CN109901281A - 一种穆勒显微偏振像差校准方法及装置 - Google Patents

一种穆勒显微偏振像差校准方法及装置 Download PDF

Info

Publication number
CN109901281A
CN109901281A CN201910185842.1A CN201910185842A CN109901281A CN 109901281 A CN109901281 A CN 109901281A CN 201910185842 A CN201910185842 A CN 201910185842A CN 109901281 A CN109901281 A CN 109901281A
Authority
CN
China
Prior art keywords
sample
muller
master
calibration method
wave plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910185842.1A
Other languages
English (en)
Other versions
CN109901281B (zh
Inventor
程雪岷
余杰威
马辉
李懋林
何宏辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Graduate School Tsinghua University
Original Assignee
Shenzhen Graduate School Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Graduate School Tsinghua University filed Critical Shenzhen Graduate School Tsinghua University
Priority to CN201910185842.1A priority Critical patent/CN109901281B/zh
Publication of CN109901281A publication Critical patent/CN109901281A/zh
Application granted granted Critical
Publication of CN109901281B publication Critical patent/CN109901281B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明公开一种穆勒显微偏振像差校准方法及装置,所述方法包括如下步骤:S1、分别对标准样本和实验样本进行如下图像采集步骤:使光在经过起偏模块、样本、物镜、检偏模块后到达CCD,利用CCD进行图像采集;其中样本是指所述标准样本和实验样本;S2、数据采集完整之后对数据进行处理,其算法为特征值校准法,最后计算空气实验样本的穆勒矩阵;其中标准样本包括:空气标准样本、0°偏振片标准样本、90°偏振片标准样本和30°波片标准样本。本发明以特征值校准法为基础,并采用四种标准样本用以校准,保证了穆勒显微镜的测量精度和稳定性。

Description

一种穆勒显微偏振像差校准方法及装置
技术领域
本发明涉及一种穆勒显微偏振像差校准方法及装置。
背景技术
穆勒显微镜是穆勒矩阵测量技术、穆勒矩阵参数提取技术和显微成像技术的 结合,使用穆勒显微镜对生物样本进行偏振成像,能够在得到样本图像信息的同 时得到生物样本的完整的穆勒矩阵。另外使用穆勒矩阵分解技术和穆勒矩阵变换 技术对样本的穆勒矩阵进行处理,即可从样本的穆勒矩阵中提取出和生物微观结 构密切相关又有明确物理意义的偏振成像参数,比如描述生物样本纤维化程度和 纤维化方向的定量参数。这些参数可以有效地辅助进行病理诊断和对生物生长过 程的研究,且与传统的病理检测和生物生长过程研究方法相比,具有更高的灵敏 度和分辨率。所以穆勒显微镜在生物领域,尤其是癌症检测方面有着良好的应用 前景。
现有技术中,一般选用双旋转波片装置作为穆勒显微成像设备中的偏振调制 模块。使用该装置对样本进行穆勒矩阵测量的过程中存在着一些缺点:(1)穆勒 矩阵测量精度依赖于偏振器件的制造精度,存在来自偏振片的透射率和消光比以 及波片的透射率参数不理想带来的系统误差。(2)如果不能实现光路精准调节, 测量结果中就会有由于偏振器件初始位置不准确带来的系统误差。(3)偏振调制 的精度依赖对波片快轴方向的精确控制,所以测量结果中还存在由于波片快轴方 向控制误差带来的测量误差。
穆勒显微成像设备中其数据处理方法为傅里叶变换法,同时也有基于该数据 处理方法的校准算法来减小上述缺点带来的误差,但是该校准算法也存在着缺陷, 包括信息丢失、二次误差传递、偏振器件初始位置受限,并且该校准算法未考虑 在显微镜系统中聚光镜和物镜带来的影响,使得算法系统模型不完善,未能克服 聚光镜和物镜带来的偏振像差。
发明内容
本发明的目的是提出一种穆勒显微偏振像差校准方法及装置,保证穆勒显微 镜的测量精度和稳定性。
为此,本发明的穆勒显微偏振像差校准方法包括如下步骤:S1、分别对标准 样本和实验样本进行如下图像采集步骤:使光在经过起偏模块、样本、物镜、检 偏模块后到达CCD,利用CCD进行图像采集;其中样本是指所述标准样本和实验 样本;S2、数据采集完整之后对数据进行处理,其算法为特征值校准法,最后计 算空气实验样本的穆勒矩阵;其中标准样本包括:空气标准样本、0°偏振片标 准样本、90°偏振片标准样本和30°波片标准样本。
在本发明实施例中,还包括如下特征:
起偏模块和检偏模块中波片采用各自独立旋转的偏振调制。
起偏模块和检偏模块当中的波片分别处于35°、70°、105°和140°时CCD 进行图像采集,共采集16组图像。
偏振器件初始时刻主轴方向均平行,起偏和检偏模块中波片转速比为1:1。
每次旋转的角度基数的为35°及其整数倍。
起偏模块和检偏模块中波片转速比取整数转速比。
初始时刻使波片快轴方向与第一个偏振片透光轴方向平行,第二个偏振片透 光轴与第一个偏振片透光轴正交。
本发明还提出一种穆勒显微偏振像差校准装置,包括:依次设置在光路上的 起偏模块、样本、物镜、检偏模块后到达CCD,利用CCD进行图像采集;其中样 本是指所述标准样本和实验样本;数据采集完整之后对数据进行处理的数据处理 装置,其中算法为特征值校准法,用于计算空气实验样本的穆勒矩阵;其中,标 准样本包括:空气标准样本、0°偏振片标准样本、90°偏振片标准样本和30° 波片标准样本。
本发明上述技术方案以特征值校准法为基础,并采用四种标准样本用以校准, 保证了穆勒显微镜的测量精度和稳定性。
附图说明
图1是本发明实施例整体示意图。
图2是本发明实施例光路系统模型示意图。
图3是本发明实施例流程示意图。
图4a是波片旋转角度基数仪器矩阵对条件数的影响示意图。
图4b是波片旋转角度基数仪器矩阵对误差传递系数的影响示意图。
图5a是波片转速比仪器矩阵对条件数的影响示意图。
图5b是波片转速比仪器矩阵对误差传递系数的影响示意图。
图6a、6b、6c、6d、6e、6f分别为偏振器件初始时刻主轴方向对仪器矩阵 对条件数(6a、6b、6c)和误差传递系数(6d、6e、6f)的影响。
具体实施方式
本发明下述实施例使用特征值校准法实现穆勒矩阵的测量和校准,通过以下 描述我们将看到,该校准方法具有如下几个优点:(1)使用多种穆勒矩阵已知的 标准样本来实现对起偏模块和检偏模块的完全建模和校准,所以没有建模误差。 (2)偏振器件初始位置,偏振器件的制造误差,系统的偏振像差等误差因素都 已经被包含在系统模型中且通过校准算法实现校准,所以对系统光路调节和器件 选型方面要求降低。(3)通过对系统模型的完善和算法修正,可以有效克服偏振 像差。
下面分几个方面对实施例进行具体描述。
整体方法概述
如图1所示为本实施例的整体方案,光在经过起偏模块、样本、物镜、检偏 模块后到达CCD,CCD进行图像采集,分别对标准样本(空气标准样本、0°偏振 片标准样本、90°偏振片标准样本、30°波片标准样本)和实验样本(空气实验 样本)进行上述步骤。数据采集完整之后对数据进行处理,其算法为特征值校准 法,最后计算空气实验样本的穆勒矩阵。
光路系统构成
如图2所示为本实施例的光路系统模型,主要器件为光源、起偏模块(偏振 片和波片组成)、样品(校准标准样本为空气标准样本、0°偏振片标准样本、 90°偏振片标准样本、30°波片标准样本)、检偏模块(波片和偏振片组成)物 镜和CCD。
机械部件具体步骤
波片每次旋转的角度基数、波片转速比、波片的相位延迟量、初始时刻偏振 器件的主轴方向、一次完整测量中的光强测量次数是基于双旋转波片装置的穆勒 矩阵测量方案中需要确定的问题。为了尽可能减小特征值校准法中需要进行建模 的系统参数个数以简化校准过程,本发明实施例采用起偏模块和检偏模块中波片 各自独立旋转的偏振调制方案。为起偏和检偏模块分别选取4个快轴角度,总计 进行16次的偏振调制。考虑到偏振器件的可得性,选取四分之一波片作为起偏 模块和检偏模块中的波片。
如流程图3所示,起偏模块和检偏模块当中的波片分别处于35°、70°、 105°和140°时CCD进行图像采集,共采集16组图像。
算法设计
本发明实施例使用仪器矩阵条件数和测量过程中的误差传递系数做为设计 指标,完成对测量方案的设计。首先按照偏振器件初始时刻主轴方向均平行,起 偏和检偏模块中波片转速比为1:1的前提分析波片每次旋转的角度基数对仪器 矩阵条件数和误差传递系数的影响。
图4a、4b为仪器矩阵条件数和误差传递系数随波片每次旋转的角度基数的 变化曲线图。其中两个子图中横坐标均表示弧度制的角度基数,图4a中纵坐标 表示仪器矩阵条件数,图4b中纵坐标表示测量过程中的误差传递系数。为了更 好地展示数据,将纵坐标限定在(0,300)以内。从图1中可以看出角度基数的 最优值为35°及其整数倍(从图4a和b中纵坐标最小值对应的横坐标为0.61rad 及其整数倍,0.61rad即35°左右,实际上在程序中找到最小值点就是35°, 图中是用曲线对应的横坐标数值)。
选取波片每次旋转的角度基数为35°,之后分析波片转速比对仪器矩阵条件 数和误差传递系数的影响并绘制图5a、5b。其中图5a展示了仪器矩阵条件数随 波片转速比的变化(设定一个转速基数,横坐标表示起偏中波片对应这个基数的 旋转倍数,左侧纵坐标表示检偏中波片对应这个基数的旋转倍数,则横坐标与左 侧纵坐标的数值就是这两个波片的转速比),图5b展示了误差传递系数随波片 转速比的变化。为了突出有效数据,只对仪器矩阵条件数和误差传递系数小于 25的部分进行了绘图。从图5a、5b中可以看出,起偏模块和检偏模块中波片转 速比取整数转速比为最优设计值(图5中a、b冷色调(蓝色)表示数值小,对 应的起偏和检偏的倍数为1:1,1:2,1:3,2:1等整数倍数值)。
最后分析初始时刻偏振器件的主轴方向对仪器矩阵条件数和误差传递系数 的影响,并绘制图6a、6b、6c、6d、6e、6f。使用α2、α3、α4表示初始时刻后 三个偏振器件主轴方向相对于第一个偏振片透光轴方向的相对角度位置,则图 6a、6b、6c依次描述了α2、α3、α4对仪器矩阵条件数的影响,图6d、6e、6f 依次描述了α2、α3、α4对误差传递系数的影响。从图6a、6b、6c、6d、6e、6f 中可以发现,不同于起偏模块和检偏模块中两个波片同步旋转的测量方案,在两 个波片独立旋转的测量方案中,α2、α3、α4的取值对测量过程的误差传递规律 有影响(α2、α3、α4变化时,仪器矩阵条件数或是误差传递系数也发生变化, 纵坐标数值大,表示造成的误差会变大),且初始时刻装置中两个波片快轴方向 和第二个偏振片透光轴方向相对第一个偏振片透光轴方向平行或正交时仪器矩 阵条件数和误差传递系数最小(纵坐标的仪器矩阵条件数或是误差传递系数数值 最小时,对应横坐标数值为0.5π的整数倍或是π的整数倍,即相对位置是垂直 或是平行)。在实际应用中,我们初始时刻使波片快轴方向与第一个偏振片透光 轴方向平行,第二个偏振片透光轴与第一个偏振片透光轴正交的装置设计方案。
基于上述设计,本实施例特征值校准法基本算法如下:
采用16次偏振调制和光强测量时,系统传递函数可以表示为:
D=TMW (1-1)
其中矩阵W表示起偏模块产生的4次偏振调制信息与入射光强的相乘后得 到的矩阵,矩阵T表示检偏模块进行的4次偏振调制,D表示光强,M表示样 品穆勒矩阵。
对空气标准样本测量时有:
D1=TMairW=TW. (1-2)
对于其他的标准样本有:
Di=TMiW. (1-3)
定义Ci
Ci=D1 -1Di=W-1MiW. (1-4)
则有:
MiW-WCi=0. (1-5)
使用克罗内克积对上式进行变形,记vec(K)表示矩阵K所有元素组成的列 向量,则有:
从上式中可以看出如果Hi是自共轭矩阵,那么vec(W)在Hi的零特征值对 应的特征空间内。对上式进行进一步变形并且采用多种标准样本进行方程式叠加 可以使vec(W)前边的系数矩阵的零空间具有唯一的特征值,此时就可以解出 vec(W)。构建出的方程组如下:
L·vec(W)=0. (1-7)
其中:
L=H1 TH1+…+Hn THn. (1-8)
最后根据vec(W)重新排列得到W并计算出矩阵T:
T=D1W-1. (1-9)
在T与W都构建完整后,对于其他待测样品,则有Md=T-1DdW-1,以此计 算得到待测样品的穆勒矩阵Md
在特征值校准法实验中,需要对除空气外的标准样本的偏振特性参数进行标 定。包括线偏振片透光轴方向、透光率和波片快轴方向、透光率、真实相位延迟 量的标定。注意到矩阵Ci与Mi相似,所以两者有同样的特征值。对于偏振片和 波片,其穆勒矩阵均可以用如下式子表示:
其4个特征值为:
使用以上特征值可以实现对偏振片透光率和波片透光率以及相位延迟量的标定。
特征值校准法修正步骤:
在显微镜当中,实际上加入了聚光镜和显微物镜元件,在特征值校准法的基 本算法中只考虑了基础的起偏和检偏模块的穆勒矩阵,所以还需要进行模型的完 善和算法修正。考虑显微物镜和聚光镜的穆勒矩阵分别为MObj和MCon,其偏振 特性参数与式(1-10)所表示类似,则对于式(1-1),其完整表达式应为 D=TMObjMMConW=TModMWMod(1-12)
其中TMod=TMObj,WMod=MConW,则接下来的计算步骤与式(1-2)至(1-9) 相似,这是起偏和检偏模块的穆勒矩阵有所改变,但是由于MObj和MCon为满秩 矩阵,重点在于计算标准样品的特征值,而在进行计算时可发现其特征值并不改 变,所以可以沿用式(1-2)至(1-9)的计算步骤,以此消除聚光镜和显微物镜 处大入射角造成的偏振像差的影响。
本发明上述实施例以特征值校准法为基础,考虑聚光镜和物镜的误差源,对 系统进行模型完善,对仪器矩阵实现全参数建模,同时对算法进行数学公式上的 修正,在算法上消除系统的偏振像差,利用仪器矩阵进行基于该算法的偏振器件 初始位置和数据测量方案的设计(参见算法设计部分和流程图),并采用四种标 准样本用以校准(如整体方案图所示),实现分别采用4倍、10倍、20倍和40 倍物镜时对于空气实验样本的测量误差在0.01以内,其穆勒矩阵元素标准差最 大值为0.0053,保证了穆勒显微镜的测量精度和稳定性。

Claims (10)

1.一种穆勒显微偏振像差校准方法,包括如下步骤:
S1、分别对标准样本和实验样本进行如下图像采集步骤:使光在经过起偏模块、样本、物镜、检偏模块后到达CCD,利用CCD进行图像采集;其中样本是指所述标准样本和实验样本;
S2、数据采集完整之后对数据进行处理,其算法为特征值校准法,最后计算空气实验样本的穆勒矩阵;
其中标准样本包括:空气标准样本、0°偏振片标准样本、90°偏振片标准样本和30°波片标准样本。
2.如权利要求1所述的穆勒显微偏振像差校准方法,其特征在于:起偏模块和检偏模块中波片采用各自独立旋转的偏振调制。
3.如权利要求1所述的穆勒显微偏振像差校准方法,其特征在于:起偏模块和检偏模块当中的波片分别处于35°、70°、105°和140°时CCD进行图像采集,共采集16组图像。
4.如权利要求1所述的穆勒显微偏振像差校准方法,其特征在于:偏振器件初始时刻主轴方向均平行,起偏和检偏模块中波片转速比为1:1。
5.如权利要求2所述的穆勒显微偏振像差校准方法,其特征在于:每次旋转的角度基数的为35°及其整数倍。
6.如权利要求2所述的穆勒显微偏振像差校准方法,其特征在于:起偏模块和检偏模块中波片转速比取整数转速比。
7.如权利要求2所述的穆勒显微偏振像差校准方法,其特征在于:初始时刻使波片快轴方向与第一个偏振片透光轴方向平行,第二个偏振片透光轴与第一个偏振片透光轴正交。
8.一种穆勒显微偏振像差校准装置,其特征在于,包括:
依次设置在光路上的起偏模块、样本、物镜、检偏模块后到达CCD,利用CCD进行图像采集;其中样本是指所述标准样本和实验样本;
数据采集完整之后对数据进行处理的数据处理装置,其中算法为特征值校准法,用于计算空气实验样本的穆勒矩阵;其中,
标准样本包括:空气标准样本、0°偏振片标准样本、90°偏振片标准样本和30°波片标准样本。
9.如权利要求1所述的穆勒显微偏振像差校准装置,其特征在于,起偏模块和检偏模块中波片采用各自独立旋转的偏振调制。
10.如权利要求1所述的穆勒显微偏振像差校准装置,其特征在于,起偏模块和检偏模块当中的波片分别处于35°、70°、105°和140°时CCD进行图像采集,共采集16组图像。
CN201910185842.1A 2019-03-12 2019-03-12 一种穆勒显微偏振像差校准方法及装置 Active CN109901281B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910185842.1A CN109901281B (zh) 2019-03-12 2019-03-12 一种穆勒显微偏振像差校准方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910185842.1A CN109901281B (zh) 2019-03-12 2019-03-12 一种穆勒显微偏振像差校准方法及装置

Publications (2)

Publication Number Publication Date
CN109901281A true CN109901281A (zh) 2019-06-18
CN109901281B CN109901281B (zh) 2021-08-24

Family

ID=66946935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910185842.1A Active CN109901281B (zh) 2019-03-12 2019-03-12 一种穆勒显微偏振像差校准方法及装置

Country Status (1)

Country Link
CN (1) CN109901281B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111122452A (zh) * 2019-12-28 2020-05-08 天津大学 基于穆勒矩阵的去散射成像方法
CN111948149A (zh) * 2020-09-03 2020-11-17 中国久远高新技术装备有限公司 一种基于Mueller矩阵成像的检测系统
CN111982825A (zh) * 2020-07-24 2020-11-24 清华大学深圳国际研究生院 一种全偏振快速动态斯托克斯成像的方法
CN112747899A (zh) * 2019-10-29 2021-05-04 上海微电子装备(集团)股份有限公司 一种偏振元件的测量方法及测量装置
CN113208562A (zh) * 2021-04-21 2021-08-06 清华大学深圳国际研究生院 一种基于光检测技术的皮肤含水量检测系统及方法
CN113281256A (zh) * 2021-05-31 2021-08-20 中国科学院长春光学精密机械与物理研究所 穆勒矩阵测量装置及其测量方法
CN113295278A (zh) * 2021-05-21 2021-08-24 北京理工大学 高精度Stokes-Mueller通道光谱偏振检测系统
CN114264632A (zh) * 2021-12-15 2022-04-01 华中科技大学 一种角分辨式散射仪中物镜偏振效应的原位校准方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535192A (zh) * 2015-01-09 2015-04-22 北京理工大学 基于旋转波片法的斯托克斯偏振仪误差标定和补偿方法
US20180228415A1 (en) * 2017-02-16 2018-08-16 National Cheng Kung University Method and system for sensing glucose concentration
CN108828757A (zh) * 2018-06-27 2018-11-16 清华-伯克利深圳学院筹备办公室 显微镜光路系统、显微镜及校准方法、装置、设备及介质
CN108871579A (zh) * 2018-04-27 2018-11-23 北京理工大学 一种偏振成像系统的标定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104535192A (zh) * 2015-01-09 2015-04-22 北京理工大学 基于旋转波片法的斯托克斯偏振仪误差标定和补偿方法
US20180228415A1 (en) * 2017-02-16 2018-08-16 National Cheng Kung University Method and system for sensing glucose concentration
CN108871579A (zh) * 2018-04-27 2018-11-23 北京理工大学 一种偏振成像系统的标定方法
CN108828757A (zh) * 2018-06-27 2018-11-16 清华-伯克利深圳学院筹备办公室 显微镜光路系统、显微镜及校准方法、装置、设备及介质

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747899A (zh) * 2019-10-29 2021-05-04 上海微电子装备(集团)股份有限公司 一种偏振元件的测量方法及测量装置
CN112747899B (zh) * 2019-10-29 2022-03-15 上海微电子装备(集团)股份有限公司 一种偏振元件的测量方法及测量装置
CN111122452B (zh) * 2019-12-28 2022-10-11 天津大学 基于穆勒矩阵的去散射成像方法
CN111122452A (zh) * 2019-12-28 2020-05-08 天津大学 基于穆勒矩阵的去散射成像方法
CN111982825A (zh) * 2020-07-24 2020-11-24 清华大学深圳国际研究生院 一种全偏振快速动态斯托克斯成像的方法
CN111982825B (zh) * 2020-07-24 2024-02-13 清华大学深圳国际研究生院 一种全偏振快速动态斯托克斯成像的方法
CN111948149A (zh) * 2020-09-03 2020-11-17 中国久远高新技术装备有限公司 一种基于Mueller矩阵成像的检测系统
CN113208562A (zh) * 2021-04-21 2021-08-06 清华大学深圳国际研究生院 一种基于光检测技术的皮肤含水量检测系统及方法
CN113295278A (zh) * 2021-05-21 2021-08-24 北京理工大学 高精度Stokes-Mueller通道光谱偏振检测系统
CN113281256B (zh) * 2021-05-31 2022-06-03 中国科学院长春光学精密机械与物理研究所 穆勒矩阵测量装置及其测量方法
CN113281256A (zh) * 2021-05-31 2021-08-20 中国科学院长春光学精密机械与物理研究所 穆勒矩阵测量装置及其测量方法
CN114264632A (zh) * 2021-12-15 2022-04-01 华中科技大学 一种角分辨式散射仪中物镜偏振效应的原位校准方法
CN114264632B (zh) * 2021-12-15 2024-01-05 华中科技大学 一种角分辨式散射仪中物镜偏振效应的原位校准方法

Also Published As

Publication number Publication date
CN109901281B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN109901281A (zh) 一种穆勒显微偏振像差校准方法及装置
CN104535192B (zh) 基于旋转波片法的斯托克斯偏振仪误差标定和补偿方法
TWI681180B (zh) 偏振測量裝置、偏振測量方法及光配向方法
CN104568765B (zh) 一种微型化光谱椭偏仪装置和测量方法
TWI481851B (zh) 光學度量衡裝置與用於使用穆勒矩陣之方法
CN102621072B (zh) 一种偏振和双折射测量系统
CN108535198B (zh) 一种有机光电材料分子取向的表征方法
CN108709514B (zh) 一种紧凑型滚转角传感器装置及测量方法
CN108828757B (zh) 显微镜光路系统、显微镜及校准方法、装置、设备及介质
CN111413282A (zh) 一种光弹型高速穆勒矩阵椭偏仪及其原位校准与测量方法
JP5254323B2 (ja) 光学歪み計測装置
CN107677370B (zh) 一种通道型偏振光谱成像仪的偏振辐射标定系统以及方法
CN114136894B (zh) 一种基于涡旋波片的偏振检测系统的误差校准方法及装置
CN105823563A (zh) 动态高分辨率波前测量装置及方法
CN103411890B (zh) 一种旋转补偿器型椭偏仪的系统误差评估及消除方法
CN104677837A (zh) 一种全穆勒矩阵椭圆偏振仪的校准方法
CN107764748B (zh) 一种玻璃材料的线性双折射测量装置与方法
CN115060658B (zh) 一种双涡旋波片穆勒矩阵椭偏仪及其测量方法
CN113624690B (zh) 一种能够实现任意偏振态调制的起偏器及其优化方法
JP6805469B2 (ja) 誤差補正方法及び二次元偏光解析法、並びに誤差補正装置及び二次元偏光解析装置
CN109120920A (zh) 一种基于像素刻划的偏振相机的校正系统
CN110332994B (zh) 基于偏振相机和优化波片的全Stokes矢量测量方法
CN115468744A (zh) 一种光学测量仪器的系统参数优化配置方法及装置
TWI417519B (zh) 干涉相位差量測方法及其系統
CN107314839A (zh) 基于穆勒矩阵的应力检测装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant