CN109817284B - 一种钢液中枝晶移动的预测方法 - Google Patents

一种钢液中枝晶移动的预测方法 Download PDF

Info

Publication number
CN109817284B
CN109817284B CN201910071214.0A CN201910071214A CN109817284B CN 109817284 B CN109817284 B CN 109817284B CN 201910071214 A CN201910071214 A CN 201910071214A CN 109817284 B CN109817284 B CN 109817284B
Authority
CN
China
Prior art keywords
molten steel
equation
phase
solid
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910071214.0A
Other languages
English (en)
Other versions
CN109817284A (zh
Inventor
罗森
王鹏
刘光光
王卫领
朱苗勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201910071214.0A priority Critical patent/CN109817284B/zh
Publication of CN109817284A publication Critical patent/CN109817284A/zh
Application granted granted Critical
Publication of CN109817284B publication Critical patent/CN109817284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)

Abstract

本发明提供一种钢液中枝晶移动的预测方法,涉及冶金连铸技术领域。一种钢液中枝晶移动的预测方法,首先收集所要研究钢材的物性参数和主要成分及其所占比重,然后根据收集的物性参数以及相场法模型,计算相场的控制方程、溶质场的控制方程以及流场的控制方程和枝晶的运动方程,最后、编写程序代码,输入边界条件以及各控制条件,再把输出结果转化为更为直观的图像形式,预测枝晶在钢液中的运动。本发明提供的钢液中枝晶移动的预测方法,利用数值模拟的方法研究连铸钢液中枝晶移动及其变化规律,可以有效地避免实验研究的局限性和不可重复性,不仅能够真实地再现钢液凝固过程的微观形貌,而且较为精准的预测枝晶在流动钢液中的移动过程。

Description

一种钢液中枝晶移动的预测方法
技术领域
本发明涉及冶金连铸技术领域,尤其涉及一种钢液中枝晶移动的预测方法。
背景技术
钢连铸过程的本质就是钢液在冷却作用下逐渐凝固成型的过程,在钢液流经结晶器、冷却区冷却的过程中,先形成了单相晶核,晶核以球形生长并很快变得不稳定,形成树枝结构,也就是枝晶。在枝晶生长的过程中,生长前沿的固液界面上会发生溶质元素的再分配,产生微观偏析。这些枝晶在流动的钢液中会受到来自不同方向的冲击从而引起生长方向和位置发生变化。枝晶在移动过程中,会在一些位置聚集,从而影响此处的溶质再分配,加剧铸坯在此处位置的成分不均匀,发生宏观偏析。而偏析正是导致铸坯性能恶化的主要原因之一。因此,预测枝晶的移动位置,将为防止偏析、提升铸坯的内部质量发挥重要作用。
由于连铸坯凝固过程中的枝晶移动是一个非常重要的过程,结晶器内枝晶随钢液的移动对铸坯内部质量起着重要作用,所以深入的了解枝晶的移动过程中组织演变的规律以及动力学参数的变化对于制定合理的工艺流程、适当的反应条件,提高连铸坯质量具有重大意义。然而,枝晶在凝固过程中的移动是涉及复杂过程的微观尺度现象,因为溶质的扩散,熔体对流,固相的运动以及它们的耦合在微观结构的形成中都起着重要作用。凝固微观结构决定了铸坯的机械性能。因此,了解枝晶生长和在钢液中的移动对工业应用具有重要意义。
发明内容
本发明要解决的技术问题是针对上述现有技术的不足,提供一种钢液中枝晶移动的预测方法,再现钢液流动过程中枝晶的位置变化。
为解决上述技术问题,本发明所采取的技术方案是:一种钢液中枝晶移动的预测方法,包括以下步骤:
步骤1、收集所要研究钢材的物性参数和主要成分及其所占比重;所述钢的物性参数包括液相线斜率、固相线斜率、熔点温度及摩尔体积;
步骤2、根据收集的物性参数以及相场法模型,计算相场的控制方程、溶质场的控制方程以及流场的控制方程和枝晶的运动方程,具体方法为:
步骤2.1、根据KKS模型,计算相场的控制方程;
根据KKS模型,相场的控制方程如下公式所示:
Figure BDA0001957343310000021
其中,φ表示的是相场变量,它的下角标表示对x,y的二阶导数,ε表示各向异性参数,如下公式所示:
ε(θ)=ε0(1+vcos(kθ)) (2)
公式(1)中,ε′表示对θ的一阶导数,ε″表示对θ的二阶导数,式(2)中v为各向异性强度,k表示k次对称性,ε0表示各向异性系数,取值范围为0~1,θ表示固液界面与有限生长方向的夹角,表示为:
tanθ=φyx (3)
M表示合金中的相场迁移率,由以下两式联立得到:
Figure BDA0001957343310000022
Figure BDA0001957343310000023
公式(4)中,σ表示界面能,R为气体常数,T表示钢液温度,Vm表示合金的摩尔体积,ke表示平衡分配系数,me表示液相线斜率,DL表示液相溶质扩散系数,w表示双阱势高,
Figure BDA0001957343310000024
Figure BDA0001957343310000025
分别表示平衡状态下固相溶质浓度和液相溶质浓度,/>
Figure BDA0001957343310000026
μk为动能系数,式(5)中,h(φ)=φ3(10-15φ+6φ2);
在凝固过程中,固液界面的固相和液相按一定的质量分数构成,这些固相和液相具有不同的组分和不同的自由能;固液界面的成分是由平衡条件下的分配系数来决定的,即cS=kecL,0<Φ<1;
在固液界面区域0.001<φ<0.999内,KKS模型用到的参数ε、w与界面能σ、动能系数μk及界面厚度2λ有关,参数的表达式为:
Figure BDA0001957343310000031
Figure BDA0001957343310000032
在式(4)中,金属的动能系数μk很大,因此在固液界面区域0.001<φ<0.999内把β做零处理;
f表示自由能密度,公式(5)中fS,fL分别为固相和液相的自由能密度,
Figure BDA0001957343310000033
表示固相自由能密度对固相溶质浓度的二阶导数,/>
Figure BDA0001957343310000034
表示液相自由能密度对液相溶质的二阶导数,固液界面相、液相所占比例分数分别为h(φ)和1-h(φ),固相和液相中的自由能密度表达式由下式确定:
Figure BDA0001957343310000035
Figure BDA0001957343310000036
c=h(φ)cS+(1-h(φ))cL (10)
在相场控制方程中,自由能密度由下式确定:
f(c,φ)=h(φ)fS(cS)+(1-h(φ)fL(cL)+wg(φ) (11)
其中,wg(φ)为固液界面过剩的自由能,g(φ)=φ2(1-φ)2
公式(1)中,fφ是式(11)中对φ的偏微分,此处认为钢液为稀溶液,进行近似处理,表达式为:
Figure BDA0001957343310000037
步骤2.2、采用自由能密度的形式,计算溶质场的扩散方程;
对于合金,相场方程要耦合一个溶质场扩散方程,与相场方程相耦合的溶质场扩散方程仍然采用自由能密度的形式描述,如下公式所示:
Figure BDA0001957343310000038
其中,D(φ)是溶质扩散速率,fc、fcc分别为自由能密度对浓度的一阶、二阶偏导数;
用稀溶液近似处理公式(14)的右边各项,得到以下各式:
Figure BDA0001957343310000039
Figure BDA0001957343310000041
Figure BDA0001957343310000042
Figure BDA0001957343310000043
在固液界面处,必须要求出(11)中的假象浓度,通过下式得到:
c=h(φ)cS+(1-h(φ))cl (19)
Figure BDA0001957343310000044
Figure BDA0001957343310000045
步骤2.3、采用D2Q9模型和BGK近似计算流场的控制方程;
在钢液流动过程中,通过LBM(Lattice Bolzmann Method,即格子玻尔兹曼模型)将钢液流动过程分解成碰撞和迁移两个部分分别进行计算,利用D2Q9模型来保证宏观上的各向同性;
钢液流动过程中的节点碰撞过程如下公式所示:
Figure BDA0001957343310000046
式中,ω为松弛频率,
Figure BDA0001957343310000047
x为节点的位置坐标,t表示时刻,Δx表示格子长度,Δt表示时间步长,fk()表示节点的动量分布函数,下标k表示不同的方向,/>
Figure BDA0001957343310000048
为平衡分布函数,由下式得到:
Figure BDA0001957343310000049
其中,
Figure BDA00019573433100000410
u=ui+vj,u,v分别表示横向速度和纵向速度,i、j分别表示x、y方向的单位向量,wk为权重因子,ρ(x,t)表示t时刻LBM模型中格子的密度;
对于钢液中的固液边界,采取无滑移的反弹格式,由下式表示:
Figure BDA00019573433100000411
其中,下标α、β表示方向相反的格子链,UBC=UPP×(XS-XP),表示固相颗粒的移动速度,UP和ΩP分别是固相的平移速度和转动速度,eα为反弹方向的单位向量,XS表示固相节点的位置坐标,XP表示固相重心位置坐标,(XS-XP)表示格子位置与重心位置的距离;
完成碰撞部分的计算后,对得到的节点动量分布函数值进行迁移,并在迁移之后施加相应的边界条件,完成流场的计算;
步骤2.4、通过枝晶在钢液中的速度计算枝晶的运动方程;
钢液中枝晶的移动需要在求得相应的速度后求解枝晶运动方程;首先求解在流动钢液中枝晶的受力F,由下式得出:
Figure BDA0001957343310000051
在取得边界各点的受力后得到整个枝晶所受到的合力F,然后再通过以下各式求得枝晶的平移速度和旋转速度:
Figure BDA0001957343310000052
Figure BDA0001957343310000053
Figure BDA0001957343310000054
以上各式中,Δsl表示相变过程中的格子体积变化,MP表示枝晶质量,ΩP表示转动角度,通过公式(26),(27),(28)分别求得扭矩TT,加速度
Figure BDA0001957343310000055
和惯性矩IP,由此结果进一步求解枝晶运动方程,得到枝晶运动的结果;
步骤3、编写程序代码,输入边界条件以及各控制条件,再把输出结果转化为更为直观的图像形式,预测枝晶在钢液中的运动。
采用上述技术方案所产生的有益效果在于:本发明提供的一种钢液中枝晶移动的预测方法,利用数值模拟的方法研究连铸钢液中枝晶移动及其变化规律,可以有效地避免实验研究的局限性和不可重复性。枝晶的生长以及移动过程通常在高温的环境下进行,进行试验的成本较高,并且反应中的现象不易观察。而用数值模拟的方法就可以有效的避免这些局限性。同时,本发明将形核、长大、溶质扩散、钢液流动、固相移动等机理引入数值模拟中,不仅能够真实地再现钢液凝固过程的微观形貌,而且较为精准的预测枝晶在流动钢液中的移动过程。而相场法与格子玻尔兹曼模型(LBM)耦合,可将相场与浓度场、温度场、流场以及固相移动较为有效的耦合,能够定量的研究枝晶在流动钢液中的移动。
附图说明
图1为本发明实施例提供的一种钢液中枝晶移动的预测方法的流程图;
图2为本发明实施例提供的伪二元Fe-C平衡相示意图;
图3为本发明实施例提供的计算相场的控制方程、溶质场的控制方程以及流场的控制方程和枝晶的运动方程的流程图;
图4为本发明实施例提供的编程实现枝晶移动数值模型的流程图;
图5为本发明实施例提供的枝晶移动的示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本实施例以某钢厂的低碳包晶钢样为例,使用本发明的一种钢液中枝晶移动的预测方法对该低碳包晶钢样中的枝晶移动进行预测。
一种钢液中枝晶移动的预测方法,包括以下步骤:
步骤1、收集所要研究钢材的物性参数和主要成分及其所占比重;所述钢的物性参数包括液相线斜率、固相线斜率、熔点温度及摩尔体积;
本实施例中,该低碳包晶钢样的钢种碳含量为0.83at.%,钢样的伪二元相图如图2所示,溶质元素加入时会影响纯铁碳平衡相图的形貌,改变固液相线的斜率;此种钢的一些物样参数如表2所示,其主要成分如表3所示:
表2包晶钢样的物性参数
物性参数 数值
液相斜率
δ/L -1846.12
γ/L -1712.3
熔点温度(K)
T<sub>δ</sub> 1796.15
T<sub>γ</sub> 1793.3
摩尔体积(m<sup>3</sup>/mol)
v<sub>m</sub> 7.7×10<sup>-6</sup>
表3包晶钢主要成分,wt.%
成分 C Si Mn P S Al Cr
含量 0.18 0.39 1.48 0.015 0.002 0.027 0.13
步骤2、根据收集的物性参数以及相场法模型,计算相场的控制方程、溶质场的控制方程以及流场的控制方程和枝晶的运动方程,如图3所示,具体方法为:
步骤2.1、计算相场的控制方程;
根据KKS模型,相场的控制方程如下公式所示:
Figure BDA0001957343310000071
其中,φ表示的是相场变量,它的下角标表示对x,y的二阶导数,ε表示各向异性参数,如下公式所示:
ε(θ)=ε0(1+vcos(kθ)) (2)公式(1)中,ε′表示对θ的一阶导数,ε″表示对θ的二阶导数,式(2)中v为各向异性强度,k表示k次对称性,ε0表示各向异性系数,取值范围为0~1,θ表示固液界面与有限生长方向的夹角,表示为:
tanθ=φyx (3)
M表示合金中的相场迁移率,由以下两式联立得到:
Figure BDA0001957343310000072
Figure BDA0001957343310000073
公式(4)中,σ表示界面能,R为气体常数,T表示钢液温度,Vm表示合金的摩尔体积,ke表示平衡分配系数,me表示液相线斜率,DL表示液相溶质扩散系数,w表示双阱势高,
Figure BDA0001957343310000074
Figure BDA0001957343310000075
分别表示平衡状态下固相溶质浓度和液相溶质浓度,/>
Figure BDA0001957343310000076
μk为动能系数,式(5)中,h(φ)=φ3(10-15φ+6φ2);
在凝固过程中,固液界面的固相和液相按一定的质量分数构成,这些固相和液相具有不同的组分和不同的自由能;固液界面的成分是由平衡条件下的分配系数来决定的,即cS=kecL,0<Φ<1;
在固液界面区域0.001<φ<0.999内,KKS模型用到的参数ε、w与界面能σ、动能系数μk及界面厚度2λ有关,参数的表达式为:
Figure BDA0001957343310000081
Figure BDA0001957343310000082
在式(4)中,金属的动能系数μk很大,因此在固液界面区域0.001<φ<0.999内把β做零处理;
f表示自由能密度,公式(5)中fS,fL分别为固相和液相的自由能密度,
Figure BDA0001957343310000083
表示固相自由能密度对固相溶质浓度的二阶导数,/>
Figure BDA0001957343310000084
表示液相自由能密度对液相溶质的二阶导数,固液界面相、液相所占比例分数分别为h(φ)和1-h(φ),固相和液相中的自由能密度表达式由下式确定:
Figure BDA0001957343310000085
Figure BDA0001957343310000086
c=h(φ)cS+(1-h(φ))cL (10)
在相场控制方程中,自由能密度由下式确定:
f(c,φ)=h(φ)fS(cS)+(1-h(φ)fL(cL)+wg(φ) (11)
其中,wg(φ)为固液界面过剩的自由能,g(φ)=φ2(1-φ)2
公式(1)中,fφ是式(11)中对φ的偏微分,此处认为钢液为稀溶液,进行近似处理,表达式为:
Figure BDA0001957343310000087
步骤2.2、计算溶质场的扩散方程;
对于合金,相场方程要耦合一个溶质场扩散方程,与相场方程相耦合的溶质场扩散方程仍然采用自由能密度的形式描述,如下公式所示:
Figure BDA0001957343310000088
其中,D(φ)是溶质扩散速率,fc,、fcc分别为自由能密度对浓度的一阶、二阶偏导数;
用稀溶液近似处理公式(14)的右边各项,得到以下各式:
Figure BDA0001957343310000091
Figure BDA0001957343310000092
Figure BDA0001957343310000093
Figure BDA0001957343310000094
在固液界面处,必须要求出(11)中的假象浓度,通过下式得到:
c=h(φ)cS+(1-h(φ))cl (19)
Figure BDA0001957343310000095
Figure BDA0001957343310000096
步骤2.3、采用D2Q9模型和BGK近似计算流场的控制方程;
在钢液流动过程中,通过LBM(Lattice Bolzmann Method,即格子玻尔兹曼模型)将钢液流动过程分解成碰撞和迁移两个部分分别进行计算,利用D2Q9模型来保证宏观上的各向同性;
钢液流动过程中的节点碰撞过程如下公式所示:
Figure BDA0001957343310000097
式中,ω为松弛频率,
Figure BDA0001957343310000098
x为节点的位置坐标,t表示时刻,Δx表示格子长度,Δt表示时间步长,fk()表示节点的动量分布函数,下标k表示不同的方向,/>
Figure BDA0001957343310000099
为平衡分布函数,由下式得到:
Figure BDA00019573433100000910
其中,
Figure BDA00019573433100000911
u=ui+vj,u,v分别表示横向速度和纵向速度,i、j分别表示x、y方向的单位向量,wk为权重因子,ρ(x,t)表示t时刻LBM模型中格子的密度;
对于钢液中的固液边界,采取无滑移的反弹格式,由下式表示:
Figure BDA0001957343310000101
其中,下标α、β表示方向相反的格子链,UBC=UPP×(XS-XP),表示固相颗粒的移动速度,UP和ΩP分别是固相的平移速度和转动速度,eα为反弹方向的单位向量,XS表示固相节点的位置坐标,XP表示固相重心位置坐标,(XS-XP)表示格子位置与重心位置的距离;
完成碰撞部分的计算后,对得到的节点动量分布函数值进行迁移,并在迁移之后施加相应的边界条件,完成流场的计算;
步骤2.4、计算枝晶的运动方程;
钢液中枝晶的移动需要在求得相应的速度后求解枝晶运动方程;首先求解在流动钢液中枝晶的受力F,由下式得出:
Figure BDA0001957343310000102
在取得边界各点的受力后得到整个枝晶所受到的合力F,然后再通过以下各式求得枝晶的平移速度和旋转速度:
Figure BDA0001957343310000103
Figure BDA0001957343310000104
Figure BDA0001957343310000105
以上各式中,Δsl表示相变过程中的格子体积变化,MP表示枝晶质量,ΩP表示转动角度,通过公式(26),(27),(28)分别求得扭矩TT,加速度
Figure BDA0001957343310000106
和惯性矩IP,由此结果进一步求解枝晶运动方程,得到枝晶运动的结果;
步骤3、编写程序代码,如图4所示,输入边界条件以及各控制条件,再把输出结果转化为更为直观的图像形式,预测枝晶在钢液中的运动。
本实施例中,输入的边界条件为速度场采用“已知速度边界条件”,其他的边界条件均采用“封闭边界条件”;控制条件包括温度,溶质浓度和钢液的初始速度,其中,温度为900K,流体初始速度为0.05m/s,溶质浓度为0.0196;采用C++编程语言的方法编写出预测钢液中枝晶运动的数值模型的程序,再根据程序输出的结果,利用软件转化为更为直观的图像形式,得到的钢液中枝晶移动过程如图5所示,这样就达到了钢液中枝晶运动过程可视化的目的。通过模拟值与实验结果对比可以得出,本发明提出的一种预测钢液中枝晶移动的数值模拟方法可以较好地预测枝晶移动过程,为研究钢液中的枝晶移动提供了可靠地信息。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明权利要求所限定的范围。

Claims (1)

1.一种钢液中枝晶移动的预测方法,其特征在于:包括以下步骤:
步骤1、收集所要研究钢材的物性参数和主要成分及其所占比重;所述钢的物性参数包括液相线斜率、固相线斜率、熔点温度及摩尔体积;
步骤2、根据收集的物性参数以及相场法模型,计算相场的控制方程、溶质场的控制方程以及流场的控制方程和枝晶的运动方程,具体方法为:
步骤2.1、根据KKS模型,计算相场的控制方程;
步骤2.2、采用自由能密度的形式,计算溶质场的扩散方程;
步骤2.3、采用D2Q9模型和BGK近似计算流场的控制方程;
步骤2.4、通过枝晶在钢液中的速度计算枝晶的运动方程;
步骤3、编写程序代码,输入边界条件以及各控制条件,再把输出结果转化为更为直观的图像形式,预测枝晶在钢液中的运动;
所述步骤2.1的具体方法为:
根据KKS模型,相场的控制方程如下公式所示:
Figure FDA0004070612270000011
其中,φ表示的是相场变量,它的下角标表示对x,y的二阶导数,ε表示各向异性参数,如下公式所示:
ε(θ)=ε0(1+vcos(kθ)) (2)
公式(1)中,ε'表示对θ的一阶导数,ε”表示对θ的二阶导数,式(2)中v为各向异性强度,k表示k次对称性,ε0表示各向异性系数,取值范围为0~1,θ表示固液界面与有限生长方向的夹角,表示为:
tanθ=φyx (3)
M表示合金中的相场迁移率,由以下两式联立得到:
Figure FDA0004070612270000012
Figure FDA0004070612270000013
公式(4)中,σ表示界面能,R为气体常数,T表示钢液温度,Vm表示合金的摩尔体积,ke表示平衡分配系数,me表示液相线斜率,DL表示液相溶质扩散系数,w表示双阱势高,
Figure FDA0004070612270000021
Figure FDA0004070612270000022
分别表示平衡状态下固相溶质浓度和液相溶质浓度,/>
Figure FDA0004070612270000023
μk为动能系数,式(5)中,h(φ)=φ3(10-15φ+6φ2);
在凝固过程中,固液界面的固相和液相按一定的质量分数构成,这些固相和液相具有不同的组分和不同的自由能;固液界面的成分是由平衡条件下的分配系数来决定的,即cS=kecL,0<Φ<1;
在固液界面区域0.001<φ<0.999内,KKS模型用到的参数ε、w与界面能σ、动能系数μk及界面厚度2λ有关,参数的表达式为:
Figure FDA0004070612270000024
Figure FDA0004070612270000025
在式(4)中,金属的动能系数μk很大,因此在固液界面区域0.001<φ<0.999内把β做零处理;
f表示自由能密度,公式(5)中fS,fL分别为固相和液相的自由能密度,
Figure FDA0004070612270000026
表示固相自由能密度对固相溶质浓度的二阶导数,/>
Figure FDA0004070612270000027
表示液相自由能密度对液相溶质的二阶导数,固液界面相、液相所占比例分数分别为h(φ)和1-h(φ),固相和液相中的自由能密度表达式由下式确定:
Figure FDA0004070612270000028
Figure FDA0004070612270000029
c=h(φ)cS+(1-h(φ))cL (10)
在相场控制方程中,自由能密度由下式确定:
f(c,φ)=h(φ)fS(cS)+(1-h(φ)fL(cL)+wg(φ) (11)
其中,wg(φ)为固液界面过剩的自由能,g(φ)=φ2(1-φ)2
公式(1)中,fφ是式(11)中对φ的偏微分,此处认为钢液为稀溶液,进行近似处理,表达式为:
Figure FDA0004070612270000031
所述步骤2.2的具体方法为:
对于合金,相场方程要耦合一个溶质场扩散方程,与相场方程相耦合的溶质场扩散方程仍然采用自由能密度的形式描述,如下公式所示:
Figure FDA0004070612270000032
其中,D(φ)是溶质扩散速率,fc、fcc分别为自由能密度对浓度的一阶、二阶偏导数;
用稀溶液近似处理公式(14)的右边各项,得到以下各式:
Figure FDA0004070612270000033
Figure FDA0004070612270000034
Figure FDA0004070612270000035
/>
Figure FDA0004070612270000036
Figure FDA0004070612270000037
在固液界面处,必须要求出(11)中的假象浓度,通过下式得到:
c=h(φ)cS+(1-h(φ))cl (19)
Figure FDA0004070612270000038
Figure FDA0004070612270000039
所述步骤2.3的具体方法为:
在钢液流动过程中,通过LBM(Lattice Bolzmann Method,即格子玻尔兹曼模型)将钢液流动过程分解成碰撞和迁移两个部分分别进行计算,利用D2Q9模型来保证宏观上的各向同性;
钢液流动过程中的节点碰撞过程如下公式所示:
Figure FDA00040706122700000310
式中,ω为松弛频率,
Figure FDA0004070612270000041
x为节点的位置坐标,t表示时刻,△x表示格子长度,△t表示时间步长,fk()表示节点的动量分布函数,下标k表示不同的方向,/>
Figure FDA0004070612270000042
为平衡分布函数,由下式得到:
Figure FDA0004070612270000043
其中,
Figure FDA0004070612270000044
u=ui+vj,u,v分别表示横向速度和纵向速度,i、j分别表示x、y方向的单位向量,wk为权重因子,ρ(x,t)表示t时刻LBM模型中格子的密度;
对于钢液中的固液边界,采取无滑移的反弹格式,由下式表示:
Figure FDA0004070612270000045
其中,下标α、β表示方向相反的格子链,UBC=UPP×(XS-XP),表示固相颗粒的移动速度,UP和ΩP分别是固相的平移速度和转动速度,eα为反弹方向的单位向量,XS表示固相节点的位置坐标,XP表示固相重心位置坐标,(XS-XP)表示格子位置与重心位置的距离;
完成碰撞部分的计算后,对得到的节点动量分布函数值进行迁移,并在迁移之后施加相应的边界条件,完成流场的计算;
所述步骤2.4的具体方法为:
钢液中枝晶的移动需要在求得相应的速度后求解枝晶运动方程;首先求解在流动钢液中枝晶的受力F,由下式得出:
Figure FDA0004070612270000046
/>
在取得边界各点的受力后得到整个枝晶所受到的合力F,然后再通过以下各式求得枝晶的平移速度和旋转速度:
Figure FDA0004070612270000047
Figure FDA0004070612270000048
Figure FDA0004070612270000049
以上各式中,△sl表示相变过程中的格子体积变化,MP表示枝晶质量,ΩP表示转动角度,通过公式(26),(27),(28)分别求得扭矩TT,加速度
Figure FDA0004070612270000051
和惯性矩IP,由此结果进一步求解枝晶运动方程,得到枝晶运动的结果;
所述步骤3输入的边界条件为速度场采用“已知速度边界条件”,其他的边界条件均采用“封闭边界条件”;控制条件包括温度,溶质浓度和钢液的初始速度;采用C++编程语言的方法编写出预测钢液中枝晶运动的数值模型的程序,再根据程序输出的结果,利用软件转化为更为直观的图像形式,得到的钢液中枝晶移动过程,这样就达到了钢液中枝晶运动过程可视化的目的。
CN201910071214.0A 2019-01-25 2019-01-25 一种钢液中枝晶移动的预测方法 Active CN109817284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910071214.0A CN109817284B (zh) 2019-01-25 2019-01-25 一种钢液中枝晶移动的预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910071214.0A CN109817284B (zh) 2019-01-25 2019-01-25 一种钢液中枝晶移动的预测方法

Publications (2)

Publication Number Publication Date
CN109817284A CN109817284A (zh) 2019-05-28
CN109817284B true CN109817284B (zh) 2023-03-31

Family

ID=66605036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910071214.0A Active CN109817284B (zh) 2019-01-25 2019-01-25 一种钢液中枝晶移动的预测方法

Country Status (1)

Country Link
CN (1) CN109817284B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110263418B (zh) * 2019-06-17 2022-10-21 哈尔滨理工大学 一种体心立方合金微观偏析数值预测方法
CN110908973B (zh) * 2019-10-28 2023-05-23 东北大学 一种钢液凝固过程中强制对流对MnS枝晶受力计算方法
CN110970095B (zh) * 2019-10-29 2023-10-10 东北大学 一种涉及冶金领域钢液凝固过程中强制对流对AlN枝晶受力计算方法
CN110929385A (zh) * 2019-10-31 2020-03-27 东北大学 一种结晶器内钢液流动的预测方法
CN111027172A (zh) * 2019-10-31 2020-04-17 东北大学 一种钢液对流情况下枝晶生长的预测方法
CN110993038A (zh) * 2019-10-31 2020-04-10 东北大学 一种基于并行计算的静置钢液中枝晶生长的预测方法
CN111815067A (zh) * 2020-07-22 2020-10-23 东北大学 一种基于gpu并行计算的钢液中枝晶生长的预测方法
CN113283048A (zh) * 2021-03-12 2021-08-20 南京航空航天大学 一种多枝晶运动相场法并行模拟的碰撞检测和合并方法
CN113139294B (zh) * 2021-04-30 2024-02-06 东北大学 一种包晶钢凝固枝晶组织相变行为预测方法
CN113390760B (zh) * 2021-06-10 2022-08-30 上海大学 一种强磁场下合金固液界面能测量方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007122736A1 (ja) * 2006-04-25 2007-11-01 Ebis Corporation 鋳造方法及び装置
CN101767189B (zh) * 2009-12-25 2011-06-29 中国科学院金属研究所 一种钢锭中固相移动的模拟方法
GB2532761A (en) * 2014-11-27 2016-06-01 Skf Ab Bearing steel
CN105665684B (zh) * 2016-04-13 2017-11-10 哈尔滨理工大学 一种铸件晶粒组织数值预测的方法
CN107423460B (zh) * 2017-03-27 2020-09-29 东北大学 一种提高电熔镁熔坨结晶质量的数值模拟方法
CN107309543A (zh) * 2017-05-04 2017-11-03 南京航空航天大学 一种激光焊接熔池枝晶生长模拟方法
CN108254485A (zh) * 2018-01-16 2018-07-06 南京航空航天大学 一种基于相场法的弯曲枝晶生长模拟方法
CN108171008A (zh) * 2018-01-23 2018-06-15 东北大学 一种连铸坯枝晶生长方向的预测方法
CN108038342B (zh) * 2018-01-24 2020-01-24 东北大学 一种预测包晶钢凝固过程相变的相场模拟方法

Also Published As

Publication number Publication date
CN109817284A (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
CN109817284B (zh) 一种钢液中枝晶移动的预测方法
Takaki et al. Phase-field lattice Boltzmann simulations of multiple dendrite growth with motion, collision, and coalescence and subsequent grain growth
CN111027172A (zh) 一种钢液对流情况下枝晶生长的预测方法
CN108038342B (zh) 一种预测包晶钢凝固过程相变的相场模拟方法
Wu et al. Formation of non-dendritic microstructure of semi-solid aluminum alloy under vibration
CN109785907A (zh) 一种钢液凝固过程中TiN夹杂物析出情况的预测方法
CN105665684B (zh) 一种铸件晶粒组织数值预测的方法
CN110008561B (zh) 一种钢液中颗粒移动的预测方法
CN110908973A (zh) 一种钢液凝固过程中强制对流对MnS枝晶受力计算方法
CN110765599A (zh) 一种钢液凝固过程AlN夹杂物析出情况的预测方法
CN110993038A (zh) 一种基于并行计算的静置钢液中枝晶生长的预测方法
Vannier et al. Numerical model for prediction of the final segregation pattern of bearing steel ingots
CN116994683A (zh) 基于相场法-格子波尔兹曼方法的镁合金强制对流下微观组织形貌的模拟方法及其应用
CN110970095B (zh) 一种涉及冶金领域钢液凝固过程中强制对流对AlN枝晶受力计算方法
CN113139294B (zh) 一种包晶钢凝固枝晶组织相变行为预测方法
Niu et al. Numerical modeling of the effect of mechanical vibration on 10 kg C45 steel ingot solidification
Lekakh et al. Novel approaches to analyze structure of ductile iron
Yu et al. Numerical simulation and experimental validation of nondendritic structure formation in magnesium alloy under oscillation and ultrasonic vibration
CN111815067A (zh) 一种基于gpu并行计算的钢液中枝晶生长的预测方法
CN114842928A (zh) 一种钢液对流情况下三维枝晶生长的预测方法
CN110765598A (zh) 一种钢液凝固过程MnS夹杂物析出情况的预测方法
Kapturkiewicz et al. Modeling the kinetics of solidification of cast iron with lamellar graphite
Mukherjee et al. Effect of Fluid Flow on Microstructure Evolution During Rheo Gravity Die Casting of Novel Al–15Mg2Si–4.5 Si Composite
Wu et al. Numerical simulation of microstructure evolution on near eutectic spheroidal graphite cast iron
CN110929385A (zh) 一种结晶器内钢液流动的预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant