CN109884608B - 一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法 - Google Patents

一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法 Download PDF

Info

Publication number
CN109884608B
CN109884608B CN201910293836.8A CN201910293836A CN109884608B CN 109884608 B CN109884608 B CN 109884608B CN 201910293836 A CN201910293836 A CN 201910293836A CN 109884608 B CN109884608 B CN 109884608B
Authority
CN
China
Prior art keywords
data
sequence
sea clutter
obtaining
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910293836.8A
Other languages
English (en)
Other versions
CN109884608A (zh
Inventor
郝津钏
陈勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Environmental Features
Original Assignee
Beijing Institute of Environmental Features
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Environmental Features filed Critical Beijing Institute of Environmental Features
Priority to CN201910293836.8A priority Critical patent/CN109884608B/zh
Publication of CN109884608A publication Critical patent/CN109884608A/zh
Application granted granted Critical
Publication of CN109884608B publication Critical patent/CN109884608B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种海杂波K分布加噪声模型参数的快速分数阶矩估计方法。该方法包括如下步骤:生成一组序列作为形状参数ν取值的序列;生成一组序列作为数据依赖项q1取值的序列;获得与形状参数ν的序列和数据依赖项q1的序列对应的数据依赖项q2的序列;将两个数据依赖项序列与形状参数的倒数序列进行非线性拟合,得到近似关系式;利用周期图法获得海杂波样本数据噪声功率δ的估计值
Figure DDA0002025819400000011
利用海杂波数据的样本序列获得估计值
Figure DDA0002025819400000014
Figure DDA0002025819400000013
Figure DDA0002025819400000012
取代近似关系式中的q1,将
Figure DDA0002025819400000016
取代近似关系式中的q2,获得形状参数ν的估计值
Figure DDA0002025819400000015
本发明提供的方法改进了K分布加噪声模型参数估计的速度,增加了估计的稳健性。

Description

一种海杂波K分布加噪声模型参数的快速分数阶矩估计方法
技术领域
本发明涉及信号处理技术领域,尤其涉及一种海杂波K分布加噪声模型参数的快速分数阶矩估计方法。
背景技术
海杂波是由大量相互独立的海面散射体的后向散射相互叠加形成的回波,受雷达参数,海面无规律运动的影响,海杂波表现出明显的高幅值、非平稳、非高斯性。K分布模型是能够有效描述海杂波特性的经典统计模型,不仅在很宽的条件范围内可以与海杂波幅度分布很好的进行匹配,还可以正确地描述杂波的时间和空间的相关性,被广泛运用于杂波仿真、目标检测等领域。然而,实测海杂波数据中还存在雷达设备本身产生的加性噪声,对K分布模型的拟合效果有一定影响,为此又提出了K分布加噪声模型。
在杂波背景下的自适应检测中,检测门限值往往与分布模型的各项参数有关。为了在一定恒虚警率下获得较高的检测概率,需要准确地估计K分布加噪声模型的形状参数、尺度参数和噪声功率。目前对K分布加噪声模型的形状参数的估计方法主要有矩估计方法。因为K分布加噪声的矩表达式中含有广义超几何函数,所以不是任意两个不同的矩都可以估计出三个参数的值,但可以运用任意三个偶数阶矩求得。因此,使用三个偶数阶矩估计时,由于阶数较大,数据的计算量会非常高,形状参数估计速度比较慢,并且受异常散射单元影响比较大,稳健性不足。
发明内容
本发明要解决的技术问题是:现有K分布加噪声模型形状参数ν估计速度慢、稳健性不足的问题。
为了解决上述技术问题,本发明提供了如下技术方案:
一种海杂波K分布加噪声模型参数的快速分数阶矩估计方法,包括如下步骤:
S1:从1.0开始,间隔0.1取一个值,取到100.0为止,生成一组序列ν12,···,νi,···νL作为形状参数ν取值的序列,L是序列中数据的个数,取值为991;
S2:从1.0开始,间隔0.1取一个值,取到100.0为止,生成一组序列μ12,···,μj,···μS作为数据依赖项q1取值的序列,S是序列中数据的个数,取值为991,q1=m22,m2是海杂波样本数据的二阶矩,δ是海杂波样本数据的噪声功率;
S3:获得与形状参数ν的序列和数据依赖项q1的序列对应的数据依赖项q2的序列λ12,···,λ(j-1)L+i,···λL×S,其中,
Figure BDA0002025819380000021
mr是海杂波样本数据的r阶矩,r是分数阶距的阶数,取值0.1;
S4:将两个数据依赖项序列与形状参数的倒数序列进行非线性拟合,得到如下的近似关系式:
Figure BDA0002025819380000022
式中,p1,p2,p3,p4,p5,p6,p7,p8为常数项;
S5:利用周期图法获得海杂波样本数据噪声功率δ的估计值
Figure BDA0002025819380000023
S6:利用海杂波数据的样本序列,结合q1、q2的计算公式以及
Figure BDA0002025819380000024
获得q1的估计值
Figure BDA0002025819380000025
和q2的估计值
Figure BDA0002025819380000026
S7:将
Figure BDA0002025819380000027
取代近似关系式中的q1,将
Figure BDA0002025819380000028
取代近似关系式中的q2,获得形状参数ν的估计值
Figure BDA0002025819380000029
优选地,p1,p2,p3,p4,p5,p6,p7,p8的取值分别为-0.70536547,-2.43284673,0.44779562,-0.02296508,-1.86849359,1.45263166,1.67059762,0.06325657。
优选地,步骤S3包括如下步骤:
S31:根据全概率公式,得到模型的r阶矩表达式:
Figure BDA0002025819380000031
式中,Γ(·)是Gamma函数,2F0(·)是第二类合流超几何函数,σ是模型的尺度参数;
S32:利用模型的二阶矩表达式获得形状参数与尺度参数的关系式:
Figure BDA0002025819380000032
S33:结合S31获得的公式和S32获得的公式,得到如下公式:
Figure BDA0002025819380000033
S34:根据q1和q2的公式,结合S33获得的公式,得到:
Figure BDA0002025819380000034
S35:利用S34得到的计算方法获得与序列ν12,···,νi,···νL以及序列μ12,···,μj,···μS对应的序列λ12,···,λ(j-1)L+i,···λL×S
优选地,步骤S4包括如下步骤:
S41:将形状参数的序列用第一个行向量S表示;将数据依赖项q1的序列用第二个行向量U表示,将数据依赖项q2的序列用第个三行向量V表示;
S42:将三个行向量作为Matlab中提供的工具包cftool的参数,调用工具包非线性拟合功能,得到形状参数与数据依赖项的近似关系式。
优选地,步骤S5包括如下步骤:
S51:雷达发射机发射多个脉冲信号,雷达接收机接收经过海面散射形成的去除含目标单元的纯杂波幅度数据Xr,作为海杂波数据的样本序列x1,x2,...,xj,...,xM×N,xj是参考序列的第j个数据,j=1,2,...,M×N,M是样本序列数据的距离单元数,N是样本序列数据的脉冲数,该数据的距离单元集合为:Ui={ui(n),n=1,2,...,N},i=1,2,...,M,Ui表示第i个距离单元的样本集合,ui(n)表示第i个距离单元第n个脉冲的数据;
S52:对每个距离单元计算其功率谱,得到功率谱密度序列P1,P2,...,Pi,...,PK,K是傅里叶变换的采样点数,将功率谱密度序列递增排序,得到功率谱密度增序序列P(1),P(2),...,P(i),...,P(K),利用功率谱密度增序序列的前半部分数据估计出第i个距离单元杂波的噪声功率:
Figure BDA0002025819380000041
优选地,在步骤S52中,根据如下公式获得所述功率谱:
Figure BDA0002025819380000042
优选地,步骤S6包括如下步骤:
S61:利用海杂波数据的样本序列,获得二阶矩的估计值
Figure BDA0002025819380000043
Figure BDA0002025819380000044
S62:利用海杂波数据的样本序列,获得0.1阶矩的估计值
Figure BDA0002025819380000045
Figure BDA0002025819380000046
S63:利用二阶矩、0.1阶矩、噪声功率的估计值获得
Figure BDA0002025819380000047
Figure BDA0002025819380000048
Figure BDA0002025819380000049
Figure BDA0002025819380000051
优选地,还包括S8:利用获得的形状参数的估计值
Figure BDA0002025819380000052
获得海杂波样本数据的尺度参数σ的估计值
Figure BDA0002025819380000053
Figure BDA0002025819380000054
优选地,在步骤S1中,从1.0开始,间隔0.1取一个值,取到100.0为止,生成序列ν12,···,νi,···νL,L是序列中数据的个数,取值为991。
优选地,在步骤S2中,从1.0开始,间隔0.1取一个值,取到100.0为止,生成序列μ12,···,μj,···μS,S是序列中数据的个数,取值为991。
有益效果
本发明的上述技术方案具有如下优点:
由于本发明使用海杂波K分布加噪声模型的分数阶矩、二阶矩与形状参数的近似数学表达式来估计形状参数,与现有的矩估计方法相比,本发明计算更加简单,求解更加快速。
由于本发明使用较低阶数的矩来估计形状参数,可以有效减少参数估计需要的样本数量,增加估计精度;同时减少了样本中较大数值在估计中占的比重,避免了异常单元的影响,得到参数的稳健估计。
另外,利用本发明提供的方法可以快速地获得K分布加噪声模型的尺度参数的估计值。
附图说明
图1是本发明的实现流程图;
图2是用本发明和现有矩估计方法对仿真数据中的K-S曲线的对比图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1给出了根据本发明的一种实施方式的海杂波K分布加噪声模型(该模型为现有理论,如,Watts,S.提出的理论模型)参数的快速分数阶矩估计方法的流程示意图。如图1所示,根据本发明的一种实施方式,海杂波K分布加噪声模型参数的快速分数阶矩估计方法的具体步骤为:
步骤1:生成一组序列ν12,···,νi,···νL作为形状参数ν取值的序列。
从1.0开始,间隔0.1取一个值,取到100.0为止,得到海杂波K分布加噪声模型形状参数ν取值的序列ν12,···,νi,···νL。νi是序列的第i个数据,i=1,2,3,···,L。L是序列中数据的个数,取值为991。
步骤2:生成一组序列μ12,···,μj,···μS作为数据依赖项q1取值的序列。
所述数据依赖项q1=m22,该公式中,m2是海杂波样本数据的二阶矩,δ是海杂波样本数据的噪声功率。
从1.0开始,间隔0.1取一个值,取到100.0为止,得到海杂波K分布加噪声模型数据依赖项q1的序列μ12,···,μj,···μS。μj是序列的第j个数据,j=1,2,3,···,S。S是序列中数据的个数,取值为991。
步骤3:求与海杂波K分布加噪声模型形状参数ν的序列和数据依赖项q1的序列对应的数据依赖项q2的序列λ12,···,λ(j-1)L+i,···λL×S,λ(j-1)L+i是数据依赖项q2序列的第(j-1)L+i个数据,是νi与μj对应的值。
所述数据依赖项
Figure BDA0002025819380000061
该公式中,mr是海杂波样本数据的r阶矩,r是分数阶距的阶数,本发明取值0.1。
具体地,该步骤包括:
步骤31:根据全概率公式,计算得到海杂波K分布加噪声模型的r阶矩表达式:
Figure BDA0002025819380000071
式中,Γ(·)是Gamma函数,2F0(·)是第二类合流超几何函数,σ是模型的尺度参数;
步骤32:利用海杂波K分布加噪声模型的二阶矩表达式,求K分布加噪声模型形状参数与尺度参数的关系式,得到如下公式:
Figure BDA0002025819380000072
步骤33:将公式3-2代入公式3-1,整理后得到:
Figure BDA0002025819380000073
步骤34:将数据依赖项q1和q2代入公式3-3得到:
Figure BDA0002025819380000074
步骤35:利用公式3-4得到的计算方法求与海杂波K分布加噪声模型形状参数ν的序列ν12,···,νi,···νL以及数据依赖项q1的序列μ12,···,μj,···μS对应的数据依赖项q2的序列λ12,···,λ(j-1)L+i,···λL×S
步骤4:将两个数据依赖项序列与形状参数的倒数序列进行非线性拟合,得到K分布加噪声模型的数据依赖项q1,q2与形状参数ν的近似关系式。
具体地,该步骤包括:
S41:将形状参数ν的序列ν12,···,νi,···νL用第一个行向量S表示;将数据依赖项q1的序列μ12,···,μj,···μS用第二个行向量U表示,将数据依赖项的q2的序列λ12,···,λ(j-1)L+i,···λL×S用第个三行向量V表示。
S42:将三个行向量S、U和V作为Matlab中提供的工具包cftool的参数,调用工具包非线性拟合功能,得到形状参数与两个数据依赖项的近似关系式:
Figure BDA0002025819380000081
式中,p1,p2,p3,p4,p5,p6,p7,p8为常数项,取值分别为-0.70536547,-2.43284673,0.44779562,-0.02296508,-1.86849359,1.45263166,1.67059762,0.06325657。
步骤5:利用周期图法获得海杂波样本数据噪声功率δ的估计值
Figure BDA0002025819380000083
具体地,该步骤包括:
步骤51:雷达发射机发射多个脉冲信号,雷达接收机接收经过海面散射形成的去除含目标单元的纯杂波幅度数据Xr,作为海杂波数据的样本序列x1,x2,...,xj,...,xM×N,xj是参考序列的第j个数据,j=1,2,...,M×N,M是样本序列数据的距离单元数,N是样本序列数据的脉冲数,该数据的距离单元集合为:
Ui={ui(n),n=1,2,...,N},i=1,2,...,M,
Ui表示第i个距离单元的样本集合,ui(n)表示第i个距离单元第n个脉冲的数据;
S52:对每个距离单元计算其功率谱:
Figure BDA0002025819380000082
得到功率谱密度序列P1,P2,...,Pi,...,PK,K是傅里叶变换的采样点数。
将功率谱密度序列递增排序,得到功率谱密度增序序列P(1),P(2),...,P(i),...,P(K)
利用功率谱密度增序序列的前半部分数据估计出第i个距离单元杂波的噪声功率:
Figure BDA0002025819380000091
[K/2]表示对K/2取整。
步骤6:利用海杂波数据的样本序列,结合q1、q2的计算公式以及
Figure BDA0002025819380000092
获得q1的估计值
Figure BDA0002025819380000093
和q2的估计值
Figure BDA0002025819380000094
具体地,该步骤包括:
步骤61:利用海杂波数据的样本序列,求二阶矩的估计值
Figure BDA0002025819380000095
Figure BDA0002025819380000096
步骤62:利用海杂波数据的样本序列,求0.1阶矩的估计值
Figure BDA0002025819380000097
Figure BDA0002025819380000098
步骤63:利用二阶矩、0.1阶矩、噪声功率的估计值求
Figure BDA0002025819380000099
Figure BDA00020258193800000910
Figure BDA00020258193800000911
Figure BDA00020258193800000912
步骤7:将
Figure BDA00020258193800000913
取代近似关系式4-1中的q1,将
Figure BDA00020258193800000914
取代近似关系式4-1中的q2,获得形状参数ν的估计值
Figure BDA00020258193800000915
Figure BDA00020258193800000916
还可以利用获得的形状参数的估计值
Figure BDA00020258193800000917
获得海杂波样本数据的尺度参数σ的估计值
Figure BDA00020258193800000918
Figure BDA0002025819380000101
下面结合仿真实验对本发明的效果做进一步说明。
1.仿真参数
仿真实验采用的数据为随机产生的60000个单元的服从形状参数从1到10,步长为0.5,尺度参数为1,加入杂噪比为5dB的高斯白噪声的复合K分布的随机序列。每个形状参数值产生5000组数据,共产生95000组数据。
2.仿真实验内容
分别采用本发明方法和现有的矩估计方法得到海杂波K分布模型参数的估计值,通过K-S检验法,计算两种方法计算得到的模型累积分布函数与实测海杂波数据的经验累积分布函数在不同形状参数下的K-S距离;
然后,对所有数据得到的K-S距离按不同形状参数求均值,得到两条与本发明和矩估计方法对应的K-S距离曲线,结果如图2所示。
仿真实验
首先,在IPIX雷达实测海杂波数据中文件名为19980223_215110_ANTSTEP.CDF的数据中选取20个不含目标的距离单元的纯海杂波数据。
然后,对些数据使用本发明方法和矩估计方法进行参数估计,计算得到本发明和矩估计方法对应的K-S距离。
最后,根据目标信号信杂比的变化,得到两条与本发明和矩估计方法对应的检测性能曲线,结果如图2所示。
从图2可以看出,本发明在提高形状参数估计速度的前提下检测性能方面与矩估计方法比较接近。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种海杂波K分布加噪声模型参数的快速分数阶矩估计方法,其特征在于,包括如下步骤:
S1:从1.0开始,间隔0.1取一个值,取到100.0为止,生成一组序列ν 1,ν 2,···,ν i ,···ν L 作为形状参数ν取值的序列,L是序列中数据的个数,取值为991;
S2:从1.0开始,间隔0.1取一个值,取到100.0为止,生成一组序列μ 1,μ 2,···,μ j ,···μ S 作为数据依赖项q 1取值的序列,S是序列中数据的个数,取值为991,
Figure DEST_PATH_IMAGE001
m 2是海杂波样本数据的二阶矩,δ是海杂波样本数据的噪声功率;
S3:获得与形状参数ν的序列和数据依赖项q 1的序列对应的数据依赖项q 2的序列λ 1,λ 2,···,λ (j-1)L+i ,···λ L×S ,其中,
Figure 127804DEST_PATH_IMAGE002
m r 是海杂波样本数据的r阶矩,r是分数阶距的阶数,取值0.1;
S4:将两个数据依赖项序列与形状参数的倒数序列进行非线性拟合,得到如下的近似关系式:
Figure DEST_PATH_IMAGE003
式中,p 1p 2p 3p 4p 5p 6p 7p 8为常数项;
S5:利用周期图法获得海杂波样本数据噪声功率
Figure 700737DEST_PATH_IMAGE004
的估计值
Figure DEST_PATH_IMAGE005
S6:利用海杂波数据的样本序列,结合q 1q 2的计算公式以及
Figure 605108DEST_PATH_IMAGE005
获得q 1的估计值
Figure DEST_PATH_IMAGE006
q 2的估计值
Figure DEST_PATH_IMAGE007
;具体地,步骤S6包括如下步骤:
S61:利用海杂波数据的样本序列,获得二阶矩的估计值
Figure DEST_PATH_IMAGE008
Figure DEST_PATH_IMAGE009
其中,M指海杂波数据样本序列的距离单元数,N指海杂波数据样本序列的脉冲数,xi指海杂波样本序列中的第i个数据;
S62:利用海杂波数据的样本序列,获得0.1阶矩的估计值
Figure DEST_PATH_IMAGE010
Figure DEST_PATH_IMAGE011
S63:利用二阶矩、0.1阶矩、噪声功率的估计值获得
Figure 574551DEST_PATH_IMAGE006
Figure 123344DEST_PATH_IMAGE007
Figure DEST_PATH_IMAGE012
S7:将
Figure 601599DEST_PATH_IMAGE006
取代近似关系式中的q 1,将
Figure 540736DEST_PATH_IMAGE007
取代近似关系式中的q 2,获得形状参数ν的估计值
Figure DEST_PATH_IMAGE013
2.根据权利要求1所述的估计方法,其特征在于,p 1p 2p 3p 4p 5p 6p 7p 8的取值分别为-0.70536547,-2.43284673,0.44779562,-0.02296508,-1.86849359,1.45263166,1.67059762,0.06325657。
3.根据权利要求1所述的估计方法,其特征在于,步骤S3包括如下步骤:
S31:根据全概率公式,得到模型的r阶矩表达式:
Figure DEST_PATH_IMAGE014
式中,
Figure DEST_PATH_IMAGE015
是Gamma函数,
Figure DEST_PATH_IMAGE016
是第二类合流超几何函数,
Figure DEST_PATH_IMAGE017
是模型的尺度参数;
S32:利用模型的二阶矩表达式获得形状参数与尺度参数的关系式:
Figure DEST_PATH_IMAGE018
S33:结合S31获得的公式和S32获得的公式,得到如下公式:
Figure DEST_PATH_IMAGE019
S34:根据q 1q 2的公式,结合S33获得的公式,得到:
Figure DEST_PATH_IMAGE020
S35:利用S34得到的计算方法获得与序列ν 1,ν 2,···,ν i ,···ν L 以及序列μ 1,μ 2,···,μ j ,···μ S 对应的序列λ 1,λ 2,···,λ (j-1)L+i ,···λ L×S
4.根据权利要求1所述的估计方法,其特征在于,步骤S4包括如下步骤:
S41:将形状参数的序列用第一个行向量S表示;将数据依赖项q 1的序列用第二个行向量U表示,将数据依赖项q 2的序列用第三个行向量V表示;
S42:将三个行向量作为Matlab中提供的工具包cftool的参数,调用工具包非线性拟合功能,得到形状参数与数据依赖项的近似关系式。
5.根据权利要求1所述的估计方法,其特征在于,步骤S5包括如下步骤:
S51:雷达发射机发射多个脉冲信号,雷达接收机接收经过海面散射形成的去除含目标单元的纯杂波幅度数据
Figure DEST_PATH_IMAGE021
,作为海杂波数据的样本序列
Figure DEST_PATH_IMAGE022
是样本序列的第j个数据,
Figure DEST_PATH_IMAGE023
M是样本序列数据的距离单元数,N是样本序列数据的脉冲数,该数据的距离单元集合为:
Figure DEST_PATH_IMAGE024
表示第i个距离单元的样本集合,
Figure DEST_PATH_IMAGE025
表示第i个距离单元第n个脉冲的数据;
S52:对每个距离单元计算其功率谱,得到功率谱密度序列
Figure DEST_PATH_IMAGE026
K是傅里叶变换的采样点数,将功率谱密度序列递增排序,得到功率谱密度增序序列
Figure DEST_PATH_IMAGE027
,利用功率谱密度增序序列的前半部分数据估计出第i个距离单元杂波的噪声功率:
Figure DEST_PATH_IMAGE028
6.根据权利要求5所述的估计方法,其特征在于,在步骤S52中,根据如下公式获得所述功率谱:
Figure DEST_PATH_IMAGE029
7.根据权利要求1所述的估计方法,其特征在于,还包括S8:
利用获得的形状参数的估计值
Figure DEST_PATH_IMAGE030
获得海杂波样本数据的尺度参数
Figure 330182DEST_PATH_IMAGE017
的估计值
Figure DEST_PATH_IMAGE031
Figure DEST_PATH_IMAGE032
CN201910293836.8A 2019-04-12 2019-04-12 一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法 Active CN109884608B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910293836.8A CN109884608B (zh) 2019-04-12 2019-04-12 一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910293836.8A CN109884608B (zh) 2019-04-12 2019-04-12 一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法

Publications (2)

Publication Number Publication Date
CN109884608A CN109884608A (zh) 2019-06-14
CN109884608B true CN109884608B (zh) 2020-12-29

Family

ID=66937102

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910293836.8A Active CN109884608B (zh) 2019-04-12 2019-04-12 一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法

Country Status (1)

Country Link
CN (1) CN109884608B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113189561B (zh) * 2021-06-16 2023-12-15 中国人民解放军火箭军工程大学 一种海杂波参数估计方法、系统、设备及存储介质
CN117420553B (zh) * 2023-12-13 2024-03-12 南京理工大学 一种针对海面目标扫描雷达的超分辨率成像方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749564A (zh) * 2015-04-10 2015-07-01 西安电子科技大学 海杂波Weibull幅度分布参数的多分位点估计方法
CN109143196A (zh) * 2018-09-25 2019-01-04 西安电子科技大学 基于k分布海杂波幅度模型的三分位点参数估计方法
CN109541566A (zh) * 2018-12-20 2019-03-29 西安电子科技大学 基于双重分数阶矩的k分布海杂波参数估计方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106772275A (zh) * 2015-12-22 2017-05-31 中国电子科技集团公司第二十研究所 一种基于Alpha稳定分布的低秩矩阵恢复检测方法
CN105699952B (zh) * 2016-01-25 2018-04-17 西安电子科技大学 海杂波k分布形状参数的双分位点估计方法
CN106054153A (zh) * 2016-05-23 2016-10-26 武汉大学 一种基于分数阶变换的海杂波区目标检测与自适应杂波抑制方法
CN106154243B (zh) * 2016-07-08 2018-07-17 西安电子科技大学 海杂波Pareto分布模型的参数估计范围拓展方法
CN106483515A (zh) * 2016-09-23 2017-03-08 西安电子科技大学 均匀k分布杂波下的最优自适应检测方法
CN107741581B (zh) * 2017-09-22 2020-10-09 西安电子科技大学 基于截断矩的广义帕累托分布参数估计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104749564A (zh) * 2015-04-10 2015-07-01 西安电子科技大学 海杂波Weibull幅度分布参数的多分位点估计方法
CN109143196A (zh) * 2018-09-25 2019-01-04 西安电子科技大学 基于k分布海杂波幅度模型的三分位点参数估计方法
CN109541566A (zh) * 2018-12-20 2019-03-29 西安电子科技大学 基于双重分数阶矩的k分布海杂波参数估计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"空变K-分布杂波模型参数的递归矩估计方法";黄宇婷;《中国优秀硕士学位论文全文数据库》;20190215(第2期);I136-1380 *

Also Published As

Publication number Publication date
CN109884608A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN105137498B (zh) 一种基于特征融合的地下目标探测识别系统及方法
CN106872958B (zh) 基于线性融合的雷达目标自适应检测方法
US8138963B1 (en) Method for detecting targets using space-time adaptive processing and shared knowledge of the environment
CN106154243B (zh) 海杂波Pareto分布模型的参数估计范围拓展方法
CN105699952B (zh) 海杂波k分布形状参数的双分位点估计方法
CN109884608B (zh) 一种海杂波k分布加噪声模型参数的快速分数阶矩估计方法
CN111381216B (zh) 混合分布的雷达海杂波分析方法及装置
Weinberg Constant false alarm rate detection in Pareto distributed clutter: Further results and optimality issues
CN106772302A (zh) 一种复合高斯背景下的知识辅助stap检测方法
CN108333568B (zh) 冲击噪声环境下基于Sigmoid变换的宽带回波Doppler和时延估计方法
CN106772275A (zh) 一种基于Alpha稳定分布的低秩矩阵恢复检测方法
Lii et al. Estimation for almost periodic processes
CN105866748B (zh) 一种基于检测先验的固定窗长恒虚警检测方法
CN108957416B (zh) 脉冲噪声环境下的线性调频信号参数估计方法
CN108761384B (zh) 一种抗差的传感器网络目标定位方法
CN111830481A (zh) 雷达回波单分量幅度分布模型参数估计方法及装置
CN106226752A (zh) 一种扩展海杂波Pareto分布参数估计范围的方法
CN107315169B (zh) 基于二阶统计量相似度的杂波协方差矩阵估计方法
CN107255799B (zh) 广义帕累托分布参数显式双分位点估计方法
CN111291495A (zh) 一种逆高斯纹理海杂波幅度分布模型参数估计方法
Rosenberg Coherent detection with non-stationary high grazing angle X-band sea-clutter
CN107607913A (zh) 基于对数累积量的海杂波Pareto分布参数估计方法
Song et al. Box-particle cardinality balanced multi-target multi-Bernoulli filter
Volovach et al. Detection of signals with a random moment of occurrence using the cumulative sum algorithm
Liu et al. Improved AR-model-based Rao test in complex Gaussian clutter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant