CN109876810A - 一种磁性微藻基生物炭的制备方法及其应用 - Google Patents

一种磁性微藻基生物炭的制备方法及其应用 Download PDF

Info

Publication number
CN109876810A
CN109876810A CN201910230934.7A CN201910230934A CN109876810A CN 109876810 A CN109876810 A CN 109876810A CN 201910230934 A CN201910230934 A CN 201910230934A CN 109876810 A CN109876810 A CN 109876810A
Authority
CN
China
Prior art keywords
microalgae
base charcoal
frustule
magnetic
degrees celsius
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910230934.7A
Other languages
English (en)
Other versions
CN109876810B (zh
Inventor
王东升
邹瑜斌
肖峰
门彬
任睿君
林芳向
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
University of Chinese Academy of Sciences
Original Assignee
Research Center for Eco Environmental Sciences of CAS
University of Chinese Academy of Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS, University of Chinese Academy of Sciences filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN201910230934.7A priority Critical patent/CN109876810B/zh
Publication of CN109876810A publication Critical patent/CN109876810A/zh
Application granted granted Critical
Publication of CN109876810B publication Critical patent/CN109876810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

本发明公开了一种磁性微藻基生物炭的制备方法及其应用,其是在含有铁盐的溶液中,加入微藻,经碱热处理后,高温热解炭化即可。本发明的方法在微藻基生物炭中引入四氧化三铁,不仅能够增加活性位点,提高催化能力,而且能够增强催化材料的磁性,更易于分离。在过硫酸盐存在的条件下,优化了磁性微藻基生物炭的热解温度以及适用条件,使得其活化过硫酸盐的过程能够有效产生活性物种,促进污染物和催化剂之间的电子转移,提高了催化降解污染物的效果。该操作方法简单易行,原料易得,成本低廉,在实际应用中推广实施的前景良好。

Description

一种磁性微藻基生物炭的制备方法及其应用
技术领域
本发明属于水处理技术领域,具体涉及一种磁性微藻基生物炭的制备方法及其应用。
背景技术
由湖泊富营养化引发的水华会破坏水生态平衡并且微藻产生的藻毒素对饮用水安全造成威胁。目前常规的机械法和化学法不能够完全处理处置水华中大量生长的微藻。微藻的资源化利用不但能够解决大量繁殖的藻细胞的问题,还能够将其转化为生产生活中有利的资源。因此,微藻的资源化利用成为了一个可供选择的方案。微藻由蛋白质、脂类、多糖等有机质以及多种无机元素组成,目前被广泛应用于医药、食品、能源等领域,在环境领域的用途有待挖掘。
高级氧化工艺是近年来备受关注的新型水处理技术,它能够通过光化学、声化学、以及电化学,辅以氧化剂,产生高氧化还原电位的活性基团(羟基自由基、硫酸根自由基、臭氧自由基),对自然水体以及工业废水中的难降解有机物进行快速降解,进一步矿化分解为二氧化碳和水。但是通过光、声、电、热等外界能量输入需要消耗大量的能源,提高了水处理工艺的成本,而非均相的功能材料则能进一步减少处理过程中的能耗。
作为一种功能材料,炭基材料拥有较高的比表面积、较好的电子传递能力以及稳定性,同时炭基材料表面的含氧官能团、SP2杂化碳结构等都有利于氧化还原反应的进行。纳米金刚石、碳纳米管、氧化石墨烯等均能够有效活化过硫酸盐产生活性物种降解水体中的污染物。但是其成本较高,短时间难以大规模实际应用。而较为常见的活性炭对过氧化氢以及过硫酸盐的活化效果十分有限。
综上所述,将难以处置的微藻开发成为具备催化活性的环境功能材料具有重要的意义,且在目前也已十分必要。
发明内容
本发明的目的是提供一种磁性微藻基生物炭及其制备。
本发明所提供的磁性微藻基生物炭,通过包括下述步骤的方法制备得到:
1)将微藻分散到含有铁盐的溶液中,搅拌;
2)从步骤1)得到的体系中离心分离出藻细胞;
3)将分离出的藻细胞进行碱溶液加热处理,从碱溶液加热处理后的体系中分离出藻细胞;
4)将所得藻细胞高温热解炭化,得到磁性微藻基生物炭。
上述方法步骤1)中,所述含有铁盐的溶液通过将铁盐溶解于水中制备得到,其中,所述铁盐具体可为九水合硝酸铁,
所述铁盐的质量占所述含有铁盐的溶液的质量的百分比为2%-6%,具体可为4%;
所述微藻具体可为螺旋藻。
所述微藻与所述含有铁盐的溶液中的铁元素的质量比可为30g:1.39g-30g:4.15g,具体可为30g:2.77g;
所述搅拌的温度可为室温,时间可为8-12h,具体可为12h。
上述方法步骤2)中,所述离心分离的转速可为3000-5000转/分钟,具体可为4000转/分钟;
上述方法在对分离出的藻细胞进行碱溶液加热处理之前,还包括对分离出的藻细胞清洗以去除过量的铁盐的操作。
其中,所述清洗用水为超纯水;
所述清洗可反复进行多次,具体可为5次。
上述方法步骤3)中,所述碱溶液加热处理的操作为:将分离出的藻细胞分散到碱性溶液中,加热回流反应。
其中,所述碱性溶液具体可为质量分数为6%的氢氧化钠溶液;
所述藻细胞与碱性溶液的配比可为30g:450-550ml,具体可为30g:500ml。
所述碱溶液加热处理的温度可为:95-110摄氏度,具体可为:105摄氏度,时间可为1-3h,具体可为2h。
上述方法中,在将藻细胞高温热解炭化之前,还包括将步骤3)中分离出来的藻细胞用水清洗至上清液pH为中性的操作。
所述清洗用水为超纯水。
所述清洗可进行多次,具体可为5~8次。
所述清洗的具体操作为:向碱加热处理后的藻细胞中加入超纯水,离心分离,收集藻细胞,再向藻细胞中加入超纯水,再离心分离,如此反复进行5~8次,直至上清液pH为中性。
其中,所述离心分离的转速可为4000转/分钟。
上述方法步骤4)中,所述高温热解炭化的温度可为300~600摄氏度,具体可为400~600、450~550、300、400、500或600摄氏度。
此过程中,升温速率控制在2.5摄氏度/分钟。
所述高温热解炭化的时间可为1-3小时,具体可为2小时。
所述高温热解炭化在惰性气体保护下进行,所述惰性气体具体可为氮气。
上述方法还可进一步包括对高温热解炭化后的产物进行清洗、干燥、研磨的操作。
上述方法制备得到的磁性微藻基生物炭也属于本发明的保护范围。
上述磁性微藻基生物炭在水处理中的应用也属于本发明的保护范围。
所述应用具体可为:所述磁性微藻基生物炭作为催化材料催化降解水体中污染物的应用。
所述污染物具体可为环丙沙星。
本发明还提供一种利用上述磁性微藻基生物炭催化降解水体中污染物的方法。
本发明所提供的利用磁性微藻基生物炭催化降解水体中污染物的方法,包括下述步骤:
向待处理水体中加入过硫酸盐及磁性微藻基生物炭,反应,即可。
上述方法中,所述过硫酸盐可为过硫酸氢钾;具体可为商业OXONE结构式为(2KHSO5·KHSO4·K2SO4)。
反应体系中,所述过硫酸盐的浓度可为0.5-4mM,具体可为0.5-2mM、1-2mM或2mM。
反应体系的初始pH可为3-11,具体可为7-9。
所述反应的温度可为20-60摄氏度,具体可为30-55摄氏度、40-50摄氏度、30摄氏度、40摄氏度或50摄氏度。
本发明具有下述有益效果:
1)采用此方法,能够成功制备出带有sp2杂化碳结构的催化剂,能够有效活化过硫酸盐降解有机物;
2)铁盐的引入能够增加催化活性位点,使催化剂具有磁性,更易于分离;
3)制备方法简单易行,原料易得,成本低廉,实际应用中推广实施的前景良好。
附图说明
图1为本发明实施例1中制备的Fe-N@MCs的表征图谱:(a)XRD图谱,(b)FT-IR图谱,(c)Raman光谱,(d)N2吸附-脱附等温线和孔隙大小分布;
图2样品Fe-N@MC500的表面形貌图谱:(a),(b)场发射扫描电子显微镜图谱,(c),(d)高分辨投射电子显微镜图谱,(e)Mapping图谱;
图3为Fe-N@MCs的(a)电化学阻抗图谱和(b)时间-电流曲线图;
图4为(a)不同催化剂投加下环丙沙星去除效果随时间变化曲线图;(b)Fe-N@MC500催化不同摩尔浓度环丙沙星去除效果随时间变化曲线图;(c)Fe-N@MC500在不同初始pH下催化环丙沙星去除效果随时间变化曲线图;(d)Fe-N@MC500在温度下催化环丙沙星去除效果随时间变化曲线图。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、生物材料等,如无特殊说明,均可从商业途径得到。
为了说明本发明对水中污染物的催化降解效果,考察了在存在的条件下,不同热解温度下制备的磁性微藻基生物炭对环丙沙星的降解效果,以期更好地发挥该催化剂对水中污染物的降解能力。
实施例1
将30g螺旋藻粉分散于500mL质量分数为4%九水合硝酸铁水溶液中,充分搅拌12小时。离心分离藻细胞,然后使用超纯水反复清洗5次,从而去除过量的硝酸铁。将清洗后的藻细胞分散至500mL质量分数为6%的NaOH溶液中,加热至105摄氏度,冷凝回流2小时。反应结束后将离心分离的微藻细胞用超纯水反复洗涤5次。最后将离心分离后的藻细胞置于石英舟中在氮气气氛下煅烧。升温速率2.5摄氏度/分钟,加热至300、400、500或600摄氏度持续2小时,待冷却至室温后,将煅烧后样品清洗、干燥、研磨。所得的磁性微藻基生物炭样品用Fe-N@MCx表示,其中x(300,400,500,600)为热解温度。
图1a为所制备的Fe-N@MC样品的XRD图谱。
可以看出,Fe-N@MCs样本的所有衍射峰均与Fe3O4的标准数据(JCPDS cardno.089-0688)相匹配。随着热解温度从300摄氏度升高到600摄氏度,对应峰强随着温度的上升而增强。这表明碳结构中Fe3O4的结晶度增强。
图1b为所制备的Fe-N@MC样品的FT-IR图谱。
可以看出,Fe-N@MCs表面官能团主要是-OH、-CH、C-C、C-O-C。特别的,Fe-N@MC600样品表面含有Fe-O。
图1c为所制备的Fe-N@MC样品的拉曼光谱。
可以观察到Fe-N@MC400和Fe-N@MC500位于1358cm-1and1590cm-1处的特征峰较为明显,这说明所制备的Fe-N@MC400和Fe-N@MC500相较于Fe-N@MC300和Fe-N@MC600而言拥有sp2杂化碳结构。
图1d通过N2吸附-脱附方法分析了样品的比表面积和孔隙率。
该吸附-脱附曲线属于IV型曲线并且其滞后环属于H3型。这说明所制备的Fe-N@MCs属于介孔材料。利用布鲁诺尔-埃米特-泰勒比表面积法(BET)计算比表面积。
采用FESEM和HRTEM分析了所制备的Fe-N@MC500样品微观结构以及表面形貌。
图2展示了样品的扫描电镜图像、透射电镜图像以及能谱分析。图2a、2b显示,Fe-N@MC500碳纳米簇由立方体以及球形纳米颗粒组成,间隙以及孔道能够增加样品的比表面积。图2c、2d显示,铁氧化物直径范围为20纳米到40纳米,并且掺杂进入了碳结构中。通过测定铁氧化物的晶面间距,可以得出Fe-N@MC500中铁氧化物主要是以Fe3O4存在,这和图1a中XRD分析一致。
图3a显示,利用电化学阻抗谱表征不同Fe-N@MCs的传输电子能力。可以看出Fe-N@MC500的尼奎斯特半圆半径最小,说明Fe-N@MC500的阻抗相比于其他三者更低,更有利于电子的传递。
图3b为时间-电流曲线图,可以得出随着污染物环丙沙星的投加,Fe-N@MC500的电流反馈从3.69μA/cm2增长到1.05μA/cm2,变化相比于其他三者更为明显,这说明Fe-N@MC500与溶液中环丙沙星的电子传递效应更为明显。
通过初始浓度为10mg/L的环丙沙星,来评估Fe-N@MCs以及不同催化剂活化的活性。
图4a比较了不同催化剂活化降解环丙沙星的效果。
单独投加仅能够降解10.6%的环丙沙星。向环丙沙星溶液中分别投加Fe-N@MC300,Fe-N@MC400,Fe-N@MC500以及Fe-N@MC600,经30分钟的吸附-解吸平衡后可以看出,Fe-N@MCs对环丙沙星的吸附效果十分有限。随后投加307g/L OXONE开始催化降解环丙沙星,120分钟后,Fe-N@MC300,Fe-N@MC400,Fe-N@MC500以及Fe-N@MC600对环丙沙星的降解效率分别为45.0%,92.1%,92.6%以及68.7%。由此,说明400、500摄氏度高温热解炭化的产物的催化性能较好,且500摄氏度热解产物催化速率更快,所以最优的热解炭化温度为500摄氏度。
图4b比较了不同投加量对环丙沙星降解效果的影响。可以得出,当浓度为0.5mM,1mM,2mM,4mM时,环丙沙星的降解效率分别为81.2%,92.6%,90.7%以及71.7%。采用伪二级动力学模型:C/C0=1/(kC0t+1)来描述此催化降解过程,其中k为表观速率常数。进一步计算出不同浓度下表观速率常数分别为0.05,0.25,0.25,0.12L·mg-1·min-1
图4c比较了不同初始溶液pH对环丙沙星降解效果的影响。可以得出,当pH=3,5,7,9,11时,表观速率常数分别为0.10,0.19,0.25,0.64,0.13L·mg-1·min-1
图4d比较了不同反应温度对环丙沙星降解效果的影响。可以得出,当反应温度为20,30,40,50摄氏度时,表观速率常数分别0.25,0.36,0.44and0.86L·mg-1·min-1
上述结果说明,此方法制备的铁改性光催化材料能够对水体中的污染物进行高效的催化降解,推广应用前景良好。

Claims (9)

1.一种制备磁性微藻基生物炭的方法,包括如下步骤:
1)将微藻分散到含有铁盐的溶液中,搅拌;
2)从步骤1)得到的体系中离心分离出藻细胞;
3)将分离出的藻细胞进行碱溶液加热处理,从碱溶液加热处理后的体系中分离出藻细胞;
4)将所得藻细胞高温热解炭化,得到磁性微藻基生物炭。
2.根据权利要求1所述的方法,其特征在于:步骤1)中,所述铁盐为九水合硝酸铁;
所述微藻为螺旋藻;
所述微藻与所述含有铁盐的溶液中的铁元素的质量比为2%-6%;
所述搅拌的温度为室温,时间为8-12h。
3.根据权利要求1或2所述的方法,其特征在于:步骤3)中,所述碱溶液加热处理的操作为:将分离出的藻细胞分散到碱性溶液中,加热回流反应;
其中,所述碱性溶液为质量分数为6%的氢氧化钠溶液;
所述藻细胞与碱性溶液的配比为30g:450-550ml;
所述碱溶液加热处理的温度为95-110摄氏度,时间为1-3h。
4.根据权利要求1-3中任一项所述的方法,其特征在于:步骤4)中,所述高温热解炭化的温度为300~600摄氏度;
升温速率控制在2.5摄氏度/分钟;
所述高温热解炭化的时间为1-3小时;
所述高温热解炭化在惰性气体保护下进行。
5.由权利要求1-4中任一项所述方法制备得到的磁性微藻基生物炭。
6.权利要求5所述的磁性微藻基生物炭在水处理中的应用。
7.根据权利要求6所述的应用,其特征在于:所述应用为权利要求5所述的磁性微藻基生物炭作为催化材料催化降解水体中污染物的应用。
8.利用权利要求5所述的磁性微藻基生物炭催化降解水体中污染物的方法,包括如下步骤:
向待处理水体中加入过硫酸盐及权利要求5所述的磁性微藻基生物炭,反应,即可。
9.根据权利要求8所述的方法,其特征在于:反应体系中,所述过硫酸盐的浓度为0.5-4mM;
反应体系的初始pH为3-11;
所述反应的温度为20-60摄氏度。
CN201910230934.7A 2019-03-26 2019-03-26 一种磁性微藻基生物炭的制备方法及其应用 Active CN109876810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910230934.7A CN109876810B (zh) 2019-03-26 2019-03-26 一种磁性微藻基生物炭的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910230934.7A CN109876810B (zh) 2019-03-26 2019-03-26 一种磁性微藻基生物炭的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN109876810A true CN109876810A (zh) 2019-06-14
CN109876810B CN109876810B (zh) 2020-07-24

Family

ID=66934146

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910230934.7A Active CN109876810B (zh) 2019-03-26 2019-03-26 一种磁性微藻基生物炭的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN109876810B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947369A (zh) * 2019-11-30 2020-04-03 河南永泽环境科技有限公司 一种微藻基磁性石墨烯和生物炭的制备方法及应用
CN114130402A (zh) * 2021-11-26 2022-03-04 清华大学深圳国际研究生院 一种铁钼负载的藻基碳材料及其制备方法和应用方法
CN114314794A (zh) * 2021-12-10 2022-04-12 哈尔滨工业大学 一种基于高盐螺旋藻渣的氧化石墨烯的制备方法及其应用
CN114436408A (zh) * 2022-01-21 2022-05-06 河北科技师范学院 一种磁性菌糠生物炭及其制备方法和应用
CN114671510A (zh) * 2022-04-12 2022-06-28 湖南大学 一种利用Fe-N自掺杂藻基炭催化剂活化过硫酸盐降解抗生素的方法
CN114939394A (zh) * 2022-03-29 2022-08-26 南京师范大学 一种铁改性水热炭的制备方法及其在降解ddt中的应用
CN115646525A (zh) * 2022-09-22 2023-01-31 华南理工大学 一种铁氮共掺杂生物炭及其制备方法与在处理废水中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126477A1 (en) * 2012-02-22 2013-08-29 University Of Florida Research Foundation, Inc. Biochar/metal composites, methods of making biochar/metal composites, and methods of removing contaminants from water
CN104138743A (zh) * 2014-07-23 2014-11-12 河海大学 一种藻基磁性活性炭材料的制备方法及应用
CN104511263A (zh) * 2013-09-27 2015-04-15 中国科学院生态环境研究中心 一种具有多个磁性纳米内核@空隙@多孔外壳结构的微球及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013126477A1 (en) * 2012-02-22 2013-08-29 University Of Florida Research Foundation, Inc. Biochar/metal composites, methods of making biochar/metal composites, and methods of removing contaminants from water
CN104511263A (zh) * 2013-09-27 2015-04-15 中国科学院生态环境研究中心 一种具有多个磁性纳米内核@空隙@多孔外壳结构的微球及其制备方法
CN104138743A (zh) * 2014-07-23 2014-11-12 河海大学 一种藻基磁性活性炭材料的制备方法及应用

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110947369A (zh) * 2019-11-30 2020-04-03 河南永泽环境科技有限公司 一种微藻基磁性石墨烯和生物炭的制备方法及应用
CN114130402A (zh) * 2021-11-26 2022-03-04 清华大学深圳国际研究生院 一种铁钼负载的藻基碳材料及其制备方法和应用方法
CN114130402B (zh) * 2021-11-26 2024-01-12 清华大学深圳国际研究生院 一种铁钼负载的藻基碳材料及其制备方法和应用方法
CN114314794A (zh) * 2021-12-10 2022-04-12 哈尔滨工业大学 一种基于高盐螺旋藻渣的氧化石墨烯的制备方法及其应用
CN114436408A (zh) * 2022-01-21 2022-05-06 河北科技师范学院 一种磁性菌糠生物炭及其制备方法和应用
CN114939394A (zh) * 2022-03-29 2022-08-26 南京师范大学 一种铁改性水热炭的制备方法及其在降解ddt中的应用
CN114671510A (zh) * 2022-04-12 2022-06-28 湖南大学 一种利用Fe-N自掺杂藻基炭催化剂活化过硫酸盐降解抗生素的方法
CN115646525A (zh) * 2022-09-22 2023-01-31 华南理工大学 一种铁氮共掺杂生物炭及其制备方法与在处理废水中的应用
CN115646525B (zh) * 2022-09-22 2024-02-23 华南理工大学 一种铁氮共掺杂生物炭及其制备方法与在处理废水中的应用

Also Published As

Publication number Publication date
CN109876810B (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
CN109876810A (zh) 一种磁性微藻基生物炭的制备方法及其应用
Wu et al. Preferential growth of the cobalt (200) facet in Co@ N–C for enhanced performance in a Fenton-like reaction
Li et al. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: characterization, performance and mechanism
CN111790422B (zh) 一种石墨化基氮络合的Fe(III)-Fe0催化剂及其合成方法和应用
Soldatova et al. Biogenic and synthetic MnO2 nanoparticles: size and growth probed with absorption and Raman spectroscopies and dynamic light scattering
Sun et al. Synergistic effect of single-atom Ag and hierarchical tremella-like g-C3N4: Electronic structure regulation and multi-channel carriers transport for boosting photocatalytic performance
Ahmed et al. Hydrothermal preparation of nanostructured manganese oxides (MnOx) and their electrochemical and photocatalytic properties
CN108675431B (zh) 一种制备多孔碳包覆磁性纳米铁水处理复合材料的方法
Vinesh et al. rGO supported self-assembly of 2D nano sheet of (g-C3N4) into rod-like nano structure and its application in sonophotocatalytic degradation of an antibiotic
CN107020144B (zh) 磁性氮掺杂还原氧化石墨烯复合催化剂及其制备方法和应用
CN109675581A (zh) 铁锰双金属氧化物改性生物炭光芬顿复合材料及其制备方法
Ahmad et al. Novel prism shaped C 3 N 4-doped Fe@ Co 3 O 4 nanocomposites and their dye degradation and bactericidal potential with molecular docking study
Tang et al. Fe3O4‐MWCNT magnetic nanocomposites as efficient fenton‐like catalysts for degradation of sulfamethazine in aqueous solution
Zhang et al. Synthesis of CeO2 nanoparticles with different morphologies and their properties as peroxidase mimic
CN111617731A (zh) 利用磁性纳米材料耦合过硫酸盐处理水体中抗生素的方法
Jiang et al. Effective decolorization of congo red in aqueous solution by adsorption and photocatalysis using novel magnetic alginate/γ-Fe2O3/CdS nanocomposite
CN111036249A (zh) 一种FexP/Mn0.3Cd0.7S复合光催化剂及其制备方法与应用
Jing et al. Efficient removal of 2, 4-DCP by nano zero-valent iron-reduced graphene oxide: statistical modeling and process optimization using RSM-BBD approach
Ge et al. Insights into metal/carbon materials activation of persulfate from a structure–property perspective: Performances, tunable reaction pathways and toxicity
He et al. Microwave-assisted synthesis of amorphous cobalt nanoparticle decorated N-doped biochar for highly efficient degradation of sulfamethazine via peroxymonosulfate activation
CN107159175B (zh) 一种以亚氧化钛为催化剂的催化臭氧化水处理方法
SO et al. Novel prism shaped C 3 N 4-doped Fe@ Co 3 O 4 nanocomposites and their dye degradation and bactericidal potential with molecular docking study.
CN105540682B (zh) 一种以尿素铁为铁源制备四氧化三铁负载氮掺杂石墨烯复合材料的方法
Peng et al. Enhanced degradation of bisphenol A over CFO/CMK-3 involved PMS activation: Insights into the synergistic effect between the spinel and mesoporous carbon
CN107243344B (zh) 一种磁性石墨烯的一步合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant