CN109802385B - 电压源型逆变器的阻抗建模方法 - Google Patents

电压源型逆变器的阻抗建模方法 Download PDF

Info

Publication number
CN109802385B
CN109802385B CN201910102548.XA CN201910102548A CN109802385B CN 109802385 B CN109802385 B CN 109802385B CN 201910102548 A CN201910102548 A CN 201910102548A CN 109802385 B CN109802385 B CN 109802385B
Authority
CN
China
Prior art keywords
voltage source
inverter
voltage
current
source inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910102548.XA
Other languages
English (en)
Other versions
CN109802385A (zh
Inventor
罗安
刘津铭
伍文华
陈燕东
谢志为
王海宁
郭健
徐元璨
彭上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN201910102548.XA priority Critical patent/CN109802385B/zh
Publication of CN109802385A publication Critical patent/CN109802385A/zh
Application granted granted Critical
Publication of CN109802385B publication Critical patent/CN109802385B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Abstract

本发明公开了一种电压源型逆变器序阻抗建模方法,考虑逆变器dq轴变量相互耦合的影响,并在控制中加入阻抗重构控制与电压前馈控制,提出基于序阻抗模型的电压源型逆变器宽频带小信号建模方法并验证了所建模型的正确性,解决了电压源型逆变器小信号阻抗建模的难题。本发明所建立的模型能准确的反映出电压源型逆变器在宽频带中的阻抗特性,可以为分析锁相环参数、电流控制器参数、电压控制器参数以及滤波参数对电压源型逆变器提供理论模型基础。本发明为电压源型逆变器接入微电网、新能源场站等场景中的小扰动稳定性分析提供了模型,有利于推广电压源型逆变器在微网中的应用。

Description

电压源型逆变器的阻抗建模方法
技术领域
本发明涉及电力电子系统建模领域,特别是一种电压源型逆变器的小信号序阻抗建模方法。
背景技术
在电力电子技术的广泛应用中,电压源逆变器技术在可再生能源中扮演了举足轻重的角色,作为电能实时控制和变换的极为主要的形式之一,如今已被社会各个领域广泛的应用到,特别是在是在这个倡导节能环保的时代,它在新能源技术领域更是有着光明的前景。近年来,可再生能源技术越来越受到世界各国重视,发展迅速。在电压源逆变器的技术应用中,因电压源逆变器的阻抗特性不明确,对其阻抗稳定性分析造成很大的困难。因此,建立在电压型逆变的阻抗模型来分析系统的稳定性,对在运行中的电压源逆变进行合理控制,保证逆变器系统的稳定性,具有至关重要的意义。
电压源型逆变器能够与不同负荷稳定交互的前提是电压源型逆变器能够稳定并网运行。目前有文献建立了并网电压源型逆变器的电压电流闭环小信号传递函数模型,兼顾系统的稳定性和动态性能,给出了系统控制参数设计方法,但未研究电压源型逆变器与弱电网的交互稳定性问题,也没有建立离网型电压源逆变器的小信号阻抗模型。有文献建立了同步旋转坐标系下电压源型逆变器的时域状态空间小信号模型,研究了控制参数、线路参数和滤波器参数等对系统稳定性的影响。但是电压源型逆变器是在静止坐标系下进行控制,电压源型逆变器的输出电压和电流为交流时变量,无直流稳定工作点,传统的小信号建模方法难以直接进行线性化建模。如果虚构一个同步旋转坐标来进行小信号线性化建模,此时模型的物理意义将会变得模糊。
电压源型逆变器接入各种类型的负荷,与所带负荷构成了一个互联系统,互联系统的小扰动稳定性问题对于电压源型逆变器的推广和应用至关重要。因此亟需突破电压源型逆变器小信号阻抗建模的难题,为分析电压源型逆变器与不同类型负荷交互的小扰动稳定性奠定基础。
发明内容
本发明所要解决的技术问题是,针对现有技术不足,提供一种电压源型逆变器的阻抗建模方法,解决考虑加入阻抗重构控制时电压源型逆变器小信号阻抗建模的难题。
为解决上述技术问题,本发明所采用的技术方案是:一种电压源型逆变器的阻抗建模方法,该方法主要实现过程如下:在abc静止坐标系下建立电压源型逆变器的小信号序阻抗模型,并分析验证阻抗模型的稳定性;具体实现过程包括:
1)在时域中,向电压源型逆变器的交流侧加入正、负序小信号电压扰动,得到电压源型逆变器的三相输出端电压和输出电流在时域的表达式,并将该时域表达式转换到频域,得到电压源型逆变器的a相输出端电压和输出电流的频域表达式分别为vsa[f]和ioa[f];
2)根据vsa[f]、ioa[f]和abc到dq坐标变换公式,得到dq坐标系下电压源型逆变器的输出端电压vsd、vsq和输出电流iod、ioq的频域表达式分别为vsd[f]、vsq[f]、iod[f]和ioq[f];
3)根据基尔霍夫电流定律,得到电压源型逆变器的交流侧输出电流isd、isq
4)根据电压源型逆变器的电压外环的表达式,得到电流内环的指令值
Figure BDA0001965901140000021
Figure BDA0001965901140000022
的频域表达式
Figure BDA0001965901140000023
5)根据电压源型逆变器的电流内环的表达式,得到控制器输出调制波csd、csq的频域表达式csd[f]、csq[f];
6)根据csd[f]、csq[f]和dq到abc坐标变换公式,得到电压源型逆变器的三相调制波的频域表达式csa[f]、csb[f]、csc[f];
7)根据三相调制波表达式,并考虑电压电流信号采样延时,PWM延时的影响,得到电压源型逆变器的小信号正、负序阻抗模型Zsp(s)和Zsn(s)。
abc到dq坐标变换公式T(θ)为:
Figure BDA0001965901140000024
其中θ为输出d轴与a轴的夹角。
dq到abc坐标变换公式T-1(θ)为:
Figure BDA0001965901140000031
其中θ为输出d轴与a轴的夹角。
与现有技术相比,本发明所具有的有益效果为:本发明所建立电压源型逆变器的小信号序阻抗建模具有物理意义清晰,阻抗模型表达式简单,模型精度高等优点;本发明的电压源型逆变器接入微电网的稳定性分析方法提供了准确的阻抗模型;本发明为电压源型逆变器带非线性负荷,接入微新能源场站等场景中的小扰动稳定性分析提供了模型和方法,有利于电压源型逆变器的推广和应用。
附图说明
图1为本发明一实施例电压源型逆变器的主电路拓扑;
图2为本发明一实施例电压源型逆变器的控制方法;
图3为本发明一实施例电压源型逆变器的正、负序阻抗特性及其仿真测量结果;
具体实施方式
图1为电压源型逆变器的主电路拓扑。其中:开关管Q1~Q6构成了电压源型逆变器的三相逆变全桥;Vdc为电压源型逆变器的直流侧电压,可认为是稳定值;ea、eb和ec为电压源型逆变器的内电势;ioa、iob和ioc为电压源型逆变器的输出电流;vsa、vsb和vsc为电压源型逆变器的输出端电压;Lsf、Csf和rsf分别为电压源型逆变器的滤波电感、滤波电容和滤波电感的寄生电阻。
图2为电压源型逆变器的控制方法框图。电压源型逆变器控制为电压外环电流内环的解耦控制,在此基础上加上了阻抗重构控制。因此,电压源型逆变器控制为电压外环控制器的数学方程可表示如下:
Figure BDA0001965901140000032
式中:vsd和vsq分别为PWM逆变器三相输出电压(vsa、vsb、vsc)在同步旋转坐标系下的d轴和q轴分量;
Figure BDA0001965901140000033
Figure BDA0001965901140000034
分别为vsd和vsq的指令;iod和ioq分别为PWM逆变器三相输出电流(ioa、iob、ioc)在同步旋转坐标系下的d轴和q轴分量;
Figure BDA0001965901140000035
Figure BDA0001965901140000041
分别为isd和isq的指令;Csf为PWM逆变器的滤波电容;Ksc为滤波电容电流解耦系数,Ksc=ωlCsf,其中ωl为基波角频率。Gsv(s)分别为PWM逆变器的电压环的PI控制器,Gsv(s)=kp_sv+ki_sv/s。电压源型逆变器控制为电流内环控制器的数学方程可表示如下:
Figure BDA0001965901140000042
式中:csd和csq分别为源PWM逆变器三相调制波(csa、csb、csc)在同步旋转坐标系下的d轴和q轴分量;isd和isq分别为PWM逆变器滤波电感电流(isa、isb、isc)在同步旋转坐标系下的d轴和q轴分量;
Figure BDA0001965901140000043
Figure BDA0001965901140000044
分别为isd和isq的指令;KsL为滤波电感电压解耦系数,KsL=ωlLsf/(Vsdc/2);Vsdc为逆变器直流侧电压。Lsf和rsf分别为PWM逆变器的滤波电感和滤波电感的寄生电阻;ωl为基波角频率;KsL为滤波电感电压解耦系数,KsL=ωlLsf/(Vsdc/2);Ksff为前馈系数,Ksff=1/(Vsdc/2),其中,Vsdc为PWM逆变器直流侧电压;kd、ωd分别为阻抗重构控制的增益和截止角频率。Gsi(s)为PWM逆变器的电流环的PI控制器,Gsi(s)=kp_si+ki_si/s。
一种电压源型逆变器的阻抗建模方法,在abc静止坐标系下建立电压源型逆变器的小信号序阻抗模型,并验证了所建立模型的正确性:
所述在abc静止坐标系下建立电压源型逆变器的小信号序阻抗模型部分包括以下步骤:
1)在时域中,向电压源型逆变器的交流侧加入正、负序小信号电压扰动,得到电压源型逆变器的三相输出端电压和输出电流在时域的表达式,并将该时域表达式转换到频域,得到电压源型逆变器的a相输出端电压和输出电流的频域表达式分别为vsa[f]和ioa[f];
2)根据vsa[f]、ioa[f]和abc到dq坐标变换公式,得到dq坐标系下电压源型逆变器的输出端电压vsd、vsq和输出电流iod、ioq的频域表达式分别为vsd[f]、vsq[f]、iod[f]和ioq[f];abc到dq坐标变换公式T(θ)为:
Figure BDA0001965901140000051
其中θ为输出d轴与a轴的夹角。
3)根据基尔霍夫电流定律,得到电压源型逆变器的交流侧输出电流isd、isq
4)根据电压源型逆变器的电压外环的表达式,得到电流内环的指令值
Figure BDA0001965901140000052
的频域表达式
Figure BDA0001965901140000053
5)根据电压源型逆变器的电流内环的表达式,得到控制器输出调制波csd、csq的频域表达式csd[f]、csq[f];
6)根据csd[f]、csq[f]和dq到abc坐标变换公式,得到电压源型逆变器的三相调制波的频域表达式csa[f]、csb[f]、csc[f];abc到dq坐标变换公式T-1(θ)为:
Figure BDA0001965901140000054
其中θ为输出d轴与a轴的夹角。
7)根据三相调制波表达式,并考虑电压电流信号采样延时,PWM延时的影响,得到电压源型逆变器的小信号正、负序阻抗模型Zsp(s)和Zsn(s)。
根据所发明方法可得电压源型逆变器的小信号正、负序阻抗模型Zp(s)和Zn(s)为
Figure BDA0001965901140000055
Figure BDA0001965901140000061
式中:Gdel(s)为信号采样和PWM的延时传递函数,Gdel(s)=e-Tss(1-e-Tss)/(Tss),其中,Ts为PWM开关周期,Kpwm为桥路PWM等效增益,f1为基波频率,即50Hz。
图3所示为电压源型逆变器的正、负序阻抗的幅频特性曲线及其仿真测量结果。图中,Zsp(s)和Zsn(s)分别为电压源型逆变器的小信号正、负序阻抗。从图中可知:阻抗测量结果和所建的阻抗模型能够很好地吻合,证明了电压源型逆变器序阻抗建模的正确性。

Claims (1)

1.一种电压源型逆变器的阻抗建模方法,其特征在于,包括以下步骤:
1)在时域中,向电压源型逆变器的交流侧加入正、负序小信号电压扰动,得到电压源型逆变器的三相输出端电压和输出电流在时域的表达式,并将该时域表达式转换到频域,得到电压源型逆变器的a相输出端电压和输出电流的频域表达式分别为vsa[f]和ioa[f];
2)根据vsa[f]、ioa[f]和abc到同步旋转坐标系变换公式,得到电压源型逆变器三相输出电压vsa、vsb、vsc在同步旋转坐标系下的d轴和q轴分量vsd、vsq的频域表达式分别为vsd[f]、vsq[f],电压源型逆变器三相输出电流ioa、iob、ioc在同步旋转坐标系下的d轴和q轴分量iod、ioq的频域表达式分别为iod[f]和ioq[f];
3)对所述电压源型逆变器的滤波电容Csf使用欧姆定律,根据vsd[f]、vsq[f],求出流过滤波电容的电流icd、icq的频域表达式icd[f]、icq[f];
4)根据基尔霍夫电流定律,isd=icd[f]+iod[f],isq=icq[f]+ioq[f],得到电压源型逆变器的交流侧输出电流isd、isq
5)将vsd[f]、vsq[f]、iod[f]和ioq[f]代入电压源型逆变器的电压外环的表达式,得到电流内环的指令值
Figure FDA0003766736210000011
的频域表达式
Figure FDA0003766736210000012
6)将
Figure FDA0003766736210000013
vsd[f]、vsq[f]、isd[f]和isq[f]代入电压源型逆变器的电流内环的表达式,得到电压源型逆变器三相调制波csa、csb、csc在同步旋转坐标系下的d轴和q轴分量csd、csq的频域表达式csd[f]、csq[f];
7)根据csd[f]、csq[f]和同步旋转坐标系到abc坐标变换公式,得到电压源型逆变器的三相调制波的频域表达式csa[f]、csb[f]、csc[f];
8)根据三相调制波表达式csa[f]、csb[f]、csc[f],并考虑电压电流信号采样延时,PWM延时的影响,得到电压源型逆变器的小信号正、负序阻抗模型Zsp和Zsn
Figure FDA0003766736210000021
Figure FDA0003766736210000022
其中,Gdel(s)为电压电流信号采样和PWM的延时传递函数,
Figure FDA0003766736210000023
Ts为PWM开关周期;Vdc为电压源型逆变器的直流侧电压;Lsf、rsf分别为电压源型逆变器的滤波电感、滤波电感的寄生电阻;kd、ωd分别为阻抗重构控制的增益和截止角频率;f1为基波频率,即50Hz;KsL为滤波电感电压解耦系数,KsL=ωlLsf/(Vdc/2);Gsi(s)为电压源型逆变器的电流内环的PI控制器,Gsi(s)=kp_si+ki_si/s;Ksc为滤波电容电流解耦系数,Ksc=ωlCsf,ωl为基波角频率;Gsv(s)为电压源型逆变器的电压外环的PI控制器,Gsv(s)=kp_sv+ki_sv/s;Ksff为前馈系数,Ksff=1/(Vdc/2);
abc到同步旋转坐标系变换公式T(θ)为:
Figure FDA0003766736210000024
其中θ为输出d轴与a轴的夹角;
同步旋转坐标系到abc坐标变换公式T-1(θ)为:
Figure FDA0003766736210000031
电压源型逆变器的电压外环的表达式为:
Figure FDA0003766736210000032
式中:
Figure FDA0003766736210000033
Figure FDA0003766736210000034
分别为vsd和vsq的指令值;
电压源型逆变器的电流内环的表达式为:
Figure FDA0003766736210000035
式中:isd和isq分别为电压源型逆变器滤波电感电流isa、isb、isc在同步旋转坐标系下的d轴和q轴分量。
CN201910102548.XA 2019-02-01 2019-02-01 电压源型逆变器的阻抗建模方法 Active CN109802385B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910102548.XA CN109802385B (zh) 2019-02-01 2019-02-01 电压源型逆变器的阻抗建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910102548.XA CN109802385B (zh) 2019-02-01 2019-02-01 电压源型逆变器的阻抗建模方法

Publications (2)

Publication Number Publication Date
CN109802385A CN109802385A (zh) 2019-05-24
CN109802385B true CN109802385B (zh) 2022-09-02

Family

ID=66561886

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910102548.XA Active CN109802385B (zh) 2019-02-01 2019-02-01 电压源型逆变器的阻抗建模方法

Country Status (1)

Country Link
CN (1) CN109802385B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713609B (zh) * 2020-12-17 2022-08-05 华中科技大学 一种电压源型变换器在变工作点下的阻抗预测方法
CN113671257B (zh) * 2021-08-12 2022-10-04 合肥工业大学 扰动方式切换的阻抗测量方法
CN114050749A (zh) * 2021-10-29 2022-02-15 广西电网有限责任公司 双馈风电机定子侧系统的阻抗建模方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104852620A (zh) * 2015-02-25 2015-08-19 上海交通大学 三相电压型pwm逆变器控制方法
CN108418253B (zh) * 2018-03-26 2021-06-04 湖南大学 电流控制型虚拟同步发电机的阻抗建模与稳定性分析方法
CN108281986B (zh) * 2018-03-26 2021-03-02 湖南大学 电压控制型虚拟同步发电机的阻抗建模与稳定性分析方法
CN108493967B (zh) * 2018-05-09 2020-01-31 合肥工业大学 不平衡负载条件下微网逆变器的电压平衡控制方法
CN108964118B (zh) * 2018-06-19 2022-05-13 湖南大学 考虑锁相环的单相并网逆变器小信号阻抗建模方法
CN109245156B (zh) * 2018-10-08 2019-08-23 上海电力学院 一种并网逆变器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Impedance Modeling of Three-Phase Voltage Source Converters in DQ, Sequence, and Phasor Domains;Shahil Shah et al;《IEEE Transactions on Energy Conversion》;IEEE;20170426;第32卷(第3期);1139-1150 *

Also Published As

Publication number Publication date
CN109802385A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
CN110768299B (zh) 负荷虚拟同步机的序阻抗建模与稳定性分析方法
CN108418253B (zh) 电流控制型虚拟同步发电机的阻抗建模与稳定性分析方法
CN109802385B (zh) 电压源型逆变器的阻抗建模方法
WO2022042158A1 (zh) 基于傅里叶分解的mmc小信号阻抗建模方法
CN108281986B (zh) 电压控制型虚拟同步发电机的阻抗建模与稳定性分析方法
CN108923463B (zh) 考虑锁相环的单相lcl型并网逆变器的频率耦合建模方法
CN108154315B (zh) 一种考虑锁相环影响的并网变流器次同步振荡风险分析方法
CN110676874B (zh) 计及频率耦合效应的直驱式风机次同步振荡电气量分析方法
CN104600748A (zh) 一种具备有源滤波功能的孤岛微电网多逆变器控制系统及其工作方法
CN107611971A (zh) 针对电网电压谐波畸变工况的网侧逆变器谐振全阶滑模控制方法
CN105006839A (zh) 并网发电系统的弱电网网源荷阻抗模型分析方法
CN106786738A (zh) 基于svpwm和模糊pi的z源逆变器并网控制方法
CN103678827B (zh) 一种用于逆变器的电磁暂态建模方法
CN113162021A (zh) 基于不确定干扰估计的vsc内环电流控制方法
CN107947237A (zh) 一种多类型逆变器孤岛微网稳定性分析方法
CN104852620A (zh) 三相电压型pwm逆变器控制方法
CN110112776B (zh) 考虑电网背景谐波的并网逆变器电网阻抗辨识方法
CN102830268B (zh) 一种基于dsp的sapf的实时相移检测系统及其工作方法
CN101355252A (zh) 并联式混合型有源电力滤波器误差补偿方法
CN113489356B (zh) 极坐标系下单相并网逆变器siso幅相阻抗计算方法及系统
CN103117562A (zh) 一种高压级联能量回馈变频器功率模块的控制方法
CN107147322A (zh) 双Buck全桥逆变器迭代学习控制方法
CN114970149B (zh) 新能源并网逆变器状态空间非线性建模方法
CN105958525A (zh) 一种永磁风力发电系统的pwm并网逆变器控制方法
CN115276445A (zh) 弱网下基于vsg的lcl并网逆变器谐振抑制及稳定性分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant