CN109795982A - 一种纳米线阵列、光电子器件及其制造方法 - Google Patents

一种纳米线阵列、光电子器件及其制造方法 Download PDF

Info

Publication number
CN109795982A
CN109795982A CN201811648671.3A CN201811648671A CN109795982A CN 109795982 A CN109795982 A CN 109795982A CN 201811648671 A CN201811648671 A CN 201811648671A CN 109795982 A CN109795982 A CN 109795982A
Authority
CN
China
Prior art keywords
nano
line
wire
ingan
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811648671.3A
Other languages
English (en)
Inventor
理查德·内策尔
王朋
周国富
斯特凡诺·桑吉内蒂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN201811648671.3A priority Critical patent/CN109795982A/zh
Priority to US17/254,107 priority patent/US20210336003A1/en
Priority to PCT/CN2019/071260 priority patent/WO2020140303A1/zh
Priority to EP19906921.2A priority patent/EP3782955B1/en
Publication of CN109795982A publication Critical patent/CN109795982A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • H01L29/0665Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body the shape of the body defining a nanostructure
    • H01L29/0669Nanowires or nanotubes
    • H01L29/0676Nanowires or nanotubes oriented perpendicular or at an angle to a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00023Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems without movable or flexible elements
    • B81C1/00031Regular or irregular arrays of nanoscale structures, e.g. etch mask layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02595Microstructure polycrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/05Arrays
    • B81B2207/056Arrays of static structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02395Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)

Abstract

本发明提供了一种纳米线阵列,所述纳米线阵列中的各纳米线紧密贴合,通过侧壁彼此接触形成三维致密层状结构,其中所述纳米线为InGaN基材料。本发明进一步提供了一种具有上述纳米线阵列的光电子器件,所述纳米线阵列外延生长在衬底表面上。本发明还提供了制造上述纳米线阵列和光电子器件的方法。

Description

一种纳米线阵列、光电子器件及其制造方法
技术领域
本发明涉及半导体材料领域,尤其涉及一种纳米线阵列,具有该纳米线阵列的光电子器件及其制造方法。
背景技术
一维纳米阵列和三维致密的单晶层常用于半导体器件的外延结构层,尤其适用于发光二极管、激光、太阳能电池和高功率电子放大器等半导体光电子器件。通常,运用于光电器件的外延层材料,其本征属性要求:缺陷密度低,有源区体积大,灵活的异质结构形成,制备工艺简单,且材料层面内横向结构稳定。
InGaN是光电子器件的理想材料。随着In含量的增加,InGaN的带隙能够实现从GaN(3.4eV/365nm)对应的紫外波段至InN(0.7eV/1.7μm)对应的近红外部分连续可调。InGaN具有非常高的吸收系数,是GaAs材料的十倍。而且,InGaN具有较高的载流子迁移率和抗辐射性,化学性质稳定,且具有生物兼容性和无毒等优点。
对于InGaN基材料,在无任何催化剂或自催化剂(Ga/In液滴)的情况下,当活性N/金属束流的比率较高时可以形成一维纳米线,而当活性N/金属束流的比率接近化学计量时则可形成致密的单晶体层。
由于位错会在垂直的纳米线侧壁湮灭(即位错极少出现在垂直纳米线侧壁)其缺陷密度会大幅度降低,因此,外延生长的一维纳米线满足低缺陷密度的要求。另外,位错造成的晶格畸变是散射载流子的中心,将严重散射载流子,影响迁移率;同时,较高的位错密度也会导致非辐射复合中心增多,限制量子效率的提升,因此位错的湮灭和密度降低有利于提高辐射复合效率和载流子迁移率。由于在衬底-纳米线界面处形成的所有位错都在生长过程中在纳米线侧壁上湮灭,因此不同于层状结构的是高品质纳米线的生长很大程度上并不依赖于对衬底的选择。纳米线生长过程中横向弹性应变的弛豫有利于在晶格失配衬底的异质外延生长中形成灵活多变的异质结构且不会形成位错,这是由于纳米线的尺寸通常较小,其直径常为50~100nm。一般通过控制活性N束流/金属束流的比例来控制纳米线的形成。为了限制总N束流和制备腔室中的压强,通常选择低金属束流,来设置高比率的活性N/金属束流,进而控制纳米线的生长。然而,低金属束流会增加金属吸附原子的迁移长度,从而促使纳米线的分离,制备得到的纳米线阵列是彼此独立且分离的。
现有技术中,通常由纯的GaN二元化合物纳米线或具有InGaN嵌入结构的GaN纳米线构成的纳米线是在高温下生长的,而高生长温度会增加金属吸附原子的迁移长度和加速纳米线的分离。因此,现有制备的纳米线阵列,各纳米线是彼此分离的,且纳米线之间的横向间距尺度为纳米线的直径或更大的距离,无法形成各纳米线之间横向向导电。这导致所形成的InGaN材料的单位表面积所能覆盖的有源区体积较小。
另外,现有技术中的纳米线容易发生机械性断裂和破碎,且相互之间电隔离。而且,这样大幅度非平面结构的材料难以应用到实际器件的制备,因为器件的工艺流程常常需要涉及到与非平面结构材料不相匹配的光刻以及金属沉积等工艺。
与之相比,外延生长的三维致密单晶层状体结构显示出每几何表面积具有较大的有效有源区体积。这样的结构易于被处理成各种器件,具有机械稳定性,且是本征横向导电的。但在生长过程中,三维致密单晶层状结构会在衬底-层界面处产生并经过有源区穿过整个层状结构一直传播到表面的位错,从而降低材料的质量。
另外需要强调的是对于紧致层状结构材料,可以采用现成的成熟技术工艺例如表面图案化处理以及沉积工艺来实现纳米线结构的分立,从而实现光散射效应所具备的高光提取和吸收效率。
为了克服现有的一维分立式纳米线结构和三维致密单晶层装结构的存在的缺陷,一种新的高性能的InGaN基材料及其制备方法是迫切需要解决的问题。
发明内容
本发明旨于提供一种纳米线阵列,所述纳米线阵列中的各纳米线紧密贴合,即每一纳米线的侧壁相互接触,以及提供具有该纳米线阵列的器件,及其制备方法。
本发明的目的之一是提供一种纳米线阵列,所述纳米线阵列中的各纳米线紧密贴合,通过侧壁彼此接触,形成三维致密层状结构。
本发明的另一目的是提供具有上述纳米线阵列的光电子器件。
本发明的另一目的是提供一种上述纳米线阵列和光电子器件的制造方法。
在本发面的一个方面中,提供了一种纳米线阵列,所述纳米线阵列中的各纳米线紧密贴合,通过侧壁彼此接触,形成三维致密层状结构,其中所述纳米线为InGaN基材料。
进一步地,所述纳米线阵列中的各纳米线可以具有100nm或更小的直径,最优选具有20~40nm的直径。例如,纳米线的直径为20nm、25nm、30nm、35nm、40nm、45nm、50nm、55nm、60nm、65nm、70nm、75nm、80nm、85nm、90nm、95nm、100nm。
进一步地,所述纳米线阵列中的各纳米线的长度对应于三维致密层状结构的厚度。优选地,所述纳米线的长度可以为100nm~2μm,例如为100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、1.5μm、2μm。但应理解,本发明的纳米线的长度并不局限与此,可以根据所要应用的目的而作出相应调整。优选地,所述纳米线的长度可取决于所述纳米线阵列所要应用的目标器件的结构(其具有已经确定的层设计),例如可取决于所要应用的发光二极管、激光器、太阳能电池和高功率电子放大器的异质结构设计。
在本发明的纳米线阵列中的各纳米线可以是高密度、细长、紧致贴合的(参见图1和图2)。具体地,所述纳米线阵列中的各纳米线之间可通过侧壁接触来实现横向导电。这意味着,在本发明的纳米线阵列中的各纳米线通过侧壁相互接触,甚至合并生长在一起。由此自组装生长的一维纳米线之间建立起互联路径,实现侧向导电。
优选地,所述纳米线的In组分的含量可以通过改变生长过程中的In/Ga束流比进行调整,以为0到1之间的任意值。也就是说,所述纳米线的In组分含量可以是纯二元化合物GaN至纯二元化合物InN之间的任何值。但应理解,所述纳米线中的In组分的含量取决于其要应用的器件。
在本发明的另一方面中,提供了一种具有本发明的纳米线阵列的光电子器件,所述纳米线阵列外延生长在衬底表面上。优选地,所述衬底可以为蓝宝石、氮化镓、硅、碳化硅或砷化镓衬底,更优选为硅衬底。例如,本发明的InGaN基光电子器件可以采用硅晶片或硅基层状结构作为衬底。所述InGaN基光电子器件可以生长在硅晶片或硅层状结构的Si(111)或Si(100)表面上。优选地,所述衬底的表面是经过氮化或未经过氮化处理的。例如,可以按照P.Aseev等人(Applied Physics Letters 106,072102(2015))中描述的工艺,在所述InGaN基光电子器件生长前,对衬底表面进行渗氮化处理。
在本发明的又一方面中,提供了一种制造本发明的纳米线阵列的方法。
在本发明的又一方法中,提供了一种制造本发明的光电子器件的方法。该方法包括以下步骤:a)提供衬底;和,b)在所述衬底上,外延生长由纳米线阵列构成的三维致密层状结构,其中所述纳米线阵列中的各纳米线紧密贴合,通过侧壁彼此接触形成三维致密层状结构。
优选地,本发明的上述方法中,In/Ga的束流比在在0~无穷大的范围内进行调整。
进一步地,对于低于0.4的In/Ga束流比率(对应于InGaN基材料中低于30%的In含量),将生长温度调节在500~900℃之间,最优选地在550~750℃之间。这种相对较高的生长温度是常见的,并且对于低In含量的InGaN材料是需要的,可以提高晶体品质。进一步地,活性N束流可以为总金属束流的2倍以上,最优选为总金属束流的5至6倍。这种非常高的活性N束流对于在较高温度下的生长来说是必需的。
如所公知的,高生长温度可以降低活性N原子在生长表面上的粘滞效率,并且增加金属原子扩散长度,从而降低纳米线的成核密度,促进纳米线之间的分离。为了避免这些现象,在本发明中,采用了非常高的活性N束流来获得本发明的InGaN基光电子器件。可以通过新一代的射频活性N等离子体源,组合电感和电容耦合,来获得该非常高的活性N束流。
进一步地,对于高于0.4的高In/Ga的束流比率(对应于InGaN基材料中高于30%的In含量),将生长温度调节在300~500℃之间,最优选地在420~480℃之间。该生长温度可以在高In含量的InGaN的生长期间,避免发生相分离、InN分解和In解吸附。另外,由于In吸附原子迁移长度大于Ga的吸附原子迁移长度,因此可以获得高品质的材料。进一步地,活性N束流可以为总金属束流的2倍以上,最优选为总金属束流的3至4倍。该活性N束流可以使用传统的活性等离子体N源来实现。这种较低的活性N束流(与低In/Ga束流比率或In含量生长条件相比)是有契合实际的,因为较低生长温度下,活性N原子在生长表面上的粘滞系数较高,且金属吸附原子扩散长度降低,这样可提高纳米线生长成核密度(减少纳米线之间的分离趋势),从而能够实现本发明所述的InGaN基光电子器件。
进一步地,沿晶体学纤锌矿结构c轴,外延生长本发明的所述纳米线阵列。所述衬底可以支持所述纳米线阵列的这种生长。
进一步的,可以通过高纯度Ga金属蒸发源和In金属蒸发源,或相应的金属有机物前驱体,来提供Ga和In的金属束流。Ga的金属有机物前驱体例如可以为三乙基镓(TEGa)、三甲基镓(TMGa)等。In的金属有机物前驱体例如可以为三乙基铟(TEIn)、三甲基铟(TMIn)等。
此外,可以通过调节纯In和Ga金属的蒸发温度,或者通过In和Ga的金属有机前驱体的质量束流控制器,来控制In/Ga的束流比,以生长具有从纯GaN二元化合物到纯InN二元化合物之间特定In组分含量的InGaN基外延结构。
进一步地,活性N束流可由射频活性N等离子体源或通过在外延生长室中引入氨气来提供。
应理解的是,在本发明中,活性N束流和总In+Ga金属束流可以被独立地提及和控制,而不是指活性N束流与金属束流的比率。
进一步地,将总金属束流控制为对应于0.2~1μm/h的外延生长速率,最优选对应于0.5~0.6μm/h的外延生长速率。这样的金属流量可以产生高密度的成核岛(nucleationisland),用于生长紧密贴合的纳米线。
在本发明的一个实施方式中,InGaN基光电子器件可以包括在InGaN层与衬底之间的缓冲层,例如GaN或AlN缓冲层。在本发明的另一个实施方式中,所述InGaN基光电子器件可以在InGaN层与衬底之间没有缓冲层。
在本发明的一个实施方式中,所述InGaN基光电子器件可以通过分子束外延(MBE)或金属有机气相沉积(MOCVD)来生长。
在现有技术中,特别对于在Si衬底上的生长,研究主要局限于具有InGaN插入层的纯GaN纳米线或GaN纳米线,在较高生长温度(参见低In含量的InGaN的生长温度)和较低金属束流(以实现高活性N/金属束流比)下生长,生长得到的是充分分离的纳米线。现有技术中,还没有在无GaN或AlN缓冲层的情况下,在Si衬底上直接生长InGaN纳米线的先例。这是因为,本领域研究人员普遍认为需要这样的缓冲层来润湿和支持具有高晶体品质的InGaN的外延生长。因此,在没有GaN或AlN缓冲层的情况下,利用较低的生长温度(采用可以实现的适当活性N束流)外延生长制备高In组分的的紧密贴合的InGaN纳米线以实现本发明的InGaN基材料,这在现有技术中是无法实现且是未被预期的。
如上所述,与现有技术中易发生机械性断裂、破碎,且相互之间没有直接电学关联的纳米线相比,本发明的InGaN基光电子器件是由一维InGaN纳米线构成的三维致密结构,并且所述一维InGaN纳米线通过侧壁彼此接触,实现了侧向导电。本发明人发现,通过保持足够高的金属束流可以得到一种纳米线阵列,在该纳米线阵列中的各InGaN纳米线紧密贴合,由此得到由该纳米线阵列构成的InGaN基光电子器件。
本发明的InGaN基光电子器件含有0~1的In组分含量,实现了针对于光电子器件应用的InGaN基三维致密结构材料,且同时具备了一维纳米线和三维致密层状结构材料的优点,同时还避免了这两种结构各自的缺陷。具体来讲,本发明的InGaN基光电子器件具备低缺陷密度、大有源区体积、灵活的异质结结构、简易的器件工艺流程、结构性质稳定以及优选的具备面内横向导电性质。
附图说明
下面,参考附图和具体实施方式来进一步描述本发明。在附图中,通过例示的方式来示出本发明的示例性实施方式,其中相似的附图标记指示相同或类似的元件。在附图中:
图1示出了根据本发明一个实施方式的InGaN基光电子器件的俯视图。图1A为示意性InGaN基光电子器件的俯视图。其中示意性InGaN基光电子器件由具有直径(11)的InGaN纳米线构成。为更加清楚的阐明问题,不同部分的尺寸不是按比例显示的。图1B为InGaN三维致密结构的扫描电子显微镜俯视图。
图2示出了根据本发明的一个实施方式的InGaN基光电子器件的截面图。图2A示出了在衬底(12)上制备的示意性InGaN基三维致密结构材料的截面图。应理解,不同部分的尺寸不是按比例显示的。图2B示出了在经过氮化处理的Si(111)衬底上的外延生长的InGaN三维致密结构材料的扫描电子显微镜截面图。
图3示出了根据本发明的一个实施方式的InGaN基光电子器件的X射线衍射图谱。其中使用CuKα辐射,在对称的Si(111)和InGaN(0002)晶面反射附近进行ω/2θ扫描。
具体实施方式
下面通过具体实施方式对本发明进行详细说明。但是,应当理解,本发明并不限定于以下的具体实施方式。本发明的保护范围由权利要求书来定义,在其范围内,可以对本发明的下述实施方式进行任意改变和组合。实施例中提到的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本公开的保护范围。
实施例
在本实施例中,通过以下步骤制备由一维InGaN纳米线构成的三维致密层状结构:
1)提供经过氮化处理的Si(111)衬底;
2)在该Si(111)衬底上,采用等离子体辅助分子束外延设备(Vecco Gen II)外延生长一维InGaN纳米线,其中具体设置如下:
调节In/Ga总金属束流以得到约0.5μm/h的生长速率;
通过调节In/Ga束流比为5,生长温度为450℃,活性N束流是金属In/Ga束流的3倍。
通过上述方法得到了In组分含量为71%的、由紧密贴合的一维纳米线构成的InGaN三维致密结构(如图1和图2所示),该InGaN三维致密结构的厚度约600nm。
图1A为示意性InGaN三维致密结构的俯视图,其中示出了部分紧密贴合的一维纳米线,这些一维纳米线具有直径11。
图1B为上述InGaN三维致密结构材料的扫描电子显微镜俯视图。
为了测试InGaN三维致密结构的横向导电性质,通过金属蒸镀设备在结构表面沉积制备间隔为1毫米的金属铝欧姆接触。使用Keithley电流源表进行标准电流电压测试。结果显示,该InGaN三维致密结构材料的横向电学电导率是50Ω-1cm-1。这一电导率值与致密单晶InGaN外延层结构材料的电导率是相当的,为同一数量级。
图2A为示意性InGaN三维致密结构的截面图。其中示出衬底12,InGaN三维致密结构的厚度13,和一维InGaN纳米线的直径11。
图2B示出了上述在经氮化处理的Si(111)衬底上外延生长的具有71%In组分的InGaN三维致密结构的扫描电子显微镜截面图,其中InGaN三维致密结构具有600nm纳米线的厚度。
此外,通过X射线衍射测试了本实施例制备的InGaN三维致密结构,结果示于图3中。图3示出在对数坐标下的Si(111)和InGaN(0002)对称ω/2θ衍射峰,衍射光源采用Cu靶Kα1和Kα2X射线辐射。Si(111)晶面衍射峰的中心位于14.2o,71%In组分含量的InGaN(0002)晶面衍射峰中心位于16.07o。X射线衍射测试结果显示出,本实施例制备的Si基InGaN三维致密结构具有显著的、对称的晶面衍射峰。这一结果表明了本实施例制备的Si基InGaN三维致密结构具备很好的晶体质量。
通过上述内容具体说明了本发明的优选实施方案,但是本发明不限于这些实施方案。在不脱离本发明的范围的情况下,本领域技术人员可以进行各种等同的修改或替换,并且这些等同的修改或替换都应落入由本申请的权利要求书限定的范围内。

Claims (14)

1.一种纳米线阵列,其特征在于,所述纳米线阵列中的各纳米线紧密贴合,通过侧壁彼此接触形成三维致密层状结构,其中所述纳米线为InGaN基材料。
2.根据权利要求1所述的纳米线阵列,其特征在于,所述纳米线阵列中的各纳米线的直径为100nm或更小,优选为20~40nm。
3.根据权利要求1或2所述的纳米线阵列,其特征在于,所述纳米线阵列中的各纳米线的长度对应于三维致密层状结构的厚度,优选地,所述纳米线的长度为100nm~2μm。
4.根据权利要求1或2所述的纳米线阵列,其特征在于,所述纳米线阵列中的各纳米线通过侧壁彼此接触实现侧向导电。
5.一种具有权利要求1~4中任一项的纳米线阵列的光电子器件,其特征在于,所述纳米线阵列外延生长在衬底表面上,优选地,所述衬底为蓝宝石、氮化镓、硅、碳化硅或砷化镓衬底,更优选为硅衬底,最优选为硅晶片或硅基层状结构。
6.根据权利要求5所述的光电子器件,其特征在于,所述纳米线阵列生长在硅晶片或硅层状结构的Si(111)或Si(100)表面上。
7.一种制造权利要求1~4中任一项所述的纳米线阵列的方法。
8.根据权利要求7所述的方法,其特征在于,In/Ga的束流比在0~无穷大的范围内进行调整,优选地,
当In/Ga的束流比率为0.4或以下时,所述InGaN层的In含量为30%或以下,所述InGaN层的生长温度为500~900℃,更优选为550~750℃;优选地,活性N束流是金属In/Ga束流的2倍或更高,优选为金属束流的5~6倍,
当In/Ga的束流比率高于0.4,所述InGaN层的In含量高于30%,所述InGaN层的生长温度为300~500℃,更优选为420~480℃;优选地,活性N束流是金属In/Ga束流的2倍或更高,优选为金属束流的3~4倍。
9.根据权利要求7或8所述的方法,其特征在于,Ga与In的总金属束流对应于0.2~1μm/h,优选0.5~0.6μm/h的生长速率。
10.一种制造权利要求5或6中所述的光电子器件的方法,其特征在于,所述方法包括以下步骤:
1)提供衬底;和
2)在所述衬底上,外延生长由纳米线阵列构成的三维致密层状结构,其中所述纳米线阵列中的各纳米线紧密贴合,通过侧壁彼此接触形成三维致密层状结构。
11.根据权利要求10所述的方法,其特征在于,In/Ga的束流比在在0~无穷大的范围内进行调整,优选地,
当In/Ga的束流比率为0.4或以下时,所述InGaN层的In含量为30%或以下,所述InGaN层的生长温度为500~900℃,更优选为550~750℃;优选地,活性N束流是金属In/Ga束流的2倍或更高,优选为金属束流的5~6倍,
当In/Ga的束流比率高于0.4,所述InGaN层的In含量高于30%,所述InGaN层的生长温度为300~500℃,更优选为420~480℃;优选地,活性N束流是金属In/Ga束流的2倍或更高,优选为金属束流的3~4倍。
12.根据权利要求10或11所述的方法,其特征在于,沿晶体学纤锌矿结构c轴取向,外延生长纳米线。
13.根据权利要求10或11所述的方法,其特征在于,Ga与In的总金属束流对应于0.2~1μm/h,优选0.5~0.6μm/h的生长速率。
14.根据权利要求10或11所述的方法,其特征在于,所述衬底为蓝宝石、氮化镓、硅、碳化硅或砷化镓衬底,更优选为硅衬底,最优选为硅晶片或硅基层状结构。
CN201811648671.3A 2018-12-30 2018-12-30 一种纳米线阵列、光电子器件及其制造方法 Pending CN109795982A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201811648671.3A CN109795982A (zh) 2018-12-30 2018-12-30 一种纳米线阵列、光电子器件及其制造方法
US17/254,107 US20210336003A1 (en) 2018-12-30 2019-01-11 Nanowire array, optoelectronic device and preparation method thereof
PCT/CN2019/071260 WO2020140303A1 (zh) 2018-12-30 2019-01-11 一种纳米线阵列、光电子器件及其制造方法
EP19906921.2A EP3782955B1 (en) 2018-12-30 2019-01-11 Nanowire array, optoelectronic device and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811648671.3A CN109795982A (zh) 2018-12-30 2018-12-30 一种纳米线阵列、光电子器件及其制造方法

Publications (1)

Publication Number Publication Date
CN109795982A true CN109795982A (zh) 2019-05-24

Family

ID=66556952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811648671.3A Pending CN109795982A (zh) 2018-12-30 2018-12-30 一种纳米线阵列、光电子器件及其制造方法

Country Status (4)

Country Link
US (1) US20210336003A1 (zh)
EP (1) EP3782955B1 (zh)
CN (1) CN109795982A (zh)
WO (1) WO2020140303A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU197477U1 (ru) * 2019-12-09 2020-04-30 Федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" (СПБАУ РАН им. Ж.И. Алферова) Функциональный трехмерный компонент оптоэлектронного прибора
RU2731498C1 (ru) * 2019-12-06 2020-09-03 Федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" (СПБАУ РАН им. Ж.И. Алферова) Способ получения функционального трехмерного компонента оптоэлектронного прибора и функциональный трехмерный компонент оптоэлектронного прибора
RU2758776C2 (ru) * 2019-12-05 2021-11-01 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n
CN113667937A (zh) * 2021-07-30 2021-11-19 华南师范大学 一种Alq3纳米线水平阵列的制备方法及其应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114717535B (zh) * 2022-03-21 2023-07-14 太原理工大学 一种在硅衬底上制备纤锌矿InGaN纳米棒的方法
CN116682843B (zh) * 2023-08-03 2023-11-28 浙江大学 一种纳米线发光器件及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396028A (zh) * 2012-05-24 2015-03-04 香港大学 不需要颜色转换的白色纳米发光二极管
CN107507892A (zh) * 2017-08-25 2017-12-22 华南理工大学 一种高发光效率的垂直结构led芯片及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9035278B2 (en) * 2011-09-26 2015-05-19 Glo Ab Coalesced nanowire structures with interstitial voids and method for manufacturing the same
US8350249B1 (en) * 2011-09-26 2013-01-08 Glo Ab Coalesced nanowire structures with interstitial voids and method for manufacturing the same
US10403498B2 (en) * 2013-10-31 2019-09-03 National University Corporation Hakkaido University Group III-V compound semiconductor nanowire, field effect transistor, and switching element
CN108193230B (zh) * 2017-12-29 2019-07-30 厦门理工学院 一种钽衬底上生长InxGa1-xN纳米线的光电极及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104396028A (zh) * 2012-05-24 2015-03-04 香港大学 不需要颜色转换的白色纳米发光二极管
CN107507892A (zh) * 2017-08-25 2017-12-22 华南理工大学 一种高发光效率的垂直结构led芯片及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PAUL E.D. SOTO RODRIGUEZ, VERONICA CALDERON NASH, ET AL.: "Electrocatalytic oxidation enhancement at the surface of InGaN films and nanostructures grown directly on Si(111).", 《ELECTROCHEMISTRY COMMUNICATIONS》 *
PAVEL ASEEV, PAUL E.D. SOTO RODRIGUEZ, ET AL.: "Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range.", 《APPLIED PHYSCIS LETTERS》 *
PRAVEEN KUMAR, POOJA DEVI, ET AL.: "Structural, optical and Carrier dynamics of self-assembly InGaN nanocolumns on Si(111).", 《SUPERLATTICES AND MICROSTRUCTURES》 *
PRAVEEN KUMAR, POOJA DEVI, ET AL.: "Ultrafast Carrier dynamics of InxGa1-xN nanostructures grown directly on Si(111).", 《OPTICAL MATERIALS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2758776C2 (ru) * 2019-12-05 2021-11-01 Федеральное государственное бюджетное учреждение науки Физико-технический институт им. А.Ф. Иоффе Российской академии наук Способ изготовления наноколончатой гетероструктуры на основе соединений iii-n
RU2731498C1 (ru) * 2019-12-06 2020-09-03 Федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" (СПБАУ РАН им. Ж.И. Алферова) Способ получения функционального трехмерного компонента оптоэлектронного прибора и функциональный трехмерный компонент оптоэлектронного прибора
RU197477U1 (ru) * 2019-12-09 2020-04-30 Федеральное государственное бюджетное учреждение высшего образования и науки "Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алферова Российской академии наук" (СПБАУ РАН им. Ж.И. Алферова) Функциональный трехмерный компонент оптоэлектронного прибора
CN113667937A (zh) * 2021-07-30 2021-11-19 华南师范大学 一种Alq3纳米线水平阵列的制备方法及其应用
CN113667937B (zh) * 2021-07-30 2023-06-06 华南师范大学 一种Alq3纳米线水平阵列的制备方法及其应用

Also Published As

Publication number Publication date
EP3782955B1 (en) 2024-06-05
US20210336003A1 (en) 2021-10-28
WO2020140303A1 (zh) 2020-07-09
EP3782955C0 (en) 2024-06-05
EP3782955A1 (en) 2021-02-24
EP3782955A4 (en) 2021-09-01

Similar Documents

Publication Publication Date Title
CN109795982A (zh) 一种纳米线阵列、光电子器件及其制造方法
US8148712B2 (en) Group III nitride compound semiconductor stacked structure
TWI231077B (en) Semiconductor light emitting device and its manufacturing method
US6773946B2 (en) Method for fabricating light-emitting diode using nanosize nitride semiconductor multiple quantum wells
CN107104175B (zh) 半导体器件和用于制造半导体器件的方法
US20070158661A1 (en) ZnO nanostructure-based light emitting device
WO2008020599A1 (en) Method for manufacturing group iii nitride compound semiconductor light-emitting device, group iii nitride compound semiconductor light-emitting device, and lamp
US9153648B2 (en) Semiconductor stacked body, method for manufacturing same, and semiconductor element
JPH05343741A (ja) 窒化ガリウム系半導体素子及びその製造方法
CN104465913B (zh) 具有双InGaN子量子阱的共振隧穿二极管及其制作方法
JP2015082662A (ja) 半導体バッファ構造体、それを含む半導体素子及び半導体バッファ構造体を利用した半導体素子の製造方法
CN106030834A (zh) 用于制造光电子半导体芯片的方法和光电子半导体芯片
CN110379854A (zh) 一种适用于功率器件的氮化镓外延技术
CN109075224A (zh) 半导体晶片
US7436045B2 (en) Gallium nitride-based semiconductor device
EP4187576A1 (en) Heteroepitaxial structure with a diamond heat sink
JP3772816B2 (ja) 窒化ガリウム結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
US20050082563A1 (en) Group iii nitride semiconductor device and its method of manufacture
JP2004115305A (ja) 窒化ガリウム単結晶基板、その製造方法、窒化ガリウム系半導体素子および発光ダイオード
CN105679903B (zh) 一种半极性led外延结构及其制备方法
US20140264261A1 (en) Light emitting device on metal foam substrate
KR100693805B1 (ko) 질화갈륨계 화합물 반도체 소자와, 이의 제조 방법
US20210272802A1 (en) Ingan epitaxy layer and preparation method thereof
CN110444598A (zh) 高电子迁移率晶体管及其制备方法
TW201248690A (en) Semiconductor laminate and process for production thereof, and semiconductor element

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190524