CN107147322A - 双Buck全桥逆变器迭代学习控制方法 - Google Patents

双Buck全桥逆变器迭代学习控制方法 Download PDF

Info

Publication number
CN107147322A
CN107147322A CN201710493546.9A CN201710493546A CN107147322A CN 107147322 A CN107147322 A CN 107147322A CN 201710493546 A CN201710493546 A CN 201710493546A CN 107147322 A CN107147322 A CN 107147322A
Authority
CN
China
Prior art keywords
mrow
inverter
mtr
mtd
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710493546.9A
Other languages
English (en)
Other versions
CN107147322B (zh
Inventor
蔡逢煌
林建业
王武
林琼斌
柴琴琴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Xiamen Kehua Hengsheng Co Ltd
Original Assignee
Fuzhou University
Xiamen Kehua Hengsheng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University, Xiamen Kehua Hengsheng Co Ltd filed Critical Fuzhou University
Priority to CN201710493546.9A priority Critical patent/CN107147322B/zh
Publication of CN107147322A publication Critical patent/CN107147322A/zh
Application granted granted Critical
Publication of CN107147322B publication Critical patent/CN107147322B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/539Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Abstract

本发明涉及一种双Buck全桥逆变器迭代学习控制方法。针对逆变器在直流电源波动、死区效应、稳态时线性和非线性负载电流扰动产生的周期性扰动问题,提出了电压外环迭代学习控制,电流内环无差拍控制的双环控制策略,通过周期迭代消除谐波扰动的影响,理论上可实现跟踪误差收敛到零,使系统输出电压能精确跟踪参考信号,大幅度提高跟踪精度;电流内环无差拍控制,由于电流比电压有更快的响应速度,系统的些许变化都会第一时间在电流上有所表现,起到增强系统稳定性和提高动态响应性能,且采用新型器件SiC MOSFET,提高了双Buck逆变器的输出效率。本发明方法可确保双Buck全桥逆变器有较好的负载适应能力和优越的跟踪性能。

Description

双Buck全桥逆变器迭代学习控制方法
技术领域
本发明属于逆变器建模与控制技术领域,具体地说,涉及一种双Buck全桥逆变器迭代学习控制方法。
背景技术
逆变技术通过功率开关器件将直流电能变换为交流电能,其在新能源发电、不间断电源、调速系统等领域具有至关重要的地位。然而传统桥式逆变器由于开关管的体二极管性能差,导致很大损耗并限制了开关频率的提高。而双BUCK逆变电路功率开关管和功率二极管可以分别得到最优设计,该变换器同时克服了传统桥式逆变器的直通问题,且电压利用率高。
然而,由于输入直流电源波动、死区效应、稳态时线性和非线性负载电流的扰动会引起逆变器周期性扰动,使输出波形发散畸变。会对逆变器上的其他设备造成影响、无法正常工作,严重时会导致其损坏。因此在主电路拓扑固定的情况下,提出一种合适的控制策略解决周期性扰动问题十分必要。
发明内容
本发明的目的在于提供一种双Buck全桥逆变器迭代学习控制方法,该方法可确保双Buck全桥逆变器有较好的负载适应能力和优越的跟踪性能。
为实现上述目的,本发明的技术方案是:一种双Buck全桥逆变器迭代学习控制方法,针对逆变器在直流电源波动、死区效应、稳态时线性和非线性负载电流扰动产生的周期性扰动,采用电压外环迭代学习控制+电流内环无差拍控制的双环控制策略,提高双Buck逆变器的输出效率,使系统输出电压能精确跟踪参考信号,并增强系统稳定性和提高动态响应性能。
在本发明一实施例中,该方法具体实现步骤如下,
根据基尔霍夫电压和电流定律,由于滤波电感L1、L2的电流iL1(t)=iL2(t),可令iL1(t)=iL2(t)=iL(t),且令电感量L1=L2=L,由于逆变器正负半周对称,因此此处仅分析正半周,可令UA(t)=U(t),得逆变器系统模型如下:
其中,C为滤波电容的电容值;
选择电容电压uc和电感电流iL为状态变量,逆变器交流输出电压U(t)和负载电流iR(t)为输入,电容电压uc为系统输出;于是,x(t)=[uc(t),iL(t)],u(t)=[U(t),iR(t)],y(t)=uc(t);逆变器系统状态方程为:
其中,C=(1 0)
由于直流电源波动、死区效应、稳态时线性和非线性负载电流扰动引起的周期性扰动,对应的逆变器系统状态方程可写为:
其中,w(t),v(t)为周期性扰动;为解决该周期性扰动,采用电压外环迭代学习控制+电流内环无差拍控制的双环控制策略,具体策略如下:
设负载参考电压为yd(t),负载采样电压为yk(t),可得输出误差为:ek(t)=yd(t)-yk(t),采用迭代学习控制开闭环P型学习律进行迭代,对应学习律公式如下:
uk+1(t)=uk(t)+Γ1(t)ek(t)+Γ2(t)ek+1(t)
得迭代学习控制算法流程如下:
(1)初始时,设负载参考电压为yd(t),初始控制量为u0(t),时间间隔为t∈[0,T];
(2)系统的初始输出量为yk(0),初始状态量为xk(0);
(3)使控制输入量uk(t)输入到被控系统中,得系统输出量为yk(t),重复操作;
(4)在时间间隔t∈[0,T]内负载采样电压与参考电压的误差为ek(t)=yd(t)-yk(t);采用上式学习律公式计算,得新的控制输入量为uk+1(t);
(5)判断,迭代是否满足了停止条件(预设的迭代次数),如果满足就停止;否则,令k=k+1,转到步骤(2),继续运行;
经若干次迭代后,使得yk(t)→yd(t);
迭代学习控制开闭环P型学习律若满足||I-Γ1(t)D(t)||·||[I+Γ2(t)D(t)]-1||<1,则控制律收敛;由此可计算出Γ1(t)、Γ2(t)的值;
由于迭代学习控制动态性能较差,对此采样两电感电流作为内环控制,由于电流比电压有更快的响应速度,系统的许多变化都会第一时间在电流上有所表现,所以内环电流控制能起到增强系统稳定性和提高动态响应性能的能力。
相较于现有技术,本发明具有以下有益效果:本发明采用新型器件SiC MOSFET,提出了电压外环迭代学习控制+电流内环无差拍控制的双环控制策略不仅保留了双Buck全桥逆变器无桥臂直通问题,提高双Buck逆变器的输出效率,电压利用率高,且解决了直流电源波动、死区效应、稳态时线性和非线性负载电流扰动引起的周期性扰动问题。
附图说明
图1为双Buck全桥逆变器主电路拓扑图。
图2为迭代学习控制算法流程图。
图3为传统双环PID控制输出电压仿真波形图。
图4为迭代学习控制下输出电压仿真波形图。
图5为迭代学习控制下参考和实际输出电压仿真波形图。
图6为加周期性扰动后传统双环PID控制输出电压仿真波形图。
图7为迭代学习控制下加周期性扰动后参考与实际输出电压波形图。
具体实施方式
下面结合附图1-7,对本发明的技术方案进行具体说明。
本发明的一种双Buck全桥逆变器迭代学习控制方法,针对逆变器在直流电源波动、死区效应、稳态时线性和非线性负载电流扰动产生的周期性扰动,采用电压外环迭代学习控制+电流内环无差拍控制的双环控制策略,使系统输出电压能精确跟踪参考信号,提高双Buck逆变器的输出效率,并增强系统稳定性和提高动态响应性能;该方法具体实现步骤如下,
根据基尔霍夫电压和电流定律,由于滤波电感L1与L2的电流iL1(t)=iL2(t),可令iL1(t)=iL2(t)=iL(t),且令电感量L1=L2=L,滤波电容C,由于逆变器正负半周对称,因此这里只分析正半周,可令UA(t)=U(t),得逆变器系统模型如下:
选择电容电压uc和电感电流iL为状态变量,逆变器交流输出电压U(t)和负载电流iR(t)为输入,电容电压uc为系统输出;于是,x(t)=[uc(t),iL(t)],u(t)=[U(t),iR(t)],y(t)=uc(t);逆变器系统状态方程为:
其中,C=(1 0)
由于直流电源波动、死区效应、稳态时线性和非线性负载电流扰动引起的周期性扰动,对应的逆变器系统状态方程可写为:
其中,w(t),v(t)为周期性扰动;为解决该周期性扰动,采用电压外环迭代学习控制+电流内环无差拍控制的双环控制策略,具体策略如下:
设负载参考电压为yd(t),负载采样电压为yk(t),可得输出误差为:ek(t)=yd(t)-yk(t),采用迭代学习控制开闭环P型学习律进行迭代,对应学习律公式如下:
uk+1(t)=uk(t)+Γ1(t)ek(t)+Γ2(t)ek+1(t)
得迭代学习控制算法流程如下:
(1)初始时,设负载参考电压为yd(t),初始控制量为u0(t),时间间隔为(t∈[0,T])。
(2)系统的初始输出量为yk(0),初始状态量为xk(0)。
(3)使控制输入量uk(t)(t∈[0,T])输入到被控系统中,得系统输出量为yk(t)(t∈[0,T])。重复操作。
(4)在一定时间间隔(t∈[0,T])内负载采样电压与参考电压的误差为ek(t)=yd(t)-yk(t)。采用上式迭代学习律计算,得新的控制输入量为(t∈[0,T])uk+1(t)。
(5)判断,迭代是否满足了停止条件(预设的迭代次数),如果满足就停止。否则,令k=k+1,转到步骤(2),继续运行。
经若干次迭代后,使得yk(t)→yd(t);
该迭代学习控制开闭环P型学习律若满足||I-Γ1(t)D(t)||·||[I+Γ2(t)D(t)]-1||<1,则控制律收敛;由此可计算出Γ1(t)、Γ2(t)的值;
然而,迭代学习控制动态性能较差,对此采样两电感电流作为内环控制,由于电流比电压有更快的响应速度,系统的许多变化都会第一时间在电流上有所表现,所以内环电流控制能起到增强系统稳定性和提高动态响应性能的能力。
以下为本发明的具体实施过程。
本发明方法的主电路拓扑如图1所示。
本发明主要研究双Buck全桥逆变器,用电压迭代学习控制+电流无差拍控制的控制策略来解决周期性扰动问题。具体实例如下:
仿真验证
为了验证本发明方法的可行性,在PSIM下进行仿真实验。仿真结果验证了所设计控制策略的效果。
仿真参数选取如下:
表1:系统整体相关参数
图3为传统双环PID控制输出电压仿真波形图,由图可以看出系统能很好跟踪参考波形。
图4为迭代学习控制下输出电压仿真波形图,由图可以看出THD值只有2.03%。
图5为迭代学习控制下参考和实际输出电压仿真波形图,由图可以看出在0.17s处系统完全跟踪。
图6为加周期性扰动后传统双环PID控制输出电压仿真波形图,由图当加入扰动时,传统双环控制策略下的输出波形发生波动,THD达6.03%;图7是迭代学习控制下加周期性扰动后参考与实际输出电压波形图,由图可以看出迭代学习控制策略下输出电压波形能迅速消除扰动影响且短时间内达到完全跟踪,THD为1.32%。
由上述说明了本发明具有较好的负载适应能力和优越的跟踪性能。
以上是本发明的较佳实施例,凡依本发明技术方案所作的改变,所产生的功能作用未超出本发明技术方案的范围时,均属于本发明的保护范围。

Claims (2)

1.一种双Buck全桥逆变器迭代学习控制方法,其特征在于:针对逆变器在直流电源波动、死区效应、稳态时线性和非线性负载电流扰动产生的周期性扰动,采用电压外环迭代学习控制+电流内环无差拍控制的双环控制策略,提高双Buck逆变器的输出效率,使系统输出电压能精确跟踪参考信号,并增强系统稳定性和提高动态响应性能。
2.根据权利要求1所述的双Buck全桥逆变器迭代学习控制方法,其特征在于:该方法具体实现步骤如下,
根据基尔霍夫电压和电流定律,由于滤波电感L1、L2的电流iL1(t)=iL2(t),可令iL1(t)=iL2(t)=iL(t),且令电感量L1=L2=L,由于逆变器正负半周对称,因此此处仅分析正半周,可令UA(t)=U(t),得逆变器系统模型如下:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>C</mi> <mfrac> <mrow> <msub> <mi>du</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>i</mi> <mi>L</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>i</mi> <mi>R</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>L</mi> <mfrac> <mrow> <msub> <mi>di</mi> <mi>L</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <mi>U</mi> <mo>(</mo> <mi>t</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>u</mi> <mi>c</mi> </msub> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
其中,C为滤波电容的电容值;
选择电容电压uc和电感电流iL为状态变量,逆变器交流输出电压U(t)和负载电流iR(t)为输入,电容电压uc为系统输出;于是,x(t)=[uc(t),iL(t)],u(t)=[U(t),iR(t)],y(t)=uc(t);逆变器系统状态方程为:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>B</mi> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,C=(1 0)
由于直流电源波动、死区效应、稳态时线性和非线性负载电流扰动引起的周期性扰动,对应的逆变器系统状态方程可写为:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>x</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>A</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>B</mi> <mi>u</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>w</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>C</mi> <mi>x</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>v</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
其中,w(t),v(t)为周期性扰动;为解决该周期性扰动,采用电压外环迭代学习控制+电流内环无差拍控制的双环控制策略,具体策略如下:
设负载参考电压为yd(t),负载采样电压为yk(t),可得输出误差为:ek(t)=yd(t)-yk(t),采用迭代学习控制开闭环P型学习律进行迭代,对应学习律公式如下:
uk+1(t)=uk(t)+Γ1(t)ek(t)+Γ2(t)ek+1(t)
得迭代学习控制算法流程如下:
(1)初始时,设负载参考电压为yd(t),初始控制量为u0(t),时间间隔为t∈[0,T];
(2)系统的初始输出量为yk(0),初始状态量为xk(0);
(3)使控制输入量uk(t)输入到被控系统中,得系统输出量为yk(t),重复操作;
(4)在时间间隔t∈[0,T]内负载采样电压与参考电压的误差为ek(t)=yd(t)-yk(t);采用上式学习律公式计算,得新的控制输入量为uk+1(t);
(5)判断,迭代是否满足了停止条件(预设的迭代次数),如果满足就停止;否则,令k=k+1,转到步骤(2),继续运行;
经若干次迭代后,使得yk(t)→yd(t);
迭代学习控制开闭环P型学习律若满足||I-Γ1(t)D(t)||·||[I+Γ2(t)D(t)]-1||<1,则控制律收敛;由此可计算出Γ1(t)、Γ2(t)的值;
由于迭代学习控制动态性能较差,对此采样两电感电流作为内环控制,由于电流比电压有更快的响应速度,系统的许多变化都会第一时间在电流上有所表现,所以内环电流控制能起到增强系统稳定性和提高动态响应性能的能力。
CN201710493546.9A 2017-06-26 2017-06-26 双Buck全桥逆变器迭代学习控制方法 Active CN107147322B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710493546.9A CN107147322B (zh) 2017-06-26 2017-06-26 双Buck全桥逆变器迭代学习控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710493546.9A CN107147322B (zh) 2017-06-26 2017-06-26 双Buck全桥逆变器迭代学习控制方法

Publications (2)

Publication Number Publication Date
CN107147322A true CN107147322A (zh) 2017-09-08
CN107147322B CN107147322B (zh) 2023-04-07

Family

ID=59782450

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710493546.9A Active CN107147322B (zh) 2017-06-26 2017-06-26 双Buck全桥逆变器迭代学习控制方法

Country Status (1)

Country Link
CN (1) CN107147322B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707146A (zh) * 2017-10-23 2018-02-16 王为睿 双向功率流LCL型双Buck并网逆变器及其控制方法
CN109448486A (zh) * 2018-11-21 2019-03-08 扬州大学 一种应用于电力电子硬件在环的半实物仿真平台及其方法
CN110531625A (zh) * 2019-09-16 2019-12-03 江南大学 有源电子梯形电路的有限频率范围迭代学习容错控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388617A (zh) * 2008-11-05 2009-03-18 南京航空航天大学 单电流传感器双降压桥式逆变器控制方法
US20100291445A1 (en) * 2007-12-28 2010-11-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and boost converter for fuel cell
CN103825274A (zh) * 2013-10-28 2014-05-28 徐州润泽电气有限公司 一种有源电力滤波器自适应重复和无差拍复合控制的方法
CN104915527A (zh) * 2015-07-15 2015-09-16 哈尔滨工业大学 一种基于变分积分离散拉格朗日模型的Buck-Boost变换器建模与非线性分析方法
CN105703629A (zh) * 2016-02-24 2016-06-22 湖南科技大学 Buck-Boost矩阵变换器运行状态判定方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100291445A1 (en) * 2007-12-28 2010-11-18 Toyota Jidosha Kabushiki Kaisha Fuel cell system and boost converter for fuel cell
CN101388617A (zh) * 2008-11-05 2009-03-18 南京航空航天大学 单电流传感器双降压桥式逆变器控制方法
CN103825274A (zh) * 2013-10-28 2014-05-28 徐州润泽电气有限公司 一种有源电力滤波器自适应重复和无差拍复合控制的方法
CN104915527A (zh) * 2015-07-15 2015-09-16 哈尔滨工业大学 一种基于变分积分离散拉格朗日模型的Buck-Boost变换器建模与非线性分析方法
CN105703629A (zh) * 2016-02-24 2016-06-22 湖南科技大学 Buck-Boost矩阵变换器运行状态判定方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707146A (zh) * 2017-10-23 2018-02-16 王为睿 双向功率流LCL型双Buck并网逆变器及其控制方法
CN109448486A (zh) * 2018-11-21 2019-03-08 扬州大学 一种应用于电力电子硬件在环的半实物仿真平台及其方法
CN110531625A (zh) * 2019-09-16 2019-12-03 江南大学 有源电子梯形电路的有限频率范围迭代学习容错控制方法
CN110531625B (zh) * 2019-09-16 2021-02-19 江南大学 有源电子梯形电路的有限频率范围迭代学习容错控制方法

Also Published As

Publication number Publication date
CN107147322B (zh) 2023-04-07

Similar Documents

Publication Publication Date Title
CN108023352B (zh) 抑制分布式发电谐振的电网高频阻抗重塑装置及方法
CN105099200B (zh) 移相控制双有源桥直流变换器交流相量分析法及建模方法
CN105591400B (zh) 一种lcl型并网逆变器的快速鲁棒单电流反馈控制方法
CN102856904B (zh) 基于模糊逼近的有源滤波器自适应模糊滑模控制方法
CN106532701B (zh) Lcl型有源电力滤波器及其控制方法
CN103972922B (zh) 基于改进型准谐振控制加重复控制的光伏并网控制方法
CN103296905B (zh) 三相电压型功率因数校正变换器的自适应控制方法
CN104037800B (zh) 一种光伏并网逆变器电流控制方法
CN108631591A (zh) 一种双向dc-dc变换器预测电流的控制方法
CN103683930A (zh) 基于负载电流前馈的单周期Boost PFC变换器控制方法
CN109104095B (zh) 三端口变换器半开关周期采样的预测电流移相控制方法
CN103293963B (zh) 有源电力滤波器自适应模糊反演跟踪控制方法
CN107147322A (zh) 双Buck全桥逆变器迭代学习控制方法
CN103166489A (zh) 一种三相高功率因数整流器的控制电路
Liu et al. Admittance modeling, analysis, and reshaping of harmonic control loop for multiparalleled SAPFs system
CN113394965A (zh) 基于数字控制图腾柱pfc电压过零点畸变控制装置及方法
CN109802385B (zh) 电压源型逆变器的阻抗建模方法
CN102611339B (zh) 一种三相整流装置的电流控制方法
CN104065288A (zh) 光伏并网逆变器迭代比例积分电流控制方法
CN103944186A (zh) 一种三相光伏并网逆变器控制装置
CN107482677A (zh) 一种基于干扰观测器的光伏并网逆变器模糊滑模控制方法
CN104578797A (zh) 一种断续模式的高功率因数高效率反激变换器的控制方法及其装置
CN204290730U (zh) 一种断续模式的高功率因数高效率反激变换器的控制装置
CN111740635A (zh) 一种单相lc型逆变器的双环控制方法
CN206977325U (zh) 基于SiCMOSFET的双Buck全桥逆变器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 350108 Fuzhou University, No. 2 Xueyuan Road, University Town, Fuzhou City, Fujian Province

Applicant after: FUZHOU University

Applicant after: XIAMEN KEHUAHENGSHENG LIMITED BY SHARE Ltd.

Address before: 350108 Fuzhou University, No. 2 Xueyuan Road, University Town, Fuzhou City, Fujian Province

Applicant before: Fuzhou University

Applicant before: XIAMEN KEHUA HENGSHENG Co.,Ltd.

GR01 Patent grant
GR01 Patent grant