CN109786126A - 一种水系高电压电极材料的制备方法及应用 - Google Patents

一种水系高电压电极材料的制备方法及应用 Download PDF

Info

Publication number
CN109786126A
CN109786126A CN201910200408.6A CN201910200408A CN109786126A CN 109786126 A CN109786126 A CN 109786126A CN 201910200408 A CN201910200408 A CN 201910200408A CN 109786126 A CN109786126 A CN 109786126A
Authority
CN
China
Prior art keywords
carbon
carbon cloth
preparation
nanowalls
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910200408.6A
Other languages
English (en)
Other versions
CN109786126B (zh
Inventor
袁凯
黄�俊
陈义旺
谈利承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang University
Original Assignee
Nanchang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang University filed Critical Nanchang University
Priority to CN201910200408.6A priority Critical patent/CN109786126B/zh
Publication of CN109786126A publication Critical patent/CN109786126A/zh
Application granted granted Critical
Publication of CN109786126B publication Critical patent/CN109786126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

一种水系高电压电极材料的制备方法及应用,包括:制备具有高导电性、高比表面的碳布/碳纳米墙为基底材料;通过电化学沉积及电化学氧化法制备Na0.5MnO2纳米片阵列;得到碳布/碳纳米墙/Na0.5MnO2纳米片正极材料;通过水热法及后续退火制备碳包覆的多孔VN纳米片阵列;得到碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料。并将上述材料应用于制备非对称水系超级电容器。本发明制备的非对称的水系超级电容器,其工作电压可达2.6 V,同时具有96.7 W h kg‑1的能量密度、优异的循环稳定性和安全性等特点,为设计制备高能量密度超级电容器提供了一种有效的方法。

Description

一种水系高电压电极材料的制备方法及应用
技术领域
本发明属于电化学储能领域,涉及一种水系高电压电极材料的制备方法及应用。
背景技术
超级电容器作为一种新型储能器件,因其具有相较于电池高得多的功率密度、快速的充放电能力、极高的寿命、温度范围宽和环境友好等特点而备受关注。但是其能量密度远低于电池,极大的限制了其在各个领域的应用。因此,如何通过设计具有高效的电极材料来提高其能量密度成为现阶段迫切待解决的问题。
超级电容器的电极分为正极和负极。目前,大多数研究工作都是集中在如何制备高比电容的赝电容正极材料上,但当应用到超级电容器中时,其高比电容并不能有效的发挥出来,而且器件的电压范围窄,根据能量密度公式E = 1/2 CV2(其能量密度(E)与其比容量(C)和工作电位窗口(V)成正比),所制备的超级电容器能量密度仍然较低。其主要原因在于,目前大多数赝电容正极材料电压范围窄,其极高的比电容与低比电容的碳基负极材料难以有效匹配,导致器件能量密度较难提高。所以,制备高能量密度的超级电容器必须同时兼顾正极和负极,需要同时制备电压范围宽,比电容匹配的正负极来提高超级电容器能量密度。同时,为避免有机电解液带来的安全问题,环保的水系超级电容器越来越受到人们的关注。
MnO2具有较高的析氧电位(1V)和较高的比电容,是一种极具潜力的高电压超级电容器正极电极材料。最近,夏晖课题组通过原位电化学氧化Mn3O4制备的Na0.5MnO2纳米墙复合电极,其电压窗口可以扩展到0~1.3 V (vs. Ag/AgCl),比电容可达到366 F g-1(Adv.Mater. 2017, 1700804)。进一步扩展的MnO2基材料作为高电压超级电容器的可能。如上所述,制备与之对应的高电压负极也很关键,但是目前制备的负极材料电压普遍偏低,而且负极比电容也较低。如何制备具有较高的工作电压、高比电容的负极仍然具有挑战。
发明内容
本发明的目的是提供一种水系高电压电极材料的制备方法及应用。通过同时制备高电压及电容量匹配的正负极,组装成非对称的水系超级电容器,其工作电压可达2.6 V,同时具有较高的能量密度、功率密度、优异的循环稳定性和安全性等特点,为设计制备高能量密度超级电容器提供了一种有效的方法。
本发明是通过以下技术方案实现的。
本发明所述的一种水系高电压电极材料的制备方法,其特征是以高导电性的碳布/碳纳米强阵列作为基底,在其表面生长褶皱的Na0.5MnO2纳米片作为正极及碳包覆的多孔VN纳米片作为负极,以Na2SO4水溶液作为电解液,组装成非对称的扣式超级电容器。这种非对称超级电容器具有2.6 V的工作电压,在1294 W kg-1的功率密度下具有96.7 W h kg-1的能量密度,在恒电流下循环10000次后,该非对称水系超级电容器还具有92.5%的电容量保持率。
本发明所述的一种水系高电压电极材料的制备方法,其特征在于,包括如下步骤。
(1)制备具有高导电性、高比表面的碳布/碳纳米墙为基底材料。
(2)在步骤(1)制备的基底材料表面通过电化学沉积及电化学氧化法制备Na0.5MnO2纳米片阵列;得到碳布/碳纳米墙/Na0.5MnO2纳米片正极材料。
(3)在步骤(1)制备的另一基底材料表面通过水热法及后续退火制备碳包覆的多孔VN纳米片阵列;得到碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料。
进一步说,本发明步骤(2)所述的碳布/碳纳米墙/Na0.5MnO2纳米片正极材料的制备步骤如下。
1)将碳布依次用丙酮、乙醇和去离子水超声洗净待用。
2)将步骤1)得到的碳布浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4 ~ 10小时,取出干燥,然后在空气中,350 ~ 500℃条件下煅烧2小时得到碳布/碳纳米墙阵列。
3)将步骤2)得到的碳布/碳纳米墙阵列用做工作电极,浸入50 mL含0.1 ~ 0.5 MMn(CH3COO)2 和 0.1 ~ 0.2 M Na2SO4电沉积溶液中,以Ag/AgCl电极为参比电极,铂片电极为对电极,在-1.8 ~ 0 V电压下进行电化学沉积,以5 mV s-1的扫速循环1 ~ 5圈,然后用去离子水清洗,60℃干燥。最后在饱和Na2SO4溶液中,0 ~ 1.3 V电压下进行电化学氧化,以10mV s-1的扫速循环100 ~ 500圈,得到碳布/碳纳米墙/Na0.5MnO2纳米片电极。
所述的步骤2)中优选浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4小时;350℃条件下煅烧2小时。
所述的步骤3)中优选浸入50 mL含0.1 M Mn(CH3COO)2 和 0.1 M Na2SO4电沉积溶液中,以Ag/AgCl电极为参比电极,铂片电极为对电极,在-1.8 ~ 0 V电压下进行电化学沉积,以5 mV s-1的扫速循环2圈,然后用去离子水清洗,60℃干燥。最后在饱和Na2SO4溶液中,0 ~ 1.3 V电压下进行电化学氧化,以10 mV s-1的扫速循环100圈,得到碳布/碳纳米墙/Na0.5MnO2纳米片电极。
进一步说,本发明步骤(3)所述的碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料的制备步骤如下。
a)将碳布依次用丙酮、乙醇和去离子水超声洗净待用。
b)将步骤a)得到的碳布浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4 ~ 10小时,取出干燥,然后在空气中,350 ~ 500℃条件下煅烧2小时得到碳布/碳纳米墙阵列。
d)将1 ~ 2 M V2O5 和 2 ~ 8 mM H2C2O4 溶解在10 mL去离子水中,75℃条件下加热到溶液变为蓝黑色,再加入40 mL乙醇和1 ~ 2 mL H2O2,搅拌30分钟,得混合溶液;将步骤b)得到的碳布/碳纳米墙浸入混合溶液中,放入反应釜中,在180℃条件下反应5小时,然后用乙醇和去离子水清洗,干燥。最后将其浸入0.04 ~ 0.1 M葡萄糖溶液中5 ~ 10小时,取出干燥,在氮气氛围中,500 ~ 800℃条件下煅烧2小时得到碳布/碳纳米墙/碳包覆的多孔VN纳米片电极。
所述的步骤b)中优选浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4 小时;350℃条件下煅烧2小时。
所述的步骤d)中优选将1.5 M V2O5 和 5 mM H2C2O4 溶解在10 mL去离子水中,75℃条件下加热到溶液变为蓝黑色,再加入40 mL乙醇和2 mL H2O2,搅拌30分钟,得混合溶液;将步骤b)得到的碳布/碳纳米墙浸入混合溶液中,放入反应釜中,在180℃条件下反应5小时,然后用乙醇和去离子水清洗,干燥。最后将其浸入0.04 M葡萄糖溶液中10小时,取出干燥,在氮气氛围中,500℃条件下煅烧2小时得到碳布/碳纳米墙/碳包覆的多孔VN纳米片电极。
本发明所述的一种水系高电压电极材料的应用,以上述碳布/碳纳米墙/Na0.5MnO2纳米片正极材料作为正极,碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料作为负极,1 MNa2SO4溶液为电解液,制备的非对称超级电容器,可在0 ~ 2.6 V 电压范围内正常工作。
本发明与现有方法相比,具有以下技术优点。
(1)以具有高导电性和高比表面的碳布/碳纳米墙作为基底,可提高正负极活性物质的负载量,进一步提高正负极的比电容。
(2)碳布/碳纳米墙/Na0.5MnO2纳米片阵列不仅具有宽的电压窗口0 ~ 1.3 V (vs.Ag/AgCl),而且其比电容可达到557 F g-1
(3)碳布/碳纳米墙/碳包覆的多孔VN纳米片具有优异的电化学性能,包括超宽的电压窗口-1.3 ~ 0 V (vs. Ag/AgCl),高的比电容605 F g-1,及优异的倍率性能和循环稳定性。
(4)以碳布/碳纳米墙/Na0.5MnO2为正极,碳布/碳纳米墙/碳包覆的多孔VN为负极,Na2SO4水溶液作为电解液,制备的非对称超级电容器工作电压可达2.6 V,具有超高的能量密度96.7 W h kg-1及优异的循环稳定性。高于目前已报道的大多数水系超级电容器甚至部分有机系超级电容器。
(5)本发明的正负极都是在自支撑的碳布基底上实现的,无需导电剂、粘结剂的使用。通过引入碳纳米墙二级基底,可大幅提高电极的比电容。最重要的是,通过设计制备宽电压范围、电容量高且匹配的正负极,从而获得了高电压窗口、高能量密度的水系非对称超级电容器。这一发明对于推动水系超级电容器的进一步发展具有重要的意义。
附图说明
图1为实施例1中步骤c)的碳布/碳纳米墙/Na0.5MnO2纳米片的扫描电镜图。
图2为实施例1中步骤d)的碳布/碳纳米墙/碳包覆的多孔VN纳米片的扫描电镜图。
图3是实施例1中步骤d)得到的碳布/碳纳米墙/碳包覆的多孔VN纳米片的充放电曲线。
图4是实施例1中步骤e)以碳布/碳纳米墙/Na0.5MnO2为正极,碳布/碳纳米墙/碳包覆的多孔VN为负极,制备的水系非对称超级电容器的充放电图。
具体实施方式
为了使本发明的优越性更加清楚明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。此外,实施例中所描述的各个实施方式所涉及的技术手段可以多样化,并不仅限于所述实验技术手段。
实施例1。
a) 将碳布依次用丙酮、乙醇和去离子水超声洗净待用。
b) 配制40 mL含2 mM Co(NO3)2·6H2O和1 mM Zn(NO3)2·6H2O的溶液A,40 mL含20mM 2-甲基咪唑的溶液B,在搅拌下混合A和B,将步骤a) 得到碳布浸入混合溶液中4小时,取出干燥,然后在空气中,350℃条件下煅烧2小时得到碳布/碳纳米墙阵列。
c) 将步骤b) 得到的碳布/碳纳米墙阵列用做工作电极,浸入50 mL含0.1 M Mn(CH3COO)2 和 0.1 M Na2SO4电沉积溶液中,以Ag/AgCl电极为参比电极,铂片电极为对电极,在-1.8 ~ 0 V电压下进行电化学沉积,以5 mV s-1的扫速循环2圈,然后用去离子水清洗,60℃干燥。最后在饱和Na2SO4溶液中,0 ~ 1.3 V电压下进行电化学氧化,以10 mV s-1的扫速循环100圈,得到碳布/碳纳米墙/Na0.5MnO2纳米片电极。该正极材料在1 M Na2SO4为电解液中,具有宽的电压窗口0 ~ 1.3 V (vs. Ag/AgCl),在1 A g-1电流密度下,其比电容可达到557 F g-1,高于目前已经报道的Na0.5MnO2正极材料。
d) 将1.5 M V2O5 和 5 mM H2C2O4 溶解在10 mL去离子水中,75℃条件下加热到溶液变为蓝黑色,再加入40 mL乙醇和2 mL H2O2,搅拌30分钟,得混合溶液;将步骤b)得到的碳布/碳纳米墙浸入混合溶液中,放入反应釜中,在180℃条件下反应5小时,然后用乙醇和去离子水清洗,干燥。最后将其浸入0.04 M葡萄糖溶液中10小时,取出干燥,在氮气氛围中,500℃条件下煅烧2小时得到碳布/碳纳米墙/碳包覆的多孔VN纳米片电极。该负极材料在1M Na2SO4为电解液中,具有宽的电压窗口-1.3 ~ 0 V (vs. Ag/AgCl),在1 A g-1电流密度下,其比电容可达到605 F g-1,而且在恒电流充放电循环10000次后,其电容量仍能保持90.5%,具有良好的电化学循环稳定性。
e) 以1 M的Na2SO4为电解液,将步骤c)得到的碳布/碳纳米墙/Na0.5MnO2纳米片电极作为正极;将步骤d)得到的碳布/碳纳米墙/碳包覆的多孔VN纳米片电极作为负极,乙酸纤维素作为隔膜,组装成非对称的扣式超级电容器。这种非对称的水系超级电容器工作电压可达到2.6 V,在1 A g-1电流密度下,其比电容为103 F g-1,能量密度可达96.7 W h kg-1,恒电流充放电循环10000次后,该非对称水系超级电容器还具有92.5%的电容量保持率,高于目前报道的大多数水系超级电容器甚至部分有机系超级电容器。
实施例2。
a) 将碳布依次用丙酮、乙醇和去离子水超声洗净待用。
b) 配制40 mL含2 mM Co(NO3)2·6H2O和1 mM Zn(NO3)2·6H2O的溶液A,40 mL含20mM 2-甲基咪唑的溶液B,在搅拌下混合A和B,将步骤a) 得到碳布浸入混合溶液中8小时,取出干燥,然后在空气中,500℃条件下煅烧2小时得到碳布/碳纳米墙阵列。
c) 将步骤b) 得到的碳布/碳纳米墙阵列用做工作电极,浸入50 mL含0.5 M Mn(CH3COO)2 和 0.2 M Na2SO4电沉积溶液中,以Ag/AgCl电极为参比电极,铂片电极为对电极,在-1.8 ~ 0 V电压下进行电化学沉积,以5 mV s-1的扫速循环5圈,然后用去离子水清洗,60℃干燥。最后在饱和Na2SO4溶液中,0 ~ 1.3 V电压下进行电化学氧化,以10 mV s-1的扫速循环500圈,得到碳布/碳纳米墙/Na0.5MnO2纳米片电极。该正极材料在1 M Na2SO4为电解液中,具有宽的电压窗口0 ~ 1.3 V (vs. Ag/AgCl),在1 A g-1电流密度下,其比电容可达到540 F g-1,高于目前已经报道的Na0.5MnO2正极材料。
d) 将2 M V2O5 和 8 mM H2C2O4 溶解在10 mL去离子水中,75℃条件下加热到溶液变为蓝黑色,再加入40 mL乙醇和2 mL H2O2,搅拌30分钟,得混合溶液;将步骤b)得到的碳布/碳纳米墙浸入混合溶液中,放入反应釜中,在180℃条件下反应5小时,然后用乙醇和去离子水清洗,干燥。最后将其浸入0.1 M葡萄糖溶液中5小时,取出干燥,在氮气氛围中,600℃条件下煅烧2小时得到碳布/碳纳米墙/碳包覆的多孔VN纳米片电极。该负极材料在1 MNa2SO4为电解液中,具有宽的电压窗口-1.3 ~ 0 V (vs. Ag/AgCl),在1 A g-1电流密度下,其比电容可达到575 F g-1,而且在恒电流充放电循环10000次后,其电容量仍能保持91.7%,具有良好的电化学循环稳定性。
e) 以1 M的Na2SO4为电解液,将步骤c)得到的碳布/碳纳米墙/Na0.5MnO2纳米片电极作为正极;将步骤d)得到的碳布/碳纳米墙/碳包覆的多孔VN纳米片电极作为负极,乙酸纤维素作为隔膜,组装成非对称的扣式超级电容器。这种非对称的水系超级电容器工作电压可达到2.6 V,在1 A g-1电流密度下,其比电容为95 F g-1,能量密度可达89.2 W h kg-1,恒电流充放电循环10000次后,该非对称水系超级电容器还具有93.1%的电容量保持率,高于目前报道的大多数水系超级电容器甚至部分有机系超级电容器。
本发明的方法易行、可控,通过设计制备具有高电压窗口和电容匹配的正负极来协同提高超级电容器的电压窗口及能量密度,为进一步推动水系超级电容器的发展提供了一定的指导意义。
以上所述仅为本发明的较佳实施例而已,并不用于限制本发明,凡在本发明的设计思路和原则之内所作的任何修改、改进和替换等,均应包含在本发明的保护范围之内。

Claims (8)

1.一种水系高电压电极材料的制备方法,其特征是包括如下步骤:
(1)制备具有高导电性、高比表面的碳布/碳纳米墙为基底材料;
(2)在步骤(1)制备的基底材料表面通过电化学沉积及电化学氧化法制备Na0.5MnO2纳米片阵列;得到碳布/碳纳米墙/Na0.5MnO2纳米片正极材料;
(3)在步骤(1)制备的另一基底材料表面通过水热法及后续退火制备碳包覆的多孔VN纳米片阵列;得到碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料。
2.根据权利要求1所述的一种水系高电压电极材料的制备方法,其特征是步骤(2)所述的碳布/碳纳米墙/Na0.5MnO2纳米片正极材料的制备步骤如下:
1)将碳布依次用丙酮、乙醇和去离子水超声洗净待用;
2)将步骤1)得到的碳布浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4 ~ 10小时,取出干燥,然后在空气中,350 ~ 500℃条件下煅烧2小时得到碳布/碳纳米墙阵列;
3)将步骤2)得到的碳布/碳纳米墙阵列用做工作电极,浸入50 mL含0.1 ~ 0.5 M Mn(CH3COO)2 和 0.1 ~ 0.2 M Na2SO4电沉积溶液中,以Ag/AgCl电极为参比电极,铂片电极为对电极,在-1.8 ~ 0 V电压下进行电化学沉积,以5 mV s-1的扫速循环1 ~ 5圈,然后用去离子水清洗,60℃干燥;最后在饱和Na2SO4溶液中,0 ~ 1.3 V电压下进行电化学氧化,以10 mVs-1的扫速循环100 ~ 500圈,得到碳布/碳纳米墙/Na0.5MnO2纳米片电极。
3.根据权利要求2所述的一种水系高电压电极材料的制备方法,其特征是所述的步骤2)中浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4小时;350℃条件下煅烧2小时。
4.根据权利要求2所述的一种水系高电压电极材料的制备方法,其特征是所述的步骤3)中浸入50 mL含0.1 M Mn(CH3COO)2 和 0.1 Na2SO4电沉积溶液中,以Ag/AgCl电极为参比电极,铂片电极为对电极,在-1.8 ~ 0 V电压下进行电化学沉积,以5 mV s-1的扫速循环2圈,然后用去离子水清洗,60℃干燥;最后在饱和Na2SO4溶液中,0 ~ 1.3 V电压下进行电化学氧化,以10 mV s-1的扫速循环100圈,得到碳布/碳纳米墙/Na0.5MnO2纳米片电极。
5.根据权利要求1所述的一种水系高电压电极材料的制备方法,其特征是步骤(3)所述的碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料的制备步骤如下:
a)将碳布依次用丙酮、乙醇和去离子水超声洗净待用;
b)将步骤a)得到的碳布浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4 ~ 10小时,取出干燥,然后在空气中,350 ~ 500℃条件下煅烧2小时得到碳布/碳纳米墙阵列;
d)将步骤b)得到的碳布/碳纳米墙用作基底,将1 ~ 2 M V2O5 和 2 ~ 8 mM H2C2O4 溶解在10 mL去离子水中,75℃条件下加热到溶液变为蓝黑色,再加入40 mL乙醇和1 ~ 2 mLH2O2,搅拌30分钟;将步骤b)得到的碳布/碳纳米墙浸入,放入反应釜中,在180℃条件下反应5小时,然后用乙醇和去离子水清洗,干燥;最后将其浸入0.04 ~ 0.1 M葡萄糖溶液中5 ~10小时,取出干燥,在氮气氛围中,500 ~ 800℃条件下煅烧2小时得到碳布/碳纳米墙/碳包覆的多孔VN纳米片电极。
6.根据权利要求5所述的一种水系高电压电极材料的制备方法,其特征是所述的步骤2)中浸入含Co(NO3)2·6H2O、Zn(NO3)2·6H2O及2-甲基咪唑的混合溶液中4 小时;350℃条件下煅烧2小时。
7.根据权利要求5所述的一种水系高电压电极材料的制备方法,其特征是所述的步骤d)中将1.5 M V2O5 和 5 mM H2C2O4 溶解在10 mL去离子水中,75℃条件下加热到溶液变为蓝黑色,再加入40 mL乙醇和2 mL H2O2,搅拌30分钟;将步骤b)得到的碳布/碳纳米墙浸入,放入反应釜中,在180℃条件下反应5小时,然后用乙醇和去离子水清洗,干燥;最后将其浸入0.04 M葡萄糖溶液中10小时,取出干燥,在氮气氛围中,500℃条件下煅烧2小时得到碳布/碳纳米墙/碳包覆的多孔VN纳米片电极。
8.权利要求1-7项中的任意一项制备方法所制备的电极材料的应用,其特征是以上述碳布/碳纳米墙/Na0.5MnO2纳米片正极材料作为正极,碳布/碳纳米墙/碳包覆的多孔VN纳米片负极材料作为负极,1 M Na2SO4溶液为电解液,制备非对称超级电容器。
CN201910200408.6A 2019-03-16 2019-03-16 一种水系高电压电极材料的制备方法及应用 Active CN109786126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910200408.6A CN109786126B (zh) 2019-03-16 2019-03-16 一种水系高电压电极材料的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910200408.6A CN109786126B (zh) 2019-03-16 2019-03-16 一种水系高电压电极材料的制备方法及应用

Publications (2)

Publication Number Publication Date
CN109786126A true CN109786126A (zh) 2019-05-21
CN109786126B CN109786126B (zh) 2020-08-04

Family

ID=66489372

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910200408.6A Active CN109786126B (zh) 2019-03-16 2019-03-16 一种水系高电压电极材料的制备方法及应用

Country Status (1)

Country Link
CN (1) CN109786126B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176591A (zh) * 2019-05-31 2019-08-27 北京航空航天大学 一种水系锌离子二次电池及其基于有机电极材料的正极的制备方法
CN111508728A (zh) * 2020-04-29 2020-08-07 绍兴博捷智能科技有限公司 一种长寿命锰基水系混合锌离子电容器及其制备方法
CN112863890A (zh) * 2019-11-27 2021-05-28 中南大学 一种伏安循环电化学活化商用碳布的方法
CN113258025A (zh) * 2021-05-07 2021-08-13 西北工业大学 一种高性能水系电池用铋基负极及制备方法
CN112863890B (zh) * 2019-11-27 2024-07-12 中南大学 一种伏安循环电化学活化商用碳布的方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610938A (zh) * 2017-08-29 2018-01-19 中国科学院过程工程研究所 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107610938A (zh) * 2017-08-29 2018-01-19 中国科学院过程工程研究所 一种过渡金属氮化物/氮掺杂石墨烯纳米复合材料、其制备方法及应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NAWISHTA JABEEN等: "High-Performance 2.6 V Aqueous Asymmetric Supercapacitors based on In Situ Formed Na0.5MnO2 Nanosheet Assembled Nanowall Arrays", 《ADV. MATER.》 *
QICHONG ZHANG等: "Wrapping Aligned Carbon Nanotube Composite Sheets around Vanadium Nitride Nanowire Arrays for Asymmetric Coaxial Fiber Shaped Supercapacitors with Ultrahigh Energy Density", 《NANO LETT.》 *
YING WANG等: "Hierarchical nickel cobalt sulfide nanosheet on MOF-derived carbon nanowall arrays with remarkable supercapacitive performance", 《CARBON》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110176591A (zh) * 2019-05-31 2019-08-27 北京航空航天大学 一种水系锌离子二次电池及其基于有机电极材料的正极的制备方法
CN110176591B (zh) * 2019-05-31 2021-01-12 北京航空航天大学 一种水系锌离子二次电池及其基于有机电极材料的正极的制备方法
CN112863890A (zh) * 2019-11-27 2021-05-28 中南大学 一种伏安循环电化学活化商用碳布的方法
CN112863890B (zh) * 2019-11-27 2024-07-12 中南大学 一种伏安循环电化学活化商用碳布的方法
CN111508728A (zh) * 2020-04-29 2020-08-07 绍兴博捷智能科技有限公司 一种长寿命锰基水系混合锌离子电容器及其制备方法
CN113258025A (zh) * 2021-05-07 2021-08-13 西北工业大学 一种高性能水系电池用铋基负极及制备方法
CN113258025B (zh) * 2021-05-07 2023-02-28 西北工业大学 一种高性能水系电池用铋基负极及制备方法

Also Published As

Publication number Publication date
CN109786126B (zh) 2020-08-04

Similar Documents

Publication Publication Date Title
EP2613389B1 (en) Lithium air battery
CN105097299B (zh) 四氧化三钴/NiCoAl双层氢氧化物复合材料及其制备方法
CN106531456A (zh) 一种基于CuCo2S4的超级电容器材料及其制备和应用
CN108565478A (zh) 一种氨基碳纳米管负载钴酸镍复合电催化材料及制备与应用
CN107680821B (zh) 一种双金属氢氧化物@钼酸镍@石墨烯纳米复合材料、制备方法及其应用
CN109908938A (zh) 一种新型电解水阳极析氧催化剂Co@NC/CNT的制备方法
CN110223847A (zh) 一种超级电容器电极材料及制备方法
CN110350184B (zh) 一种用于电池正极材料的高容量NiMoO4储能材料的制备方法
CN107045948B (zh) NaxMnO2正极材料、制备方法及其应用
CN109786126A (zh) 一种水系高电压电极材料的制备方法及应用
CN108766776A (zh) 一种适用于碳布基柔性超级电容器电极材料的制备方法
CN108147472A (zh) 一种空心硫化钴微球催化剂的制备方法
CN104538647A (zh) 一种锂空气电池催化剂及其制备方法
CN102760583A (zh) 一种中空蜂窝状MnO2/C微纳米球和微米棒的制备方法
CN109585177A (zh) 一种核壳结构的镍钴磷整体式电极材料的制备方法
CN109767924A (zh) 一种ldh基超级电容器复合电极材料及制备方法与用途
CN102157271A (zh) 一种超级电容器
CN108831755A (zh) 一种电容器电极多元复合材料的制备方法
CN110526299B (zh) 一种核壳结构Fe2O3@PPy复合材料的制备方法及其在超级电容器中的应用
CN110697794B (zh) 一种二维中空纳米片结构的硫化钴/g-C3N4复合电极材料及其制备方法
CN109742378A (zh) 一种CoTe纳米线-石墨烯复合材料及其制备方法
CN107731552B (zh) 一种镍纳米线集流体及其制备方法
CN112382513A (zh) 一种双离子水系储能器件的制备方法
CN111268745A (zh) 一种NiMoO4@Co3O4核壳纳米复合材料、制备方法和应用
CN106683896A (zh) 一种核壳结构钼酸镍/二氧化锰复合材料的制备方法及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant