CN109791995A - 用于防止阴离子交换的卤化物钙钛矿纳米颗粒的加壳 - Google Patents

用于防止阴离子交换的卤化物钙钛矿纳米颗粒的加壳 Download PDF

Info

Publication number
CN109791995A
CN109791995A CN201780059699.0A CN201780059699A CN109791995A CN 109791995 A CN109791995 A CN 109791995A CN 201780059699 A CN201780059699 A CN 201780059699A CN 109791995 A CN109791995 A CN 109791995A
Authority
CN
China
Prior art keywords
core
shell
halide perovskite
semiconductor nanoparticle
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780059699.0A
Other languages
English (en)
Other versions
CN109791995B (zh
Inventor
奈杰尔·L·皮克特
纳瑟莉·C·格雷斯蒂
翁布雷塔·马萨拉
李�杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanoco Technologies Ltd
Original Assignee
Nanoco Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanoco Technologies Ltd filed Critical Nanoco Technologies Ltd
Publication of CN109791995A publication Critical patent/CN109791995A/zh
Application granted granted Critical
Publication of CN109791995B publication Critical patent/CN109791995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • C01P2002/34Three-dimensional structures perovskite-type (ABO3)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/62Quaternary ammonium compounds
    • C07C211/63Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)
  • Led Device Packages (AREA)

Abstract

核/壳半导体纳米颗粒结构包括:包含卤化物钙钛矿半导体的核,和包含不是卤化物钙钛矿的半导体材料(并且基本上不含卤化物钙钛矿)的壳。卤化物钙钛矿半导体核可以是AMX3形式,其中:A是有机铵,比如CH3NH3 +、(C8H17)2(CH3NH3)+、PhC2H4NH3 +、C6H11CH2NH3 +或1‑金刚烷基甲基铵,脒比如CH(NH2)2 +,或碱金属阳离子,比如Li+、Na+、K+、Rb+或Cs+;M是二价金属阳离子,比如Mg2+、Mn2+、Ni2+、Co2+、Pb2+、Sn2+、Zn2+、Ge2+、Eu2+、Cu2+或Cd2+;并且X是卤素阴离子(F、Cl、Br、I)或卤素阴离子的组合。

Description

用于防止阴离子交换的卤化物钙钛矿纳米颗粒的加壳
相关申请的交叉引用:
本申请要求2016年9月29日提交的美国临时申请序列号62/401,485和2016年10月28日提交的美国临时申请序列号62/414,110的权益,这些美国临时申请的内容通过引用以其整体并入本文。
关于联邦资助研究或开发的声明:不适用
发明背景
1.发明领域
本发明通常涉及半导体纳米颗粒(或“量子点”)。更具体地,本发明涉及卤化物钙钛矿纳米晶体。
2.包括按照37CFR 1.97和1.98的规定公开的信息的相关技术的描述
钙钛矿是表现出与钙钛氧化物(CaTiO3)相同的晶体结构的材料,其显示出多种已经开发用于技术应用的令人关注的性质。通常,钙钛矿表现为ABX3形式,其中A和B是具有实质上不同的尺寸的阳离子,并且X是与A和B两者键合的阴离子。
AMX3形式的卤化物钙钛矿纳米颗粒,其中A是有机铵(例如CH3NH3 +)或碱金属阳离子(例如Li+、Na+、K+、Rb+、Cs+),M是二甲金属阳离子(例如Mg2+、Mn2+、pb2+、Sn2+、Zn2+),并且X是卤素阴离子(例如F-、Cl-、Br-、I-),由于已经被发现特别适合于光伏和发光应用的材料性质而受到相当大的关注。特别地,CH3NH3PbX3和CsPbX3(X=Cl、Br、I)的纳米颗粒可以通过改变卤化物组成而被调节为具有可见光谱上的光致发光,并且具有高的量子产率(QY;高达约90%)和窄的半峰全宽(FWHM;一般为约20-40nm)。因此,正在研究卤化物钙钛矿纳米颗粒用于显示应用,比如将它们结合到液晶显示器(LCD)的背光单元(BLU)中。[Z.Bai和H.Zhong,Sci.Bull.,2015,60,1622]然而,卤化物钙钛矿纳米颗粒的一个缺点是卤化物在组合时进行快速的阴离子交换[G.Nedelcu,L.Protesescu,S.Yakunin,M.I.Bodnarchuk,M.J.Grotevent和M.V.Kovalenko,Nano Lett.,2015,15,5635],导致各自PL发射的损失,[S.Pathak,N.Sakai,F.W.R.Rivarola,S.D.Stranks,J.Liu,G.E.Eperon,C.Ducati,K.Wojciechowski,J.T.Griffiths,A.A.Haghighirad,A.Pelleroque,R.H.Friend和H.J.Snaith,Chem.Mater.,2015,27,8066]。[Q.A.Akkermann,V.D’Innocenzo,S.Accornero,A.Scarpellini,A.Petrozza,M.Prato和L.Manna,J.Am.Chem.Soc.,2015,137,10276]这在目的是在LCD BLU中将蓝色发光二极管(LED)激发源与发射绿光和红光的卤化物钙钛矿纳米颗粒组合时提出了重大的挑战。
在量子点(QD)的合成中,用较宽带隙半导体材料的“壳”涂覆“核”半导体材料是通常用于消除导致非-辐射电子-空穴复合和因此降低QY的悬键以及表面缺陷的方法。由于卤化物钙钛矿核纳米颗粒显示出高的QY,所以很少研究核/壳卤化物钙钛矿纳米颗粒结构。据申请人所知,仅有的对核/壳卤化物钙钛矿纳米颗粒的研究是来自Bhaumik及其同事的报道[S.Bhaumik,S.A.Veldhuis,Y.F.Ng,M.Li,S.K.Muduli,T.C.Sum,B.Damodaran,S.Mhaisalkar和N.Mathews,Chem.Commun.,2016,52,7118],他们用(C8H17)2(CH3NH3)PbBr2为CH3NH3PbBr3核加壳以研究通过用较宽带隙的有机卤化物钙钛矿加壳而提供的性质。然而,没有在卤化物钙钛矿纳米颗粒中使用半导体壳作为阻挡物以防止卤化物阴离子迁移的报道。Bhaumik等描述了用(C8H17)2PbBr2为CH3NH3PbBr3核加壳以研究通过用较宽带隙的有机卤化物钙钛矿加壳提供的性质。[S.Bhaumik,S.A.Veldhuis,Y.F.Ng,M.Li,S.K.Muduli,T.C.Sum,B.Damodaran,S.Mhaisalkar和N.Mathews,Chem.Commun.,2016,52,7118]。然而,在核和壳两者中都存在卤素离子表明,将无法通过壳层减轻在包含不同卤素离子的纳米颗粒之间的阴离子交换。
Pathak等报道了可以通过以下方式防止在具有不同卤化物组成的(OA:MA)PbX3(OA=辛基铵;MA=甲基铵;X=Cl-;Br-;I-)纳米晶体之间的阴离子交换:单独地将具有不同组成的卤化物钙钛矿纳米晶体的溶液与聚苯乙烯珠混合,然后将各溶液混合到一起并且加工以形成膜。[同上]该途径与其中所有纳米颗粒的颜色可以在单个加工步骤中组合的途径相比,对于每种颜色需要另外的加工以形成聚合物溶液。
纳米颗粒制造商Nanograde Ltd.(Staefa,瑞士)已经通过将发射红光和绿光的纳米颗粒在其并入到树脂基质中之前单独包封在聚合物中解决了包含发射红光和发射绿光的卤化物钙钛矿纳米晶体的LCD背光单元中的阴离子交换的问题。[S.Halim,HighPerformance Cadmium-Free QD Formulations for LCD Backlight Films(用于LCD背光膜的高性能无镉QD制剂),在SID Display Week提出,旧金山,加利福尼亚州,2016年5月24至26日。
http://nanograde.com/wp-content/uploads/2016/06/Nanograde_QD_SID_Talk.pdf]。该方法已经用于制备显示在国际照明委员会1976(the CommissionInternationale de l’Eclairage 1976)(CIE 1976)颜色空间中的国家电视系统委员会(the National Television Systems Committee,NTCS)标准的108%区域的色域的BLU。然而,与其中在单一聚合物基质中组合发射红光和绿光的纳米颗粒的方法相比,该方法需要单独将发射红光和绿光的纳米颗粒加工成聚合物基质,由此增加了加工步骤。
发射绿光的CH3NH3PbBr3纳米颗粒已经与红色K2SiF6:Mn4+(KSF)磷光体和蓝色InGaN LED组合使用以形成显示在CIE 1931颜色空间中的NTSC颜色标准的121%(100%覆盖率)的背光。[Q.Zhou,Z.Bai,W.-G.Lu,Y.Wang,B.Zou和H.Zhong,Adv.Mater.,2016,在印刷前,DOI:10.1002/adma.201602651]将纳米颗粒侵入聚偏二氟乙烯(PVDF)基质,并且将KSF掺入到粘合剂层中。该方法的一个缺点是纳米颗粒和磷光体层需要分别加工,增加了加工时间和成本。还注意到,复合膜在高于70℃不稳定。
因此,需要一种简单的用于组合不同的卤化物钙钛矿纳米颗粒同时防止阴离子交换的方法。
发明概述
如图1所示,公开了一种核/壳半导体纳米颗粒结构,其包括:包含卤化物钙钛矿半导体的核,和包含不是卤化物钙钛矿的半导体材料(并且基本上不含卤化物钙钛矿)的壳。卤化物钙钛矿半导体核可以是AMX3形式,其中:A是有机铵,比如但不限于CH3NH3 +、(C8H17)2(CH3NH3)+、PhC2H4NH3 +、C6H11CH2NH3 +或1-金刚烷基甲基铵,脒(anidinium),比如但不限于CH(NH2)2 +,或碱金属阳离子,比如但不限于Li+、Na+、K+、Rb+或Cs+;M是二价金属阳离子,比如但不限于Mg2+、Mn2+、Ni2+、Co2+、Pb2+、Sn2+、Zn2+、Ge2+、Eu2+、Cu2+或Cd2+;并且X是卤素阴离子(F-、Cl-、Br-、I-)或卤素阴离子的组合。所示壳可以作为阻挡物以防止一种或多种卤素阴离子从所述核迁移,由此防止当在溶液或基质中组合多于一种类型的卤化物钙钛矿纳米颗粒时的阴离子交换。本发明特别适用于将纳米颗粒的不同颜色组合以用于显示装置。
几幅附图的简述
图1是示出根据本发明的某些核/壳纳米晶体的结构的横截面图。
图2示出了(A)核和(B)核/壳纳米颗粒的UV-vis光谱和PL光谱。与未钝化的核相比,UV-vis激发峰和核/壳材料的发射波长红移。
发明详述
在本文中,描述了核/壳纳米颗粒,其包括卤化物钙钛矿半导体核和不同于卤化物钙钛矿的材料的半导体壳,其中所述壳可以作为阻挡物以防止一种或多种卤素阴离子从所述核迁移,由此防止当在溶液或基质中组合多于一种类型的卤化物钙钛矿纳米颗粒时的阴离子交换。这样的核/壳纳米颗粒的结构的横截面图在图1中示出。本发明特别适用于将纳米颗粒的不同颜色组合以用于显示装置。
如本文中所使用的,术语“卤化物钙钛矿”意指AMX3形式的材料,其中A是有机铵,比如但不限于CH3NH3 +、(C8H17)2(CH3NH3)+、PhC2H4NH3 +、C6H11CH2NH3 +或1-金刚烷基甲基铵,脒,比如但不限于CH(NH2)2 +,或碱金属阳离子,比如但不限于Li+、Na+、K+、Rb+或Cs+;M是二价金属阳离子,比如但不限于Mg2+、Mn2+、Ni2+、Co2+、Pb2+、Sn2+、Zn2+、Ge2+、Eu2+、Cu2+或Cd2+;并且X是卤素阴离子(F-、Cl-、Br-、I-)或卤素阴离子的组合。
卤化物钙钛矿纳米晶体核可以通过任何方法合成。卤化物钙钛矿纳米晶体的合成在现有技术中是众所周知的。例如,Veldhuis等已经综述了卤化物钙钛矿纳米晶体的胶体合成[S.A.Veldhuis,P.P.Boix,N.Yantara,M.Li,T.C.Sum,N.Mathews和S.G.Mhaisalkar,Adv.Mater.,2016,28,6804]。对于有机卤化物钙钛矿纳米晶体(例如其中A是铵离子),合成典型地通过配体辅助的再沉淀法在低于约80℃进行。此处,在使纳米颗粒稳定的配位配体的存在下将可以溶解无机铅和铵卤化物盐的极性溶剂注入到极性溶剂中。CsPbX3纳米晶体典型地通过在高于约150℃的温度的热注入来合成。
在一些实施方案中,核/壳纳米晶体包括较宽带隙的半导体材料的壳。表1示出了通过从头计算(ab initio calculation)确定的多种卤化物钙钛矿半导体的带隙。[L.Lang,J.-H.Yang,H.-R.Liu,H.J.Xiang和X.G.Gong,Phys.Lett.A,2014,378,290]
表1
在一些实施方案中,壳材料包括钙钛矿晶体结构,但是不包含卤素离子,使得核和壳共有可相容的晶体学相或类似的晶格类型以有利于壳层的外延生长并且使在核/壳界面处的晶格应变最小化。合适的材料包括但不限于:BaTiO3、SrTiO3、BiFeO3、LaNiO3、CaTiO3、PbTiO3和LaYbO3。在现有技术中已经描述了用诸如BaTiO3的材料为纳米颗粒加壳。[P.N.Oliveira,D.Alanis,R.D.Bini,D.M.Silva,G.S.Dias,I.A.Santos,L.F.Cótica,R.Guo和A.S.Bhalla,Integrated Ferroelectrics,2016,174,88]
在其他实施方案中,壳材料包含不包括钙钛矿晶体结构的半导体。合适的材料包括但不限于:
IIA-VIB(2-16)材料,其包含来自元素周期表的第2族的第一元素和来自元素周期表的第16族的第二元素,并且还包括三元、四元或更高等级的材料和掺杂材料,比如但不限于:MgS、MgSe、MgTe、CaS、CaSe、CaTe、SrS、SrSe、SrTe;
IIB-VIB(12-16)材料,其包含来自元素周期表的第12族的第一元素和来自元素周期表的第16族的第二元素,并且还包括三元、四元和更高等级的材料和掺杂材料,比如但不限于:ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe;
II-V材料,其包含来自元素周期表的第12族的第一元素和来自元素周期表的第15族的第二元素,并且还包括三元、四元和更高等级的材料和掺杂材料,比如但不限于:Zn3P2、Zn3As2、Cd3P2、Cd3As2、Cd3N2、Zn3N2
III-V材料,其包含来自元素周期表的第13族的第一元素和来自元素周期表的第15族的第二元素,并且还包括三元、四元和更高等级的材料和掺杂材料,比如但不限于:BP、AlP、AlAs、AlSb;GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、AlN、BN;
III-IV材料,其包含来自元素周期表的第13族的第一元素和来自元素周期表的第14族的第二元素,并且还包括三元、四元和更高等级的材料和掺杂材料,比如但不限于:B4C、Al4C3、Ga4C;
III-VI材料,其包含来自元素周期表的第13族的第一元素和来自元素周期表的第16族的第二元素,并且还包括三元、四元和更高等级的材料和掺杂材料,比如但不限于:Al2S3、Al2Se3、Al2Te3、Ga2S3、Ga2Se3、In2S3、In2Se3、Ga2Te3、In2Te3
IV-VI材料,其包含来自元素周期表的第14族的第一元素和来自元素周期表的第16族的第二元素,并且还包括三元、四元和更高等级的材料和掺杂材料,比如但不限于:PbS、PbSe、PbTe、Sb2Te3、SnS、SnSe、SnTe;
包含来自元素周期表d区中任一族的第一元素和来自元素周期表的第16族的第二元素的材料,并且任选地包含来自元素周期表的第13族的任何元素以形成三元、四元和更高等级的材料和掺杂材料,比如但不限于:NiS、CrS、CuInS2、CuInSe2、CuGaS2、CuGaSe2、Cu2ZnSnS4
壳生长的方法没有限制。用于为纳米晶体核加壳的方法在本领域中是众所周知的。例如,在美国专利号7,588,828中描述了在InP核纳米晶体上的ZnS壳的生长,该美国专利的内容通过引用以其整体并入本文。
关于在诸如电子产品的消费品中使用重金属受到越来越多的关注。EU对某些有害物质使用的限制(RoHS)指令2002/95/EC限制了在电气和电子器具中可以使用的重金属的量。在全球范围内正在采取类似的法规。在一些实施方案中,壳材料不含重金属。当纳米颗粒的核含有一种或多种重金属时,不含重金属的壳层可以防止例如在垃圾填埋环境中或在生物系统中可能遇到的重金属离子从核浸滤出。
当将两种以上类型的本文所述的卤化物钙钛矿纳米晶体在溶液或基质(例如树脂)中组合时,壳层可以作为物理阻挡层以防止卤素离子之间的阴离子交换。这可以使得能够使用两种以上类型(颜色)的卤化物钙钛矿纳米晶体以形成例如发光装置,同时保留其不同的发射性质。例如,可以将发射绿光的核/壳卤化物钙钛矿纳米颗粒和发射红光的核/壳卤化物钙钛矿纳米颗粒在溶液或基质中组合,并且并入到在被发射蓝光的光源(比如发射蓝光的LED)照射时发射白光的装置中。可以将发射蓝光、绿光和红光的核/壳卤化物钙钛矿纳米颗粒在溶液或基质中组合,并且并入到在被发射紫外线的光源(比如发射紫外线的LED)照射时发射白光的装置中。另外,壳层可以有助于从卤化物钙钛矿核表面消除缺陷、悬键和陷阱态以改善纳米晶体的光致发光QY和稳定性。
实施例
实施例1.核/壳CsPbBr3/ZnS量子点的合成
首先,通过将Cs2CO3(0.407g)与十八烯(20mL)和油酸(1.55mL)在50-mL的3颈烧瓶中混合来制备油酸Cs的溶液。将所得混合物在120℃干燥1小时,然后在N2下加热至150℃,直到所有Cs2CO3溶解。将溶液保持在140℃以防止凝固。
通过将PbBr2(69mg)和十八烯(5mL)在25-mL的3颈烧瓶中混合来合成CsPbBr3核。将混浊的悬浮液在氮下加热至120℃。之后,注入油酸(0.5mL)和油胺(0.5mL),并且搅拌溶液直到PbBr2完全溶解。将反应混合物加热至180℃,并且注入油酸Cs。在5秒后,用压缩空气将混浊的黄色混合物冷却。粗制溶液的等分试样具有以下光学性质:光致发光最大值(PL最大)=507nm,半峰全宽(FWHM)=27.5nm,光致发光量子产率(PLQY)=36%。将反应溶液离心,并且通过将丙酮加入到上清液中而沉淀出颗粒。将所得粒料重新分散于己烷中。
对于加壳,将1mL的核溶液与十八烯(5mL)、乙酸锌(36.7mg)和十二烷硫醇(0.12mL)混合,并且将所得混合物在室温脱气5分钟。将烧瓶用氮重新填充并且加热至180℃。一旦温度达到180℃,就将反应再次冷却。粗制溶液的等分试样具有以下光学性质:PLmax=519nm,FWHM=17nm,PLQY=32%。与未钝化的核相比,发射波长显著红移。
实施例2.核/壳CsPbBr3/PbS QD的合成
首先,通过将Cs2CO3(0.407g)与十八烯(20mL)和油酸(1.55mL)在50-mL的3颈烧瓶中混合来制备油酸Cs的溶液。将所得混合物在120℃干燥1小时,然后在N2下加热至150℃,直到所有Cs2CO3溶解。将溶液保持在140℃以防止凝固。
通过将PbBr2(69mg)和十八烯(5mL)在25-mL的3颈烧瓶中混合来合成CsPbBr3核。将混浊的悬浮液在氮下加热至120℃。之后,注入油酸(0.5mL)和油胺(0.5mL),并且搅拌溶液直到PbBr2完全溶解。将反应混合物加热至180℃,并且注入油酸Cs。在5秒后,用压缩空气将混浊的黄色混合物冷却。粗制溶液的等分试样具有以下光学性质:PLmax=507nm,FWHM=27.5nm,PLQY=36%。将反应溶液离心,并且通过将丙酮加入上清液中而沉淀出颗粒。将所得粒料重新分散于己烷中。
对于加壳,将0.4mL的核溶液与十八烯(5mL)和十二烷硫醇(0.2mL)混合,并且将所得混合物在室温脱气5分钟。将烧瓶用氮重新填充并且加热至120℃。一旦温度达到120℃,就将反应保持10分钟,然后冷却至室温。粗制溶液的等分试样具有以下光学性质:PLmax=520nm,FWHM=18nm,PLQY=21%。与未钝化的核相比,发射波长显著红移。
实施例3.核/壳CsPbBr3/PbS量子点的合成
首先,通过将Cs2CO3(0.407g)与十八烯(20mL)、油酸(1.55mL)混合到50-mL的3颈烧瓶中来制备油酸Cs的溶液。将所得混合物在120℃干燥1小时,然后在N2下加热至150℃,直到所有Cs2CO3溶解。将溶液保持在140℃以防止凝固。
通过将PbBr2(69mg)和十八烯(5mL)在25-mL的3颈烧瓶中混合来合成CsPbBr3核。将混浊的悬浮液在氮下加热至120℃。之后,注入油酸(0.5mL)和油胺(0.5mL),并且搅拌溶液直到PbBr2完全溶解。将反应混合物加热至180℃,并且注入油酸Cs。在5秒后,用压缩空气将混浊的黄色混合物冷却。粗制溶液的等分试样具有以下光学性质:PLmax=512nm,FWHM=20nm,PLQY=31%。将反应溶液离心,并且通过将丙酮加入上清液中而沉淀出颗粒。将所得粒料重新分散于己烷中。
对于加壳,将1mL的核溶液与十八烯(3mL)、PbBr2(73mg)和十二烷硫醇(0.2mL)混合,并且将所得混合物在室温脱气5分钟。将烧瓶用氮重新填充并且加热至180℃。一旦温度达到120℃,就将反应在此温度保持30分钟并且再次冷却。粗制溶液的等分试样具有以下光学性质:PLmax=514nm,FWHM=19nm,PLQY=83%。与未钝化的核相比,发射波长稍微红移,并且PLQY显著增大。核和核/壳物质的UV-vis光谱和PL光谱在图2中示出。
与其中每种类型的卤化物钙钛矿纳米晶体必须在混合之前分别包封的现有技术方法相比,通过使得能够一起加工两种以上类型的卤化物钙钛矿纳米晶体,本发明使得能够更容易地且以更低成本加工这样的纳米晶体。
所有无机钙钛矿纳米颗粒在极性溶剂中都不稳定,而有机金属卤化物钙钛矿纳米颗粒在湿气和高温的存在下不稳定[H.C.Yoon,H.Kang,S.Lee,J.H.Oh,H.Yang和Y.R.Do,ACS Appl.Mater.Interfaces,2016,8,18189]。将非卤化物钙钛矿壳层添加到卤化物钙钛矿核纳米颗粒可以有助于克服这些稳定性问题中的一些。
上文提供使本发明的原理具体化的具体实施方案。本领域技术人员将能够想到备选方案和变化方案,即使本文中未明确公开,但是所述备选方案和变化方案使那些原理具体化,并且由此在本发明的范围内。尽管已经示出和描述本发明的具体实施方案,但是它们不打算限制本专利涵盖的范围。本领域技术人员将理解,在不脱离由所附权利要求字面上和等同地涵盖的本发明范围的情况下可以进行各种改变和修改。

Claims (20)

1.一种核/壳半导体纳米颗粒,所述核/壳半导体纳米颗粒包含:
包含卤化物钙钛矿半导体的核;和
基本上围绕所述核并且包含不是卤化物钙钛矿的半导体材料的壳,
其中所述壳基本上不含卤化物钙钛矿。
2.权利要求1所述的核/壳半导体纳米颗粒,其中所述壳包含BaTiO3、SrTiO3、BiFeO3、LaNiO3、CaTiO3、PbTiO3或LaYbO3
3.权利要求1所述的核/壳半导体纳米颗粒,其中所述壳包含第IIB-VIB族半导体材料或第IV-VI族半导体材料。
4.权利要求1所述的核/壳半导体纳米颗粒,其中所述壳包含ZnS或PbS。
5.权利要求1所述的核/壳半导体纳米颗粒,其中所述核包含AMX3形式的卤化物钙钛矿半导体,其中A是有机铵、脒或碱金属阳离子,M是二价金属阳离子,并且X是卤素阴离子。
6.权利要求5所述的核/壳半导体纳米颗粒,其中A是CH3NH3 +、(C8H17)2(CH3NH3)+、PhC2H4NH3 +、C6H11CH2NH3 +、1-金刚烷基甲基铵、CH(NH2)2 +、Li+、Na+、K+、Rb+或Cs+
7.权利要求5所述的核/壳半导体纳米颗粒,其中M是Mg2+、Mn2+、Ni2+、Co2+、Pb2+、Sn2+、Zn2 +、Ge2+、Eu2+、Cu2+或Cd2+
8.权利要求5所述的核/壳半导体纳米颗粒,其中X是F-、Cl-、Br-或I-,或其组合。
9.一种组合物,所述组合物包含:
第一核/壳半导体纳米颗粒群体;
与所述第一核/壳半导体纳米颗粒群体不同的第二核/壳半导体纳米颗粒群体,和
基质,
其中所述第一核/壳半导体纳米颗粒群体包括:
包含第一核和第一壳的核/壳半导体纳米颗粒,所述第一核包含第一卤化物钙钛矿半导体,并且
所述第一壳基本上围绕所述核并且包含不是卤化物钙钛矿的半导体材料,
其中所述第一壳基本上不含卤化物钙钛矿,并且
所述第二核/壳半导体纳米颗粒群体包括:
包含第二核和第二壳的核/壳半导体纳米颗粒,所述第二核包含与所述第一卤化物钙钛矿半导体不同的第二卤化物钙钛矿半导体,并且
所述第二壳基本上围绕所述核并且包含不是卤化物钙钛矿的半导体材料,
其中所述第二壳基本上不含卤化物钙钛矿。
10.权利要求9所述的组合物,其中所述基质包括树脂。
11.权利要求9所述的组合物,其中当被在第三波长发射的光源激发时,所述第一核/壳半导体纳米颗粒群体发射第一波长的光,并且所述第二核/壳半导体纳米颗粒群体发射第二波长的光。
12.权利要求11所述的组合物,其中所述第一波长在电磁谱的绿色区域内,并且第二波长在电磁谱的红色区域内。
13.权利要求11所述的组合物,其中所述光源是发光二极管。
14.权利要求11所述的组合物,其中所述第三波长在电磁谱的紫外或蓝色区域内。
15.一种溶液,所述溶液包含:
第一核/壳半导体纳米颗粒群体;
第二核/壳半导体纳米颗粒群体;和
溶剂,
其中所述第一核/壳半导体纳米颗粒群体包括:
包含第一核和第一壳的核/壳半导体纳米颗粒,所述第一核包含第一卤化物钙钛矿半导体,并且
所述第一壳基本上围绕所述核并且包含不是卤化物钙钛矿的半导体材料,
其中所述第一壳基本上不含卤化物钙钛矿,并且
其中所述第二核/壳半导体纳米颗粒群体包括:
包含第二核和第二壳的核/壳半导体纳米颗粒,
所述第二核包含与所述第一卤化物钙钛矿半导体不同的第二卤化物钙钛矿半导体,并且
所述第二壳基本上围绕所述核并且包含不是卤化物钙钛矿的半导体材料,
其中所述第二壳基本上不含卤化物钙钛矿。
16.权利要求15所述的溶液,其中当被在第三波长发射的光源激发时,所述第一核/壳半导体纳米颗粒群体发射第一波长的光,并且所述第二核/壳半导体纳米颗粒群体发射第二波长的光。
17.权利要求15所述的溶液,其中所述第一波长在电磁谱的绿色区域内,并且第二波长在电磁谱的红色区域内。
18.权利要求15所述的溶液,其中所述光源是发光二极管。
19.权利要求15所述的溶液,其中所述第三波长在电磁谱的紫外或蓝色区域内。
20.一种包括权利要求1所述的核/壳纳米颗粒的发光装置。
CN201780059699.0A 2016-09-29 2017-09-26 用于防止阴离子交换的卤化物钙钛矿纳米颗粒的加壳 Active CN109791995B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201662401485P 2016-09-29 2016-09-29
US62/401,485 2016-09-29
US201662414110P 2016-10-28 2016-10-28
US62/414,110 2016-10-28
PCT/IB2017/055869 WO2018060861A1 (en) 2016-09-29 2017-09-26 Shelling of halide perovskite nanoparticles for the prevention of anion exchange

Publications (2)

Publication Number Publication Date
CN109791995A true CN109791995A (zh) 2019-05-21
CN109791995B CN109791995B (zh) 2021-05-25

Family

ID=60186329

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780059699.0A Active CN109791995B (zh) 2016-09-29 2017-09-26 用于防止阴离子交换的卤化物钙钛矿纳米颗粒的加壳

Country Status (7)

Country Link
US (1) US10796901B2 (zh)
EP (1) EP3520152B1 (zh)
JP (1) JP6852919B2 (zh)
KR (1) KR102180883B1 (zh)
CN (1) CN109791995B (zh)
TW (2) TWI711583B (zh)
WO (1) WO2018060861A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938432A (zh) * 2019-12-17 2020-03-31 南京邮电大学 一种钙钛矿量子点材料的制备方法
CN114686210A (zh) * 2020-12-30 2022-07-01 Tcl科技集团股份有限公司 一种量子点材料及其制备方法与光电器件
US11535795B2 (en) 2020-11-10 2022-12-27 Huawei Technologies Canada Co., Ltd. Bipolar shell resurfaced perovskite quantum dots

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014225543B4 (de) * 2014-12-11 2021-02-25 Siemens Healthcare Gmbh Perowskit-Partikel mit Beschichtung aus einem Halbleitermaterial, Verfahren zu deren Herstellung, Detektor, umfassend beschichtete Partikel, Verfahren zur Herstellung eines Detektors und Verfahren zur Herstellung einer Schicht umfassend beschichtete Partikel
US10553367B2 (en) * 2017-10-20 2020-02-04 Qatar Foundation Photovoltaic perovskite oxychalcogenide material and optoelectronic devices including the same
CN110408378A (zh) * 2018-04-28 2019-11-05 Tcl集团股份有限公司 核壳量子点材料及其制备方法
GB201811538D0 (en) 2018-07-13 2018-08-29 Univ Oxford Innovation Ltd Stabilised a/m/x materials
KR102581137B1 (ko) * 2018-08-29 2023-09-22 삼성디스플레이 주식회사 표시 장치
KR20210089685A (ko) * 2018-11-09 2021-07-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 디바이스, 발광 기기, 표시 장치, 전자 기기, 및 조명 장치
CN110190191B (zh) * 2019-05-21 2023-06-09 青岛理工大学 一种硫化钼/铯铅卤钙钛矿量子点光电探测器及制备方法
US20220320433A1 (en) * 2019-06-28 2022-10-06 The Regents Of The University Of California Strain engineering and epitaxial stabilization of halide perovskites
KR102480363B1 (ko) * 2020-08-11 2022-12-23 연세대학교 산학협력단 압전성과 발광성이 동기화된 소재 및 이를 포함하는 소자
CN112028493B (zh) * 2020-09-17 2022-02-08 昆明理工大学 一种高透明全无机钙钛矿量子点玻璃闪烁体的制备方法及应用
KR20230107356A (ko) * 2020-11-25 2023-07-14 이데미쓰 고산 가부시키가이샤 색 변환 입자
WO2022113984A1 (ja) * 2020-11-25 2022-06-02 出光興産株式会社 色変換粒子
US20230165129A1 (en) * 2021-11-22 2023-05-25 Huawei Technologies Canada Co., Ltd. Wide bandgap perovskite quantum dots in a perovskite matrix and process for preparing same
TWI838322B (zh) * 2023-10-17 2024-04-01 國立臺北科技大學 表面修飾的銫鉛溴鈣鈦礦量子點的製造方法與其應用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124638A (zh) * 2004-12-06 2008-02-13 哈佛大学 基于纳米尺度线的数据存储
CN102668143A (zh) * 2009-09-23 2012-09-12 纳米技术有限公司 封装的基于半导体纳米粒子的材料
CN105449078A (zh) * 2015-12-21 2016-03-30 华中科技大学 一种白光led及其制备方法
WO2016072805A1 (ko) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 페로브스카이트 나노결정입자 및 이를 이용한 광전자 소자
CN107017325A (zh) * 2015-11-30 2017-08-04 隆达电子股份有限公司 量子点复合材料及其制造方法与应用

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588828B2 (en) 2004-04-30 2009-09-15 Nanoco Technologies Limited Preparation of nanoparticle materials
CN100497517C (zh) 2007-01-12 2009-06-10 中国科学院上海技术物理研究所 可调控荧光波长的ⅱ-ⅵ族半导体核壳量子点的制备方法
CN102016585B (zh) * 2008-04-09 2017-10-10 贝克顿·迪金森公司 使用包被的纳米颗粒的灵敏的免疫测定
WO2010011402A2 (en) * 2008-05-20 2010-01-28 Oxane Materials, Inc. Method of manufacture and the use of a functional proppant for determination of subterranean fracture geometries
WO2012019081A2 (en) * 2010-08-06 2012-02-09 Immunolight, Llc Color enhancement utilizing up converters and down converters
GB201208793D0 (en) 2012-05-18 2012-07-04 Isis Innovation Optoelectronic device
CN104327827B (zh) 2014-11-03 2016-08-17 南昌航空大学 钙钛矿量子点纳米晶的制备及其在量子点太阳电池中的应用
CN104388089B (zh) 2014-11-04 2017-06-06 深圳Tcl新技术有限公司 一种杂化钙钛矿量子点材料的制备方法
CN107108461B (zh) * 2014-11-06 2020-04-28 浦项工科大学校产学协力团 钙钛矿纳米结晶粒子及利用该粒子的光电元件
SG11201706058VA (en) 2015-02-06 2017-08-30 Univ Nanyang Tech Gel, method of forming the same, photovoltaic device and method of forming the same
CN104861958B (zh) 2015-05-14 2017-02-15 北京理工大学 一种钙钛矿/聚合物复合发光材料及其制备方法
CN105349140B (zh) 2015-12-08 2017-06-16 重庆大学 基于CsPbBr3‑xIx‑ZnS钙钛矿量子点异质结的制备方法及其产品
JP2017110039A (ja) 2015-12-14 2017-06-22 コニカミノルタ株式会社 発光体及びその製造方法、発光体を用いた蛍光プローブ、蛍光プローブ分散液、led装置、投射型表示装置用カラーホイール、波長変換フィルム、ディスプレイ装置、並びに光電変換装置
CN105609643B (zh) 2015-12-21 2017-12-05 永春新盛环保科技有限公司 一种钙钛矿型太阳能电池及制备方法
CN105489777B (zh) 2015-12-22 2017-10-20 成都新柯力化工科技有限公司 一种微胶囊结构的钙钛光伏材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101124638A (zh) * 2004-12-06 2008-02-13 哈佛大学 基于纳米尺度线的数据存储
CN102668143A (zh) * 2009-09-23 2012-09-12 纳米技术有限公司 封装的基于半导体纳米粒子的材料
WO2016072805A1 (ko) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 페로브스카이트 나노결정입자 및 이를 이용한 광전자 소자
CN107017325A (zh) * 2015-11-30 2017-08-04 隆达电子股份有限公司 量子点复合材料及其制造方法与应用
CN105449078A (zh) * 2015-12-21 2016-03-30 华中科技大学 一种白光led及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938432A (zh) * 2019-12-17 2020-03-31 南京邮电大学 一种钙钛矿量子点材料的制备方法
US11535795B2 (en) 2020-11-10 2022-12-27 Huawei Technologies Canada Co., Ltd. Bipolar shell resurfaced perovskite quantum dots
CN114686210A (zh) * 2020-12-30 2022-07-01 Tcl科技集团股份有限公司 一种量子点材料及其制备方法与光电器件

Also Published As

Publication number Publication date
WO2018060861A1 (en) 2018-04-05
TW201819304A (zh) 2018-06-01
US10796901B2 (en) 2020-10-06
JP6852919B2 (ja) 2021-03-31
EP3520152A1 (en) 2019-08-07
KR20190040020A (ko) 2019-04-16
US20180090312A1 (en) 2018-03-29
JP2020500134A (ja) 2020-01-09
TWI711583B (zh) 2020-12-01
KR102180883B1 (ko) 2020-11-19
TWI715020B (zh) 2021-01-01
CN109791995B (zh) 2021-05-25
TW201934490A (zh) 2019-09-01
EP3520152B1 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
CN109791995A (zh) 用于防止阴离子交换的卤化物钙钛矿纳米颗粒的加壳
JP5689575B2 (ja) 青色発光半導体ナノクリスタル物質
CN107109208B (zh) 波长转换颗粒、其制造方法和包含其的发光器件
US11180693B2 (en) Light converting luminescent composite material
Kim et al. Highly luminescent InP/GaP/ZnS nanocrystals and their application to white light-emitting diodes
Cho et al. Highly efficient blue-emitting CdSe-derived core/shell gradient alloy quantum dots with improved photoluminescent quantum yield and enhanced photostability
Han et al. Development of colloidal quantum dots for electrically driven light-emitting devices
JP2007528612A5 (zh)
TWI568665B (zh) 量子點奈米晶體結構
CN107903901B (zh) 核壳量子点、其制备方法及含其的发光器件
US20190078017A1 (en) Shell and core structures for colloidal semiconductor nanocrystals
EP3929965A1 (en) Stabilized nanocrystals
Tsukuda et al. Quantum dot phosphors free from hazardous elements: Current status and prospects for established materials and new ZnTe‐based alloys
KR102566035B1 (ko) Ⅲ―ⅴ족계 양자점 및 이의 제조방법
Ando et al. Development of bright phosphors using glasses incorporating semiconductor nanoparticles
JP2013161861A (ja) Led装置、及びその製造方法
Chenna et al. Materials Today Electronics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant