CN206041786U - 开关管的驱动电路及电源系统 - Google Patents

开关管的驱动电路及电源系统 Download PDF

Info

Publication number
CN206041786U
CN206041786U CN201620979639.3U CN201620979639U CN206041786U CN 206041786 U CN206041786 U CN 206041786U CN 201620979639 U CN201620979639 U CN 201620979639U CN 206041786 U CN206041786 U CN 206041786U
Authority
CN
China
Prior art keywords
switch
main switch
current
drive circuit
electric current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201620979639.3U
Other languages
English (en)
Inventor
黄必亮
黄丽斌
任远程
周逊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Joulwatt Technology Hangzhou Co Ltd
Original Assignee
Joulwatt Technology Hangzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Joulwatt Technology Hangzhou Co Ltd filed Critical Joulwatt Technology Hangzhou Co Ltd
Priority to CN201620979639.3U priority Critical patent/CN206041786U/zh
Application granted granted Critical
Publication of CN206041786U publication Critical patent/CN206041786U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electronic Switches (AREA)

Abstract

本实用新型公开了一种开关管的驱动电路及电源系统,在主开关管开通过程中,可大致分为三个阶段,采用限流模块对流经主开关管的电流进行限流,以防止电流过冲,限流模块有多种实施方案,通过逻辑控制模块控制在开通前限流模块不工作,开关管的控制端被关断;在开通过程中,通过反馈回路,调节开关管栅源电压,使开关管电流快速达到设定的开通限流并维持在此电流,直到开关管完全开通。本实用新型能够有效控制开关管开通过程中的电流,并缩短了开通驱动时间。

Description

开关管的驱动电路及电源系统
技术领域
本实用新型涉及电力电子技术领域,具体涉及一种开关管的驱动电路及电源系统。
背景技术
在电源系统中,通过控制开关型功率管(即开关管)的开通和关断来实现电能的变换,而开关频率、输入输出的电压和电流的控制都是电能转换的关键,因此对开关型功率管的驱动控制必不可少。如图1所示,以电源系统中常用的降压(BUCK)电路为例,逻辑控制电路U01采样输出电压,并且和其内部的参考电压比较,产生PWM信号,以控制主开关管M00的导通和关断,使得电源系统的输出电压等于其内部的参考电压。由于主开关管M00的栅极的寄生电容很大,因此需要驱动电路U00来驱动主开关管M00。
如图2所示,为现有技术的驱动电路,主要包括几个串联的反相器。反相器从左到右驱动能力逐级增大,也就是U10的驱动能力最弱,U13的驱动能力最强,使得U13有足够的驱动能力使主开关管的栅极由高变低。
上述驱动电路在PWM由低变高时,使主开关管从关断状态变成完全导通状态;在PWM由高变低时,使主开关管从完全导通状态变成关断状态。由于该驱动电路仅考虑了驱动能力的问题,而在主开关管开通过程中,会出现电流无法控制的情况。由于续流二极管的反向恢复过程,导致主开关管和续流二极管产生短暂的类似直通现象,主开关管和二极管中的电流都处于失控的状态,产生很大的电流过冲,对系统可靠性和EMI都造成很大影响。为了防止该电流过冲对系统造成干扰,需要加入一定的消隐时间,消隐时间从PWM信号的上升沿开始到主开关管完全导通再往后延时一定时间为止。在该消隐时间中,逻辑控制电路不检测主开关管电流。在Buck电路中,如果SW点到地短路,由于主开关管电流失控,电流会过大导致主开关管损坏。如图3所示,为Buck电路的工作波形图,开通过程的放大波形则如图4所示。其他电路拓扑的波形与之类似。其中,图3虚线框内所标出的部分就是主开关开通时,产生的电流过冲的波形。
现有技术的解决方案延长了主开关管的开通驱动时间,这样的结果导致了开通过程变长,从而降低系统效率;并且很难对开通的驱动时间进行优化,同时因为驱动速度会随采用不同的开关管或工作温度等因素而变化,会造成需要特定的器件设计不同的驱动延时时间。
实用新型内容
有鉴于此,本实用新型的目的在于提供一种在开通过程中电流可控,并优化开通驱动时间的开关管的驱动电路及电源系统,用以解决现有技术存在的因解决电流过冲会延长开通驱动时间的技术问题。
本实用新型的技术解决方案是,提供一种以下结构的开关管的驱动电路,包括限流模块,所述的驱动电路接收控制信号,在开通过程中,所述控制信号由无效变为表征开通的有效时,主开关管栅极至源极的电压开始下降,限流模块开始工作,随着栅源电压的下降,所述主开关管开始逐步导通,流经主开关管的电流也开始上升,并在限流模块的调节下达到设定的限制电流;
通过控制所述主开关管的栅源电压使得所述主开关管的电流保持在限制电流,主开关管的漏源极之间的阻抗降低,漏源电压的绝对值持续下降;
所述主开关管的电流从限制电流下降至正常工作电流,所述主开关管的栅源电压再次下降并且其绝对值达到最大值,此时,所述主开关管处于完全导通状态。
优选地,所述的驱动电路还包括逻辑控制模块,所述的逻辑控制模块接收所述的控制信号,所述的逻辑控制模块根据所述控制信号,在控制信号为无效时,逻辑控制模块控制限流模块不工作,并将所述主开关管的栅极电压上拉到其源极电压;在控制信号为有效时,逻辑控制模块控制限流模块开始工作。
优选地,所述的限流模块包括第一运算放大器,所述的第一运算放大器的第一输入端接收限流参考信号,其第二输入端接收表征流经主开关管电流的采样信号,其输出端与主开关管的控制端连接。
优选地,所述的驱动电路还包括电压比较器,所述电压比较器接收主开关管的漏源电压,将其绝对值与设定的低阈值进行比较,当漏源电压的绝对值降至所述低阈值,则通过快速降低主开关管的栅源电压,以使主开关管完全导通。
优选地,所述的驱动电路还包括计时保护电路,所述主开关管的电流保持在限制电流时,通过计时保护电路设置阈值时间,当漏源电压的绝对值超过阈值时间还未下降,则控制主开关管关断,以保护主开关管。
优选地,所述的限流模块包括辅助开关管和第一运算放大器,所述的辅助开关管与所控制的主开关管组成电流镜,所述的第一运算放大器的第一输入端接收参考信号,其第二输入端与所述辅助开关管的第一端连接,其输出端与主开关管的控制端连接;所述的辅助开关管的第一端在控制信号表征有效时接收第一电流源。
优选地,所述的限流模块包括辅助开关管和第一开关管,所述的辅助开关管与所控制的主开关管组成电流镜,所述的第一开关管的第一端接收供电电压,其第二端与所述主开关管的控制端连接,第一开关管的控制端与辅助开关管的第一端连接;所述的辅助开关管的第一端在控制信号表征有效时接收第一电流源。
优选地,所述的第一开关管为P型MOS管。
优选地,所述的限流模块还包括辅助开关管、第二开关管和第二运算放大器,所述的辅助开关管与所控制的主开关管组成电流镜,所述的第二开关管的第二端接收供电电压,其第一端与所述主开关管的控制端连接,第二开关管的控制端与第二运算放大器的输出端连接,所述第二运算放大器的第一输入端接收参考信号,其第二输入端与所述辅助开关管的第一端连接;所述的辅助开关管的第一端在控制信号表征有效时接收第一电流源。
优选地,所述的限流模块包括辅助开关管、第二开关管和第二运算放大器,通过调节辅助开关管的电流,来调节所控制的主开关管的电流,所述的第二运算放大器的第一输入端接收表征辅助开关管电流限流值的参考信号,其第二输入端接收表征流经辅助开关管电流的采样信号,其输出端与主开关管的控制端连接;第二运算放大器的输出端与第二开关管的控制端连接,所述的第二开关管的第二端接收供电电压,其第一端与所述主开关管的控制端连接。
优选地,所述的第二开关管为N型MOS管。
本实用新型的另一技术解决方案是,提供一种以下结构的电路系统,包括以上任意一种开关管的驱动电路。
采用本实用新型的电路结构和方法,与现有技术相比,具有以下优点:在主开关管开通过程中,可大致分为三个阶段,采用限流模块对流经主开关管的电流进行限流,以防止电流过冲,限流模块有多种实施方案,通过逻辑控制模块控制在开通前限流模块不工作,主开关管的控制端被上拉到源极;在开通过程中,通过反馈回路,调节主开关管栅源电压,使主开关管电流快速达到设定的开通限流并维持在此电流,直到主开关管完全开通。本实用新型能够有效控制主开关管开通过程中的电流,并缩短了开通驱动时间。
附图说明
图1为现有技术中功率开关管的BUCK电路的电路结构图;
图2为现有技术功率开关管的驱动电路的电路结构图;
图3为现有技术图1的工作波形图;
图4为现有技术图3开通过程的放大波形图;
图5为本实用新型的工作波形图;
图6为本实用新型实施例一的电路结构图;
图7为本实用新型实施例二的电路结构图;
图8为本实用新型实施例三的电路结构图;
图9为本实用新型实施例四的电路结构图;
图10为本实用新型实施例五的电路结构图;
图11为电压比较器与主开关管的连接关系示意图;
图12为计时保护电路的连接关系示意图。
具体实施方式
以下结合附图对本实用新型的优选实施例进行详细描述,但本实用新型并不仅仅限于这些实施例。本实用新型涵盖任何在本实用新型的精神和范围上做的替代、修改、等效方法以及方案。
为了使公众对本实用新型有彻底的了解,在以下本实用新型优选实施例中详细说明了具体的细节,而对本领域技术人员来说没有这些细节的描述也可以完全理解本实用新型。
在下列段落中参照附图以举例方式更具体地描述本实用新型。需说明的是,附图均采用较为简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本实用新型实施例的目的。
参考图5所示,示意了本实用新型工作过程中PWM信号、流经主开关管的电流ID、栅源电压Vgs和漏源电压Vds的波形,主要反映其开通驱动过程中的波形。采用PWM信号控制是控制主开关管的一种控制方式,PWM信号包括有效部分和无效部分,二者组成了一个开关周期,有效部分占整个开关周期的比例称之为占空比。本实施例中,PWM信号的高电平部分为有效,低电平部分为无效,所述PWM信号并非主开关管控制端的信号,而是以PWM信号表征开通或关断时刻,PWM信号通过逻辑改造最终得到主开关管栅极电压,因此,通过逻辑设置,也可以使PWM信号的低电平部分为有效,高电平部分为无效,同时针对不同类型的主开关管,本实施例所述PWM信号均可实现相应的功能,可见,本实施例中的具体PWM信号的电平状态并不能构成对本申请的限制。图中以高电平表征有效为例,一般而言,可以认为,所述的有效是指开通,无效则是指关断,本实施例以P型的MOS管作为主开关管为例,虽然,对于P型的MOS管,其控制端或栅极一般为在低电平下开通,高电平截止,但仍PWM信号仍以高电平部分作为有效,通过逻辑设置或改造能够实现其栅极为低电平,故在此予以说明。
所述开关管的开通过程包括以下阶段:
第一阶段(t0-t1):主开关管的PWM信号由无效变为表征开通的有效时,所述主开关管栅极至源极的电压开始下降,随着栅源电压电压的下降,所述主开关管开始逐步导通,流经主开关管的电流也开始上升,并达到设定的限制电流;
第二阶段(t1-t2):通过控制所述主开关管的栅源电压使得所述主开关管的电流保持在限制电流,主开关管的漏源极之间的阻抗降低,漏源电压的绝对值持续下降;
第三阶段(t2-t3):所述主开关管的电流从限制电流下降至正常工作电流,所述主开关管的栅源电压再次下降并且其绝对值达到最大值,此时,所述主开关管处于完全导通状态。
以上各个阶段,只是根据波形的变化趋势所进行的划分,并无严格的界限,采用阶段来表述,只是为了便于描述,不构成对本申请方案的限制。关于“主”开关管,“主”仅为了区分需要,即为本申请中所要控制和驱动的开关管,当然,在实际场景应用中,通常也俗称主开关管。所述的正常工作电流为实际电路应用中的工作电流,不同的应用可能有所不同,并无特定的数值。
参考图6所示,示意了本实用新型实施例一的电路结构,包括驱动电路和主开关管M00,所述驱动电路用于驱动主开关管M00,本实用新型主要解决主开关管M00开通过程的技术问题。所述的驱动电路包括限流模块和逻辑控制模块,所述的逻辑控制模块接收所述的PWM信号,所述的逻辑控制模块根据所述PWM信号,在PWM信号为低电平时,逻辑控制模块控制限流模块不工作,即将开关K30关断,以切断供电电压VD对第一运算放大器U30供电,并将所述主开关管M00的控制端GATE电压拉高(PWM信号连接在开关M31的控制端,开关M31的第一端与主开关管M00的控制端连接,开关M31的第二端与供电电压BUS连接,BUS作为供电电压的高电位端);在PWM信号为高电平时,逻辑控制模块控制限流模块开始工作,开关K30导通,所述供电电压VD对第一运算放大器U30供电,此时M31关断,同时第一运算放大器U30还与供电电压BUS连接,其中VD作为供电电压的低电位端。供电电压BUS和供电电压VD均指供电电压,为了将二者进行区别,所述的供电电压BUS为第一供电电压,所述的供电电压VD为第二供电电压。所述的供电电压BUS也可称之为母线电压。
所述的限流模块包括第一运算放大器U30,所述的第一运算放大器U30的第一输入端接收限流参考信号VREF,其第二输入端接收表征流经主开关管M00电流的采样信号VS,其输出端与主开关管M00的控制端连接。主开关管M00为PMOS,M00的源极(即其第二端)经过电阻R31连接到母线电压BUS上。VD电压比BUS低一固定电压,并且驱动电路由BUS和VD供电,即BUS为驱动电路供电的高电位;VD为驱动电路供电的地电位。并且VS、VREF的电位都是相对母线电压的电位。
在图6中,结合图5的波形,本实施例具体的工作过程如下:当PWM信号为低时,开关M31导通,GATE被拉高,MOS管(主开关管的一种)M00关断;开关K30关断,运放U30不对GATE进行下拉。在图5中的t0时刻,PWM信号由低变高,开关M31关断,开关K30导通,运放U30在VD和BUS的供电下使能。电阻R31作为采样电阻采样MOS管M00的电流,并转换成电压VS接入到运放U30的反相输入端。在t0-t1时刻,由于MOS管还未开通,其电流基本为0,因此GATE电压由M00的源极电压开始迅速下降,即栅源电压由0开始迅速下降。当GATE电压下降到一定程度,MOS管M00导通,其电流变大,当MOS管M00电流达到VREF/R31,则运放U30调整GATE电压,使MOS管电流维持在限流值VREF/R31,即t1-t2时刻,此时,运放U30限制了MOS的电流,且GATE电压基本保持不变(栅源电压也基本保持不变)。限流值VREF/R31大于MOS管正常工作时的电流,并且MOS管的漏极电压上升。到了t2时刻,MOS的漏源电压的绝对值已经足够低,使得MOS管上的电流和电感电流(可参考图1中的电感)近似相等,且电阻R31上的电压VS也低于参考电压VREF,运放U30的输出降低,将MOS管的栅极电压拉低(栅源电压降低)。到了t3时刻,运放U30的输出饱和,输出电压达到其最低值,MOS管M00处于完全导通状态。
从t0-t3一般为几ns到几十ns,因此需要运放U30的速度非常快。为了加快从t2-t3这段时间,可以加入电压比较器,比较器检测MOS管的漏源电压(通过其绝对值表征),当其漏源电压的绝对值足够低时,则下拉MOS管的栅极,详见图11。虽然在图6中未予以示意,但本领域普通技术人员均知悉其实施方式。在某些错误情况时,图1中的SW点短路到地,即续流二极管短路到地,则MOS管M00在开通的t1-t2时刻漏源电压的绝对值不会降低,则GATE电压会一直维持在一定值,可在驱动电路中加入计时保护电路来检测这段时间,当漏源电压的绝对值超过一定时间还未下降,则驱动电路发出报警信号,并且使MOS管关断,详见图12。在该错误情况时,MOS电流被限制在VREF/R31,这样大大增加了系统的可靠性。在正常开通过程中,MOS电流过冲被限制在VREF/R31,MOS的过冲和振荡也减小了,EMI和系统可靠性都得到了明显的改善。
参考图7所示,示意了本实用新型实施例二的电路结构。对于图6中的实施例一,采样电阻R31上会产生额外的电压和功耗,尤其是在低压大电流的应用中,该采样电阻上的额外功耗较大,影响了该方案的适用。在此基础上,图7中的实施例二,使用了有别于图6中限流模块的电路结构,无需采样电阻,从而大大减小了额外的功耗。
开关管M45作为辅助开关管,和主开关管M00形成电流镜,在饱和工作区,M45的电流为M00的1/N。开关管M45和第一运算放大器U45作为限流模块。MOS管M00上的电流和图5中的电流波形是一样的,只是图7中MOS管M00的限流值为N*I41,而不是之前的VREF/R31,即所使用的限流值的形式不同。
当PWM为低时,M46、M47导通,将M00的GATE电压和VC电压上拉到M00的源极电压,也就是BUS电压,且开关K45、K46关断,电流源I41不对VC进行下拉,且运放U45(作为实施例二中的第一运算放大器)不使能,MOS管M00的栅极电压GATE(即其控制端)为高。当PWM由低变高时,M46、M47关断,开关K45、K46导通,电流源I41对VC进行下拉,运放U45使能。由于当PWM为低时,M00、M45的GATE电压均为高,因此在PWM向高电平跳变时,由于GATE为高,流经M00、M45的电流较小,电压VC会被电流源I41下拉到VREF2以下,使运放U45的输出为低,将GATE电压下拉(栅源电压下降),即图5中的t0-t1时刻。需要注意的是K46和M47不是必要的,因为K45已经可以控制U45在PWM为0时的输出状态。或者说,在实施时,M47和K46的方案和K45的方案可以作为并列方案,二者择其一即可实现相应功能,但本实施例中,为了示意方便,则在一个示意图中予以显示。
当GATE电压下降(栅源电压下降)到一定程度,M45上电流达到I41,即M00上电流为N*I41,则电压VC上升,运放U45控制VC等于VREF2,则M45上电流维持在I41,M00上电流也维持在N*I41,GATE电压基本保持不变,栅源电压也保持基本不变。到了t2时刻,M00的漏源电压的绝对值降低到足够低的值,达到设定的低阈值,且M00上电流小于N*I41,则VC电压降低,运放U45输出变小,GATE电压下降,直到运放U45饱和,其输出电压下降到最低值,此时MOS管M00完全导通。
图7电路中,开关管M47、开关管M46、开关K45和开关K46构成本实施例中的逻辑控制电路,在接收PWM信号后,用以控制限流模块和主开关管M00,其具体连接如图所示,在此不作赘述。
参考图8所示,示意了本实用新型实施例三的电路结构。图7中的运放U45及参考电压VREF2可用一PMOS管M48(作为第二开关管)实现,如图8中虚线圆框中的M48所示。当PWM由低变高时,由于M45和M00的电流为0,且其栅极电压GATE为高,则M48的栅极,即VC电压降低,使M48的源极电压,即GATE电压降低(栅源电压下降)。当栅源电压下降到一定程度,M45上的电流达到I41时,则M48的栅源电压降低,M48上电流减小,GATE电压维持一定值,使得M45上电流为I41。当M00的漏极电压足够高时,则M00上电流小于N*I41,则VC被电流源I41下拉,M48完全导通,并且将GATE电压下拉到VD+Vgs(M48),MOS管M00完全导通。需要说明的是,对于M48的控制也可以不用K46和M47,而用一个和M48串联的如图7所示的开关管替代,故在此予以说明。
图8电路中,开关管M47、开关管M46和开关K46构成本实施例中的逻辑控制电路,在接收PWM信号后,用以控制限流模块和功率开关管,其具体连接如图所示,在此不作赘述。
参考图9所示,示意了本实用新型实施例四的电路结构。在图8所示的实施例三中,GATE下拉采用P型MOS管M48,因此GATE最低电压只能到VD+Vgs,而不能到供电电压VD。为了GATE电压能够到最低电压VD,从而进一步降低主MOS管M00导通阻抗,因此可以采用N型MOS管作为输出,即由N型MOS管M55(作为第二开关管)和第二运算放大器U55替换实施例三中的M48。另外,和实施例三类似,可以不用开关K46和M47,而是在M55上串联一个开关,使得在PWM为0(即表征为无效)时M55关断。
当PWM信号为低时,M46导通,GATE电压为高,M00关断。同时VC被M47上拉到高电平,U55输出为低,N型MOS管M55关断,GATE电压不会被拉低。而在MOS管M00完全导通阶段,VC被电流源I41下拉,U55输出为最高电压,M55完全导通,将GATE电压下拉到VD。其余工作阶段和之前电路所描述的类似,不再详述。
参考图10所示,示意了本实用新型实施例五的电路结构。实施例二至四均采用的电流镜的方式来采样主MOS管M00的电流,M45和M00形成电流镜;M45的漏端电压为VC,而M00的漏端电压和外部开关电路的电压有关,其漏端电压相差很大,会导致电流镜的误差。图10的本实施例将辅助开关管M60和M00的漏极连接在一起,使两者的电流比例更加精准,使得R65上的压降反映M00的电流。
且图10中也采用如实施例四的N型MOS管对GATE进行下拉,使得GATE电压可以到达供电电压VD,即最低电压。M65的源极通过采样电阻R65连接到M00的源极。由于M65上的电流比M00上的电流小很多,因此R65上的功耗不会对系统的效率产生影响。因此,本实施例虽然利用了电流镜像的原理,但是不是完全成比例的电流镜。
在PWM信号为0时,M66导通,将GATE上拉,同时K65关断,使M67(作为第二开关管)不会对GATE下拉。R65可以是一个电阻,也可以是一个处于线性区的MOS。本实施例中的参考信号VREF2和其他实施例的参考信号有所不同,即每个实施例的参考信号所表征的值并不相同,但均在相应实施例中起到参考的作用,在此予以说明。
参考图11所示,示意了电压比较器与主开关管的连接关系。在所述的驱动电路中加入电压比较器U70,所述电压比较器U70接收主开关管M00的漏源电压(由于源极接电源,所以图中接在漏极,漏极电压表征了漏源电压),将其与设定的低阈值VTH1进行比较,当漏源电压的绝对值降至所述低阈值VTH1,则通过下拉电路下拉MOS管,即通过快速降低主开关管M00的栅源电压,以使主开关管M00完全导通。
参考图12所示,示意了计时保护电路的连接关系。在所述的驱动电路中加入计时保护电路U82,所述主开关管M00的电流保持在限制电流时,通过限流检测电路U81检测限制电流,通过计时保护电路U82设置阈值时间,当漏源电压的绝对值(由于源极接电源,所以图中接在漏极,漏极电压表征了漏源电压)超过阈值时间还未下降,则经逻辑电路U83通过上拉电路U84控制主开关管关断M00,以保护主开关管M00。对于漏源电压超过阈值时间还未下降则通过比较器U80进行判断,VTH2作为比较的参考电压,根据下降前的漏源电压绝对值设置合理的VTH2即可实现。
本实用新型所有实施例所涉及的PWM信号为脉宽调制信号,用于控制功率开关管,但是PWM信号仅仅为本实用新型控制信号的一种,所述的控制信号还能有其他方式。
除此之外,虽然以上将实施例分开说明和阐述,但涉及部分共通之技术,在本领域普通技术人员看来,可以在实施例之间进行替换和整合,涉及其中一个实施例未明确记载的内容,则可参考有记载的另一个实施例。本实用新型的功率驱动管可以应用于各种拓扑结构,同时其驱动电路和方法,可在各种应用下实现,而不限于BUCK电路。
以上所述的实施方式,并不构成对该技术方案保护范围的限定。任何在上述实施方式的精神和原则之内所作的修改、等同替换和改进等,均应包含在该技术方案的保护范围之内。

Claims (12)

1.一种开关管的驱动电路,其特征在于:包括限流模块,所述的驱动电路接收控制信号,在开通过程中,所述控制信号由无效变为表征开通的有效时,主开关管栅极至源极的电压开始下降,限流模块开始工作,随着栅源电压的下降,所述主开关管开始逐步导通,流经主开关管的电流也开始上升,并在限流模块的调节下达到设定的限制电流;
通过控制所述主开关管的栅源电压使得所述主开关管的电流保持在限制电流,主开关管的源漏极之间的阻抗降低,漏源电压的绝对值持续下降;
所述主开关管的电流从限制电流下降至正常工作电流,所述主开关管的栅源电压再次下降并且其绝对值达到最大值,此时,所述主开关管处于完全导通状态。
2.根据权利要求1所述的开关管的驱动电路,其特征在于:所述的驱动电路还包括逻辑控制模块,所述的逻辑控制模块接收所述的控制信号,所述的逻辑控制模块根据所述控制信号,在控制信号为无效时,逻辑控制模块控制限流模块不工作,并将所述主开关管的栅极电压上拉到其源极电压;在控制信号为有效时,逻辑控制模块控制限流模块开始工作。
3.根据权利要求1或2所述的开关管的驱动电路,其特征在于:所述的限流模块包括第一运算放大器,所述的第一运算放大器的第一输入端接收限流参考信号,其第二输入端接收表征流经主开关管电流的采样信号,其输出端与主开关管的控制端连接。
4.根据权利要求1或2所述的开关管的驱动电路,其特征在于:所述的驱动电路还包括电压比较器,所述电压比较器接收主开关管的漏源电压,将其绝对值与设定的低阈值进行比较,当漏源电压的绝对值降至所述低阈值,则通过快速降低主开关管的栅源电压,以使主开关管完全导通。
5.根据权利要求1或2所述的开关管的驱动电路,其特征在于:所述的驱动电路还包括计时保护电路,所述主开关管的电流保持在限制电流时,通过计时保护电路设置阈值时间,当漏源电压的绝对值超过阈值时间还未下降,则控制主开关管关断,以保护主开关管。
6.根据权利要求1或2所述的开关管的驱动电路,其特征在于:所述的限流模块包括辅助开关管和第一运算放大器,所述的辅助开关管与所控制的主开关管组成电流镜,所述的第一运算放大器的第一输入端接收参考信号,其第二输入端与所述辅助开关管的第一端连接,其输出端与主开关管的控制端连接;所述的辅助开关管的第一端在控制信号表征有效时接收第一电流源。
7.根据权利要求1或2所述的开关管的驱动电路,其特征在于:所述的限流模块包括辅助开关管和第一开关管,所述的辅助开关管与所控制的主开关管组成电流镜,所述的第一开关管的第一端接收供电电压,其第二端与所述主开关管的控制端连接,第一开关管的控制端与辅助开关管的第一端连接;所述的辅助开关管的第一端在控制信号表征有效时接收第一电流源。
8.根据权利要求7所述的开关管的驱动电路,其特征在于:所述的第一开关管为P型MOS管。
9.根据权利要求2所述的开关管的驱动电路,其特征在于:所述的限流模块还包括辅助开关管、第二开关管和第二运算放大器,所述的辅助开关管与所控制的主开关管组成电流镜,所述的第二开关管的第二端接收供电电压,其第一端与所述主开关管的控制端连接,第二开关管的控制端与第二运算放大器的输出端连接,所述第二运算放大器的第一输入端接收参考信号,其第二输入端与所述辅助开关管的第一端连接;所述的辅助开关管的第一端在控制信号表征有效时接收第一电流源。
10.根据权利要求2所述的开关管的驱动电路,其特征在于:所述的限流模块包括辅助开关管、第二开关管和第二运算放大器,通过调节辅助开关管的电流,来调节所控制的主开关管的电流,所述的第二运算放大器的第一输入端接收表征辅助开关管电流限流值的参考信号,其第二输入端接收表征流经辅助开关管电流的采样信号,其输出端与主开关管的控制端连接;第二运算放大器的输出端与第二开关管的控制端连接,所述的第二开关管的第二端接收供电电压,其第一端与所述主开关管的控制端连接。
11.根据权利要求9或10所述的开关管的驱动电路,其特征在于:所述的 第二开关管为N型MOS管。
12.一种电源系统,其特征在于:包括以上权利要求1-11任意一项所述的开关管的驱动电路。
CN201620979639.3U 2016-08-29 2016-08-29 开关管的驱动电路及电源系统 Withdrawn - After Issue CN206041786U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620979639.3U CN206041786U (zh) 2016-08-29 2016-08-29 开关管的驱动电路及电源系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620979639.3U CN206041786U (zh) 2016-08-29 2016-08-29 开关管的驱动电路及电源系统

Publications (1)

Publication Number Publication Date
CN206041786U true CN206041786U (zh) 2017-03-22

Family

ID=58302115

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620979639.3U Withdrawn - After Issue CN206041786U (zh) 2016-08-29 2016-08-29 开关管的驱动电路及电源系统

Country Status (1)

Country Link
CN (1) CN206041786U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329916A (zh) * 2016-08-29 2017-01-11 杰华特微电子(杭州)有限公司 开关管的驱动方法及电路及电源系统
CN109348601A (zh) * 2018-12-20 2019-02-15 青岛亿联客信息技术有限公司 一种彩光灯驱动电路及其驱动方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106329916A (zh) * 2016-08-29 2017-01-11 杰华特微电子(杭州)有限公司 开关管的驱动方法及电路及电源系统
CN106329916B (zh) * 2016-08-29 2018-09-21 杰华特微电子(杭州)有限公司 开关管的驱动方法及电路及电源系统
CN109348601A (zh) * 2018-12-20 2019-02-15 青岛亿联客信息技术有限公司 一种彩光灯驱动电路及其驱动方法
CN109348601B (zh) * 2018-12-20 2023-06-16 青岛亿联客信息技术有限公司 一种彩光灯驱动电路及其驱动方法

Similar Documents

Publication Publication Date Title
CN110149042B (zh) 一种具有分段驱动功能的功率管栅极驱动电路
CN111404529B (zh) 一种耗尽型GaN功率器件的分段直接栅驱动电路
CN106230258B (zh) 功率开关管的驱动方法及电路及电源系统
US8102192B2 (en) DC brushed motor drive with circuit to reduce di/dt and EMI, for MOSFET Vth detection, voltage source detection, and overpower protection
US10461730B1 (en) Adaptive multi-level gate driver
CN110838787B (zh) 一种改善驱动性能的SiC MOSFET主动驱动电路
JP4317825B2 (ja) インバータ装置
CN111525780B (zh) 宽禁带功率器件驱动串扰电压抑制电路、方法及装置
CN106329916B (zh) 开关管的驱动方法及电路及电源系统
CN110165872A (zh) 一种开关控制电路及其控制方法
CN103107803B (zh) 单脉冲高压电平位移及上管驱动电路及其控制方法
WO2008050267A2 (en) Power amplifier
CN104093250A (zh) 一种用于led驱动电路的开路过压保护装置
CN206041786U (zh) 开关管的驱动电路及电源系统
CN107947539A (zh) 开关电源驱动供电电路及开关电源
US6441598B1 (en) Synchronous rectifier circuit and method of use in switching voltage converter
CN115173676A (zh) 一种抑制过冲尖峰的SiC MOSFET驱动电路
CN206041787U (zh) 功率开关管的驱动电路及电源系统
CN111865055B (zh) 一种提前下拉同步整流管栅压的同步整流驱动电路
CN107204761A (zh) 一种功率管驱动电路
JP2012109916A (ja) 負荷駆動回路
US6577518B2 (en) Integrated controller for synchronous rectifiers
WO2016003823A1 (en) Glitch suppression in an amplifier
US20110273220A1 (en) Optimal mosfet driver circuit for reducing electromagnetic interference and noise
US7724066B2 (en) Switching circuit using closed control loop to precharge gate of switching transistor and stable open loop to switch the switching transistor

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned
AV01 Patent right actively abandoned

Granted publication date: 20170322

Effective date of abandoning: 20180921