A CN201910259042 A CN 201910259042A CN 109936349 A CN109936349 A CN 109936349A
Authority
CN
China
Prior art keywords
module
power
quasi
diode
stabipack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910259042.XA
Other languages
English (en)
Inventor
吕兴华
吕建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910259042.XA priority Critical patent/CN109936349A/zh
Publication of CN109936349A publication Critical patent/CN109936349A/zh
Priority to JP2019155983A priority patent/JP6933694B2/ja
Priority to PCT/CN2019/120821 priority patent/WO2020199615A1/zh
Priority to KR1020217027829A priority patent/KR20210121204A/ko
Priority to CA3131571A priority patent/CA3131571A1/en
Priority to EP19908079.7A priority patent/EP3745592A4/en
Priority to AU2019419890A priority patent/AU2019419890B2/en
Priority to US17/478,254 priority patent/US20220029615A1/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/04113Modifications for accelerating switching without feedback from the output circuit to the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/04126Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit in bipolar transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/041Modifications for accelerating switching without feedback from the output circuit to the control circuit
    • H03K17/0412Modifications for accelerating switching without feedback from the output circuit to the control circuit by measures taken in the control circuit
    • H03K17/0414Anti-saturation measures
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/60Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being bipolar transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/74Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of diodes

Abstract

本发明为一种提高电力电子开关器件开关速度的设计和应用本发明所属技术领域涉及一种提高电力电子功率开关器件开关速度的设计。本发明针对电力电子功率开关(单元件/模块)芯片的开关速度瓶颈,归纳应用了一些常识性知识点的结论以提出设计方案:将芯片简洁地增加部分电路结构,使其在处于导通状态(后期)工作在设定的拟饱和稳压状态,让功率开关元器件能获得元器件开关速度的突破及可靠性性能的提升,从而使功率开关元器件的应用能获得进一步的拓展。

Description

一种提高电力电子开关器件开关速度的设计和应用
所属技术领域:
本发明涉及一种提高电力电子功率开关器件开关速度的设计。
现有技术背景
电子工业的器件制造发展到现在,从用途的角度可分为两大类。一类是比较传统成熟、应用广泛并且还在迅猛发展的弱电行业,还有一类就是用于强电行业的电力电子功率元器件。电力电子功率元器件的发展大致可分为普通晶体管、晶闸管、大型晶体管复合模块GTR和IGBT 等几个阶段。象征着这类电力电子功率元器件发展程度的性能标志之一就是其开关速度随着新器件的出现而逐步获得提高。然而由于各类器件的开关速度各有经典性上限,这类电力电子功率元器件的提速就成为开关元器件的应用瓶颈并且上升成了发展前沿。之所以开关速度受限的原因其实早就为广大行业内技术人员所熟知,那就是这类电力电子功率元器件的末级通常由双极型晶体管所担任。而由双极型晶体管的工作原理可知,它要正常导通工作的条件就是需要向没有载流子的基区注入跟基区带电极性相同的载流子以让基区形成类似于金属结构的能导电状态。那么在驱动脉冲关断后的拖尾过程中,虽然由于驱动脉冲关断不再继续向基区注入新的载流子了,可是为导通而已经注入基区的载流子并不会随之立即消失,并由此继续支持构成了人们称之为拖尾电流的导通电流。而且开关元器件饱和导通工作状态时的工作电流越大,需要进入基区的载流子越多,于是每次关断时所产生的拖尾电流就越大。因为元器件在每次关断时其拖尾时间常数t0段的功耗要达到输出功率的数量级(其极值为1/4的输出功率值)而远远超过开关元器件本身的额定功耗,若要将开关周期的范围设定得虽很小但还远不到拖尾时间常数t0大致相当的程度时,即使这周期仅仅缩短了一点点也会可能导致开关元器件总平均功耗的增加量大大超过了元器件所能承受的限度而无法正常工作。换句话说,由于上面所说的关断功率特别大的原因,开关元件的开关周期有了个特变值不得不被限定不能过短。人们只能延长开关周期以限制元器件的平均功耗,也就体现在了应用这类元器件进行设计时其开关频率的设定必须由采用的开关元器件类型相应的开关频率上限来决定不能过高。由上所述分析还可知,即使元器件开关速度被限制了,在元器件每次关断时拖尾时间常数t0段的功耗冲击仍然超过了元器件所能承受的限度,因而还隐性地降低了元器件使用的可靠性以及正常寿命。
发明目的内容
本发明的目的是提高开关元器件开关速度,以及减少拖尾电流给器件所带来伤害以提高器件可靠性。具体思路为大幅度缩短双极型功率晶体管基区拖尾电流时间常数t0。关于这方面具体分析将另行阐述。
在这个思路指导下进行的实验所得到结果是很有震撼力的。这在测试GTR模块开关速度的实验中表现得特别给力。按本思路改进的以八层P、N相间构成的晶闸管设计不仅可以很方便地关断,其开关速度也有望可达到现有的IGBT模块的水平。
技术方案
为提高开关元件的开关速度,以及减少拖尾电流给器件所带来的伤害以提高器件的可靠性,发明人设计具体方案的技术特征就是,在一定的前提条件下人为地提高开关器件的拟饱和电压Ucer拟饱,将其设定在从几伏到三、五十伏的中低压范围内,以期来获得基区时间常数的大幅度降低和截止时段拖尾功耗总量的减少以达到开关速度设计极限的提高。发明人在这个思路指导下进行实验所得到的结果表明,当选取Ucer拟饱和为十多伏时,采用达林顿结构(该结构由于连级放大的功能,使其拖尾现象特别严重)的GTR模块作为开关元器件所设计的开关电源,其稳定的工作频率由原先怎么也无法超过5KHz的经典性极限一下子就提高到了数万Hz。
在一些导通时间较长的开关电路中,虽然开关元器件的平均功耗并不超过其额定值,为减轻t0段的功耗冲击隐性地降低元器件使用的可靠性以及正常寿命的影响,采用本设计思路也是个较好的选择。但是本设计思路是以增加开关元器件导通时段的功耗为代价来获得电路全周期开关整体性能的提高的。因此在开关导通的大部分时间里并无必要也让其导通功耗比传统设计的低压饱和状态导通功耗增加。这可以通过驱动电路切换拟饱和电压之值让其大部分导通时工作于常规的低饱和电压状态(这低饱和电压状态也是采用GTR器件时的一个突出优点)来尽可能减少其功耗,直到关断之前一小段的导通时段,足以能维持驱动电路让其再切换成另一个高压拟饱和态以降低t0的值来提高关断速度。解决“保持常规饱和低功耗”将关断后基区残留载流子清场使拖尾功耗峰值恒不超过器件额定功耗需另采用39.9模块方案。
本设计的电路结构技术特征是对于功率开关元件采用插入(可调) 稳压元器件组合并且为兼顾元件饱和导通跟截止拖尾两者平均功耗最低的要求通过调整稳压的具体数值以针对不同使用要求设定几个拟饱和电压Ucer拟饱,然后对稳压元器件组合定型以求得最佳开关速度。其电路结构可以组合在功率模块的芯片上成为芯片的组成部分。也可独立设计为单一元件作为配套模块。
有益效果
本技术方案的优点在于,很大程度地提升了开关元件的开关速度,也大大提高了开关器件的使用可靠性。从而更进一步提升设计的深化。从小到节能灯电扇微波炉空调以及采用开关电源加热的即热式电热水器,大到高铁之类的电力拖动以及激光枪、电磁炮甚至宇航动力,这些研发都是需要进行大额的能量转换的,这就缺少不了电力电子行业核心开关器件的广泛介入应用。
附图说明
附图1.晶闸管模块的局部改进电路原理图。1.PNP型功率管。 2.NPN型功率管。3.替代(可调)拟饱和电压Ucer拟饱稳压组件的二极管。 4.(可调)拟饱和电压Ucer拟饱稳压组件。5.箝位二极管。7.关断用电子开关。8.开关控制脉冲输入端。9.负载电阻Rf。11.电源电压E。
附图2.IGBT模块的局部改进电路原理图。1.PNP型功率管。2.NPN 型功率管。3.替代(可调)拟饱和电压Ucer拟饱稳压组件的二极管。4. (可调)拟饱和电压Ucer拟饱稳压组件。5.箝位二极管。6.前级的开关控制脉冲输入二极管。7.场效应电子开关。8.开关控制脉冲输入端。9. 负载电阻Rf。11.电源电压E。16.IGBT模块功率管的驱动触发基极。
附图3.(单晶体管及)GTR模块的局部改进电路原理图。2.功率达林顿管(单级达林顿管即为单晶体管)。4.(可调)拟饱和电压Ucer拟饱稳压组件。5.拟饱压箝位高速二极管。9.负载电阻Rf。10.驱动脉冲限流电阻Rr。11.电源电压E。
附图4.辅助拟饱压独立模块拟饱压箝位电路原理图。2.辅助拟饱压独立模块拟饱压箝位的单级功率晶体管(多级即为达林顿模块)。4.(可调)拟饱和电压Ucer拟饱稳压组件。5.拟饱压箝位高速二极管。9.负载电阻Rf。10.驱动脉冲限流电阻Rr。11.电源电压E。12.辅助拟饱压独立模块驱动脉冲输入端。13.辅助拟饱压独立模块驱动脉冲输出端。14.辅助拟饱压独立模块拟饱压箝位端。15.虚线框内为辅助拟饱压独立模块。
图5.图6.晶闸管模块主芯片、IGBT模块主芯片局部改进的结构 示意图。17.金属导电层。
具体实施方案
在附图1.晶闸管模块的局部改进电路中,由开关控制脉冲输入端 8.输入足够强的按电路要求设定宽度的导通脉冲触发晶闸管进入传统常规的低压深度饱和的低功耗导通。在导通脉冲结束后沿,开关控制脉冲输入端8.没有控制电流输入,晶闸管维持着拖尾电流导通过程。过程中当NPN型功率管2.的集电极Uce上升到预定的高拟饱和电压时拟饱和电压Ucer拟饱稳压组件4.导通,使晶闸管转入拟临界饱和态降低时间常数的过程。该段前后拖尾时间与导通脉冲宽度相加作为晶闸管的导通时间。然后晶闸管在已到达低时间常数的状态下(稳压组件4. 电流最大时)在需要关断时通过切断关断用电子开关7.被快速关断。

Claims (5)

1.一类电力电子功率开关芯片提速设计思路,所述芯片增加部分功能电路结构,其技术特征是主芯片饱和导通时可切换到预设定不同的拟饱和电压状态。
2.根据权利要求1.设计的一种辅助拟饱和电压独立模块,所述辅助拟饱和电压独立模块将权利要求1.所述增加的使主芯片处在预设定不同的拟饱和状态的部分辅助主元件设计为独立模块,其技术特征为模块由可调或预设定的拟饱和电压的稳压组件与拟饱和电压箝位高速二极管组成。
3.根据权利要求1.设计的一种改进型晶闸管模块,其技术特征为所述晶闸管模块的PNP型和NPN型功率对管由二极管串接,所述晶闸管模块功率对管的触发控制基极经串接入可调或预设定的稳压组件(或再串入电子开关以成“可关断晶闸管”)仍连接到原对应的另一个功率管的集电极上,所述功率对管的非驱动触发基极可串入也可不串入稳压组件而以二极管替代串入连到对应功率管的集电极上。
4.根据权利要求1.设计的一种改进型IGBT模块,所述IGBT模块的技术特征为末级的PNP型和NPN型功率对管由二极管串接,所述IGBT模块末级的功率对管的驱动触发控制基极经串接入可调或预设定的稳压组件后再连接到原对应的另一个功率管的集电极上,所述IGBT模块功率对管的驱动触发控制基极在接到稳压组件前还串接入由输入导通驱动控制的场效应电子开关,所述IGBT模块功率对管的另一非驱动触发基极可串入也可不串入稳压组件替代以二极管串入连到对应功率管的集电极上,所述IGBT模块前级的场效应驱动输出端经导通驱动输入二极管连接到功率管的驱动触发基极。
5.根据权利要求1.设计的一种改进型GTR模块,所述GTR模块技术特征为模块驱动基极经串入可调或预设定的稳压组件后与开关控制脉冲输入端相连接,模块输出集电极经串入箝位高速二极管后与开关控制脉冲输入端相连接。
CN201910259042.XA 2019-03-29 2019-03-29 一种提高电力电子开关器件开关速度的设计和应用 Pending CN109936349A (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201910259042.XA CN109936349A (zh) 2019-03-29 2019-03-29 一种提高电力电子开关器件开关速度的设计和应用
JP2019155983A JP6933694B2 (ja) 2019-03-29 2019-08-28 パワーエレクトロニクススイッチングデバイスのスイッチング速度を上昇させる補助的仮想飽和電圧独立モジュール及び方法
PCT/CN2019/120821 WO2020199615A1 (zh) 2019-03-29 2019-11-26 一种提高电力电子开关器件开关速度的设计和应用
KR1020217027829A KR20210121204A (ko) 2019-03-29 2019-11-26 전력 전자 스위치 디바이스 스위칭 속도를 향상시키는 설계 및 응용
CA3131571A CA3131571A1 (en) 2019-03-29 2019-11-26 Design and application for improving switch speed of power electronic switch device
EP19908079.7A EP3745592A4 (en) 2019-03-29 2019-11-26 METHOD OF INCREASING THE SWITCHING SPEED OF A POWER ELECTRONIC SWITCHING DEVICE AND APPLICATION
AU2019419890A AU2019419890B2 (en) 2019-03-29 2019-11-26 Design and application for improving switch speed of power electronic switch device
US17/478,254 US20220029615A1 (en) 2019-03-29 2021-09-17 Circuit for improving the switching speed of a power electronic switching chip and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910259042.XA CN109936349A (zh) 2019-03-29 2019-03-29 一种提高电力电子开关器件开关速度的设计和应用

Publications (1)

Publication Number Publication Date
CN109936349A true CN109936349A (zh) 2019-06-25

Family

ID=66988908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910259042.XA Pending CN109936349A (zh) 2019-03-29 2019-03-29 一种提高电力电子开关器件开关速度的设计和应用

Country Status (8)

Country Link
US (1) US20220029615A1 (zh)
EP (1) EP3745592A4 (zh)
JP (1) JP6933694B2 (zh)
KR (1) KR20210121204A (zh)
CN (1) CN109936349A (zh)
AU (1) AU2019419890B2 (zh)
CA (1) CA3131571A1 (zh)
WO (1) WO2020199615A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199615A1 (zh) * 2019-03-29 2020-10-08 吕建华 一种提高电力电子开关器件开关速度的设计和应用

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11424683B2 (en) * 2019-12-06 2022-08-23 Fremont Micro Devices Corporation Darlington transistor drive circuit, method and constant current switching power supply
CN112736882B (zh) * 2020-12-28 2023-02-03 深圳市虹远通信有限责任公司 一种降低pin二极管高速切换时动静态功耗的控制方法
US11575379B2 (en) * 2021-03-23 2023-02-07 Delphi Technologies Ip Limited Switch with hysteresis
CN116073678B (zh) * 2023-03-21 2023-08-22 中国科学院近代物理研究所 一种耦合型电子内靶高压调制电源装置及调制方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102355123A (zh) * 2011-09-27 2012-02-15 常熟英纳能源科技有限公司 一种新型高频高压开关电源用igbt驱动电路
CN102723935A (zh) * 2012-05-22 2012-10-10 柏德胜 一种自关断器件驱动保护电路
CN103493374A (zh) * 2011-04-13 2014-01-01 Pi公司 包括常闭和常开器件的共源共栅开关以及包括这样的开关的电路
CN103944361A (zh) * 2014-04-04 2014-07-23 国家电网公司 一种大功率抗干扰的场效应管高速驱动电路
CN105429441A (zh) * 2015-12-31 2016-03-23 童乔凌 Igbt闭环主动驱动电路及其驱动方法
US20160285353A1 (en) * 2015-03-27 2016-09-29 Samsung Electronics Co., Ltd. Switch driving circuit, and power factor correction circuit having the same
CN206349915U (zh) * 2016-12-23 2017-07-21 红河学院 一种高频高倍高速场效应管驱动电路
CN109061375A (zh) * 2018-11-01 2018-12-21 北京交通大学 一种具有温度补偿的SiC MOSFET短路检测电路和方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2030765B (en) * 1978-10-02 1983-04-27 Lumenition Ltd Darlington transistor pairs
EP0059537A3 (en) * 1981-02-26 1982-10-27 Control Data Corporation Switching circuit
DE3237141C1 (de) * 1982-10-07 1983-07-28 Danfoss A/S, 6430 Nordborg Steuervorrichtung für einen Schalttransistor
JP3708489B2 (ja) * 2002-01-30 2005-10-19 株式会社シマノ 自転車用ダイナモの電圧クランプ回路
GB2449063A (en) * 2007-04-27 2008-11-12 Cambridge Semiconductor Ltd A saturation control loop for a BJT or IGBT in a switching power supply
US7940503B2 (en) * 2008-05-27 2011-05-10 Infineon Technologies Ag Power semiconductor arrangement including conditional active clamping
CN201781665U (zh) * 2010-08-17 2011-03-30 广德利德照明有限公司 Led灯管保护电路结构
US8780516B2 (en) * 2012-05-08 2014-07-15 General Electric Conpany Systems, methods, and apparatus for voltage clamp circuits
CN106026621B (zh) * 2016-07-19 2018-09-18 武汉理工大学 一种带避免短路保护盲区的igbt驱动电路及检测方法
CN206332657U (zh) * 2016-12-23 2017-07-14 红河学院 一种超高速场效应管驱动电路
JP2020039228A (ja) * 2018-09-05 2020-03-12 本田技研工業株式会社 電圧変換装置
CN109936349A (zh) * 2019-03-29 2019-06-25 吕建华 一种提高电力电子开关器件开关速度的设计和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103493374A (zh) * 2011-04-13 2014-01-01 Pi公司 包括常闭和常开器件的共源共栅开关以及包括这样的开关的电路
CN102355123A (zh) * 2011-09-27 2012-02-15 常熟英纳能源科技有限公司 一种新型高频高压开关电源用igbt驱动电路
CN102723935A (zh) * 2012-05-22 2012-10-10 柏德胜 一种自关断器件驱动保护电路
CN103944361A (zh) * 2014-04-04 2014-07-23 国家电网公司 一种大功率抗干扰的场效应管高速驱动电路
US20160285353A1 (en) * 2015-03-27 2016-09-29 Samsung Electronics Co., Ltd. Switch driving circuit, and power factor correction circuit having the same
CN105429441A (zh) * 2015-12-31 2016-03-23 童乔凌 Igbt闭环主动驱动电路及其驱动方法
CN206349915U (zh) * 2016-12-23 2017-07-21 红河学院 一种高频高倍高速场效应管驱动电路
CN109061375A (zh) * 2018-11-01 2018-12-21 北京交通大学 一种具有温度补偿的SiC MOSFET短路检测电路和方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020199615A1 (zh) * 2019-03-29 2020-10-08 吕建华 一种提高电力电子开关器件开关速度的设计和应用

Also Published As

Publication number Publication date
EP3745592A1 (en) 2020-12-02
US20220029615A1 (en) 2022-01-27
EP3745592A4 (en) 2022-08-17
CA3131571A1 (en) 2020-10-08
AU2019419890B2 (en) 2021-12-02
WO2020199615A1 (zh) 2020-10-08
AU2019419890A1 (en) 2020-10-15
JP6933694B2 (ja) 2021-09-08
JP2020167363A (ja) 2020-10-08
KR20210121204A (ko) 2021-10-07

Similar Documents

Publication Publication Date Title
CN109936349A (zh) 一种提高电力电子开关器件开关速度的设计和应用
US7724065B2 (en) Desaturation circuit for an IGBT
CN111211762B (zh) 一种高开通性能的SiC MOSFET驱动电路
CN101820276B (zh) 控制igbt的方法和栅极驱动器
CN101867174B (zh) 一种变频器中igbt短路保护电路及其方法
CN106656130A (zh) 一种分段电阻型igbt驱动电路及其控制方法
CN101335483A (zh) 电力变换装置
CN109842279A (zh) 一种SiC MOSFET开环主动驱动电路
CN103986315B (zh) 基于有源栅极电流控制方式的igbt电流源驱动电路及其控制方法
JP2760590B2 (ja) 電圧駆動形素子の駆動回路
CN115173676A (zh) 一种抑制过冲尖峰的SiC MOSFET驱动电路
CN209598397U (zh) 一种空气等离子切割机控制电路及装置
CN106329916B (zh) 开关管的驱动方法及电路及电源系统
CN110492727A (zh) 一种用于igbt串联均压的驱动电路
CN112910240B (zh) 一种可变栅极电压开通控制电路、功率模块及电力变换器
CN103312131A (zh) 一种高频直流变换器开关管关断速度实时调整方法
CN206041786U (zh) 开关管的驱动电路及电源系统
CN206041787U (zh) 功率开关管的驱动电路及电源系统
CN204615626U (zh) 智能功率模块电路和空调器
CN102651926B (zh) 一种辅助源电路
CN110380599B (zh) 一种混合型栅极驱动电路
CN114337201A (zh) 一种抑制SiC MOSFET尖峰及串扰的驱动电路
CN104821705A (zh) 智能功率模块电路和空调器
CN108736868A (zh) 一种基于磁开关延时同步的igbt串联电路
CN207069935U (zh) 一种电机控制器的主动放电系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination