CN109753549A - 一种大圆航线距离计算方法 - Google Patents

一种大圆航线距离计算方法 Download PDF

Info

Publication number
CN109753549A
CN109753549A CN201811497138.1A CN201811497138A CN109753549A CN 109753549 A CN109753549 A CN 109753549A CN 201811497138 A CN201811497138 A CN 201811497138A CN 109753549 A CN109753549 A CN 109753549A
Authority
CN
China
Prior art keywords
point
starting point
earth
terminating
longitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811497138.1A
Other languages
English (en)
Other versions
CN109753549B (zh
Inventor
王亮亮
薛芳芳
米耘锋
葛声
曹琳
李玥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Aeronautics Computing Technique Research Institute of AVIC
Original Assignee
Xian Aeronautics Computing Technique Research Institute of AVIC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Aeronautics Computing Technique Research Institute of AVIC filed Critical Xian Aeronautics Computing Technique Research Institute of AVIC
Priority to CN201811497138.1A priority Critical patent/CN109753549B/zh
Publication of CN109753549A publication Critical patent/CN109753549A/zh
Application granted granted Critical
Publication of CN109753549B publication Critical patent/CN109753549B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Navigation (AREA)

Abstract

本发明属于飞行管理系统设计领域,涉及一种大圆航线距离计算改进方法,该方法的步骤包括:【1】对地球建立椭球面O‑XYZ坐标系;【2】求取航段起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2;【3】根据起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2获取起始点P1、终止点P2点在椭球面坐标下的坐标矢量;【4】根据起始点P1、终止点P2的椭球面的坐标矢量,叉乘求取P1点和P2点弧度夹角ω:【5】求取中间半径R;【6】求取起始点P1至终止点P2的距离D。该方法解决了高纬度远距离、超远距离计算时的精度损失,与实际情况相符,大大提升了计算精度。

Description

一种大圆航线距离计算方法
技术领域
本发明属于机载飞行管理系统领域,涉及一种大圆航线距离计算方法。
背景技术
现有飞行管理系统的距离计算方法有以下两种:该距离是指飞机从一个航路点飞向另外一个航路点之间的距离。传统距离计算方法有以下两种:
传统方法一:通过平面坐标(经纬度坐标)近似计算距离:近似认为平面上两点P1,P2,设两点经纬度坐标分别为P1(N1,E1),P2(N2,E2),通过对应经度相减的平方与纬度相减平方和,开根号,再乘以对应每1度经纬度对应的距离值,设为常系数η,η值约为111.1KM,相乘进而得到两点的距离D,具体公式如下:
传统方法二:通过球面坐标方法进行距离计算:现将经纬度坐标化为球面坐标,通过矢量运算得到两点之间的圆心角值,再乘以地球半径得到,与本文类似。但本方法将地球近似为一个球体进行计算。以固定的地球半径R=6371.4KM进行计算。
其中,方法一的优点是计算简单,直观。但是精度低,通用性差。
方法二相对方法一虽然计算相对复杂,但是考虑到地球实际情况,距离计算精度相对方法一精度会进一步提高。但高纬度距离计算时会形成精度损失,如果是高纬度又是远距离大圆航线距离计算时精度误差会进一步扩大。
发明内容
为了解决现有方法一、方法二存在的高纬度和高纬度长远距离计算时算法本身造成的精度误差问题,本发明提供的大圆航线距离计算方法考虑地球实际情况,将地球扁平率引入计算中去,实现地球半径实时动态计算,根据计算点经纬度的不同,实时计算当地位置的地球半径,进而计算大圆航线距离,解决了高纬度远距离、超远距离计算时的精度损失,与实际情况相符,提高了计算精度。
本发明的具体技术方案是:
本发明提供了一种大圆航线距离计算方法,包括以下步骤:
【1】对地球建立椭球面O-XYZ坐标系
其中,地球地心为O-XYZ坐标系的原点;垂直于赤道基本面且经过地心的一条轴称为Z轴,指向北极为正;本初子午面与赤道面重合的轴称为X轴,向东为正,Y轴由右手定则确定;
【2】求取航段起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2;
【3】根据起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2获取起始点P1、终止点P2点在椭球面坐标下的坐标矢量;
r1、r2分别为起始点P1、终止点P2在椭球面坐标下的坐标矢量;
θ1=90-N1;
θ2=90-N2;
N1,E1分别为起始点P1点的纬度值和经度值,-E1表示起始点P1的经度为西经;
N2,E2分别为终止点P2的纬度和经度值,-E2表示终止点P2的经度为西经;
【4】根据起始点P1、终止点P2的椭球面的坐标矢量,叉乘求取P1点和P2点弧度夹角ω:
r1×r2=R1R2cosω
【5】求取中间半径R;
【6】求取起始点P1至终止点P2的距离D;
D=R*ω。
进一步地,上述步骤【2】中R1和R2的具体计算方法是
其中,f为地球的椭球扁平率;a表示椭球的长轴长度,表示点所在位置处的纬度值,f表示地球扁平率;i=1,2。
本发明的有益效果:
1.本发明建立椭球面坐标模型,基于该模型进行大圆航线距离计算,替代了基于传统球面坐标模型大圆航线距离计算,更符合真实地球情况。
2.本发明在椭球面坐标模型的基础上,进一步对计算点位置的地球半径进行实时动态计算,相比传统计算大圆航线距离时采用固定的地球半径进行距离计算的方法,更符合实际情况,同时也提高了距离计算精度。
3.本发明不仅适用于短航程、低纬度距离计算,更进一步的,适用于高纬度、远航程大圆航线距离计算,精度在千分之0.5以内,适用性更广、精度更高。
附图说明
图1为椭球面坐标系的示意图;
图2为地球表面任意一点投影到椭球面坐标系的示意图;
图3为椭球面坐标系下进行大圆航线距离计算的示意图。
具体实施方式
下面结合附图对本发明的方法作进一步的描述:
一种大圆航线距离计算方法,具体执行步骤如下:
步骤1:先对地球建立椭球面坐标系:以地心为原点,建立O-XYZ坐标系。赤道为基本面,垂直于赤道基本面经过地心的一条轴称为Z轴,指向北极为正;本初子午面与赤道面重合的轴称为X轴,向东为正,Y轴与XZ平面垂直构成右手定则。如图1所示。
步骤2:求取航段起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2;
由于地球是一个不规则椭球体,在两极区,地球半径大约为6356.9088千米;而赤道地区地球半径大约是6377.830千米,期大约相差20.9千米。为了与实际更加贴近,我们在进行距离计算时将所在计算点的地球半径进行实时动态计算。为此我们引入椭球扁平率f:则R1和R2均采用下式进行计算:
其中,a表示椭球的长轴长度,在这里值为a=6378.137KM;表示点所在位置处的纬度值,地球扁平率f=0.00669437999014;i=1,2。
步骤3:将航段起始点P1、终止点P2的经纬度坐标值转换为椭球面坐标系下的坐标值,根据起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2获取起始点P1、终止点P2点在椭球面坐标下的坐标矢量;
北纬、东经为正;南纬西经为负;
如图2所示,设起始航路点P1(N1,E1),目标航路点P2(N2,E2),则
r1、r2分别为起始点P1、终止点P2在椭球面坐标下的坐标矢量;
θ1=90-N1;
θ2=90-N2;
N1,E1分别为起始点P1点的纬度值和经度值,-E1表示起始点P1的经度为西经;
【4】根据起始点P1、终止点P2的椭球面的坐标矢量,叉乘求取P1点和P2点弧度夹角ω:
r1×r2=R1R 2cosω
【5】求取中间半径R;
为了与实际贴近,在本文中引入地球半径动态计算,设P1点所在处的地球半径为R1,P2点所在的地球半径为R2,一般来讲,R1不等于R2,为了方便计算,我们取其中间值,设为R,令:
在距离计算时,利用中间值R替代传统计算时地球半径固定值R0=6371KM,更贴近实际,精度会进一步提高。
【6】求取起始点P1至终止点P2的距离D:
D=R*ω
为便于说明本发明的优势,本实施例在杰普逊航图上截取了三组数据。结合杰普逊航图三组数据分为三组例子:分别在短航程、低纬度远航程、高纬度远航程三种情况下对传统方法和本文改进后的算法做仿真对比,以说明算法的有效性。
第一组测试:短航距测试(北欧地区)。设航路点P1(N44°55.5′,E7°51.7′),P2(N44°57.9′,E8°58.2′),在杰普逊航图上读取距离数据47.2NM(87.414KM)。
传统方法1:带入传统方法1,也就是说明书公式(1)中进行计算:
可得两航路间距离D=87.15KM。
传统方法2:带入传统方法2,利用虽然是球面坐标系进行计算,但是运算中运用地球固定半径进行计算。带入计算可得:
D=6371.4*0.0137068=87.3315KM
改进后算法:带入P1、P2数据按照说明书的步骤进行计算:
带入说明书公式(5)实时计算可得P1、P2点所对应的地球半径:
R1=6367.5195KM,R2=6367.5044KM
带入公式(6),进一步可得:
R=6367.5117KM
进一步,将P1,P2经纬度平面数据按照说明书步骤化成球面坐标系下,通过矢量运算计算可得圆心弧度值,进一步计算可得改进后大圆航线距离:D=87.2783KM。
第二组测试:中低纬远距离航程测试(北美地区)。同理,在杰普逊航图上中低纬地区采集远距离航程两组航路点:
P1(N41°36.24′,W115°2.1′),P2(N47°22.41′,W106°51.78′)在杰普逊航图上真实读取两点之间距离数据491NM(909.332KM)。
同理,将航路数据分别带入传统方法1,传统方法2,和改进后算法分别进行测试:
传统方法1:D=891.218KM
传统方法2:D=910.28KM
改进后算法:D=909.92KM
第三组测试:高纬度远距离航程测试
同理在,在杰普逊航图上高纬度地区选取距离为540NM(1000KM)的两个P1(N88°01′,W111°18.8′),P2(N79°0′,W118°13.46′)
将航路数据分别带入传统方法1,传统方法2,和改进后算法分别进行测试:
传统方法1:D=1010.58KM
传统方法2:D=1002.8583KM
改进后算法:D=1000.5002KM
表1:三种方法计算结果对比表
由3组测试用例可以看出:在短航程距离计算中,3种方法基本上计算结果能够反映距离情况;但随着航程距离的增加,传统方法1缺点逐渐显现出来,精度逐渐损失,传统方法2计算误差约为1KM,改进后算法计算误差0.6KM,两者也相差不大。随着纬度的增加,第3组测试用例可以看出,在高纬度大航程计算时,传统的方法1误差大约为10KM,方法2误差为3KM,改进后算法仍能保持较高的计算精度。这是因为随着纬度的增加,地球半径以及发生量较大变化,改进后的算法实时进行当地地球半径计算更满足实际情况。进而再计算大圆航线距离,更符合实际,计算精度当然会更高,可靠性通用性稳定性也会更强。

Claims (2)

1.一种大圆航线距离计算方法,其特征在于,包括以下步骤:
【1】对地球建立椭球面O-XYZ坐标系
其中,地球地心为O-XYZ坐标系的原点;垂直于赤道基本面且经过地心的一条轴称为Z轴,指向北极为正;本初子午面与赤道面重合的轴称为X轴,向东为正,Y轴由右手定则确定;
【2】求取航段起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2;
【3】根据起始点P1、终止点P2在椭球面坐标系下对应的半径R1和R2获取起始点P1、终止点P2点在椭球面坐标下的坐标矢量;
r1、r2分别为起始点P1、终止点P2在椭球面坐标下的坐标矢量;
θ1=90-N1;
θ2=90-N2;
N1,E1分别为起始点P1点的纬度值和经度值,-E1表示起始点P1的经度为西经;
N2,E2分别为终止点P2的纬度和经度值,-E2表示终止点P2的经度为西经;
【4】根据起始点P1、终止点P2的椭球面的坐标矢量,叉乘求取P1点和P2点弧度夹角ω:
r1×r2=R1R2cosω
【5】求取中间半径R;
【6】求取起始点P1至终止点P2的距离D;
D=R*ω。
2.根据权利要求1所述的大圆航线距离计算方法,其特征在于:所述步骤【2】中R1和R2的具体计算方法是
其中,f为地球的椭球扁平率;a表示椭球的长轴长度,表示点所在位置处的纬度值,f表示地球扁平率;i=1,2。
CN201811497138.1A 2018-12-07 2018-12-07 一种大圆航线距离获取方法 Active CN109753549B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811497138.1A CN109753549B (zh) 2018-12-07 2018-12-07 一种大圆航线距离获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811497138.1A CN109753549B (zh) 2018-12-07 2018-12-07 一种大圆航线距离获取方法

Publications (2)

Publication Number Publication Date
CN109753549A true CN109753549A (zh) 2019-05-14
CN109753549B CN109753549B (zh) 2021-01-19

Family

ID=66403567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811497138.1A Active CN109753549B (zh) 2018-12-07 2018-12-07 一种大圆航线距离获取方法

Country Status (1)

Country Link
CN (1) CN109753549B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849376A (zh) * 2019-12-04 2020-02-28 中国直升机设计研究所 基于公式的大圆航线二维地图显示方法
CN111426311A (zh) * 2020-03-10 2020-07-17 民航数据通信有限责任公司 基于测地线的大圆航线计算体系方法及装置
CN111984917A (zh) * 2020-07-15 2020-11-24 北京机电工程研究所 一种球大圆航迹转弯过程中转弯中心的计算方法
CN112414429A (zh) * 2020-11-26 2021-02-26 包头市绘宇测绘服务有限责任公司 一种铁路里程测量方法
CN112651106A (zh) * 2020-12-04 2021-04-13 中国航空工业集团公司沈阳飞机设计研究所 一种等间距大圆航线确定方法及装置
CN112699531A (zh) * 2020-12-08 2021-04-23 浩亚信息科技有限公司 一种通用航空低空飞行目视参考点建立方法
CN113569197A (zh) * 2021-07-28 2021-10-29 国家海洋信息中心 一种基于地球椭球面两点等距离点解算方法
CN115290024A (zh) * 2022-07-11 2022-11-04 兵器工业卫生研究所 一种完全基于绘图的距离测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322965A (zh) * 2013-06-05 2013-09-25 哈尔滨工程大学 一种惯性导航系统横卯酉面曲率半径测量方法
CN104240541A (zh) * 2014-09-09 2014-12-24 中国电子科技集团公司第二十八研究所 一种4d航迹生成方法
CN106643729A (zh) * 2015-12-22 2017-05-10 中国电子科技集团公司第二十研究所 一种海用卫星导航设备大圆航线航路点划分与航程计算方法
US20170248969A1 (en) * 2016-02-29 2017-08-31 Thinkware Corporation Method and system for providing route of unmanned air vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103322965A (zh) * 2013-06-05 2013-09-25 哈尔滨工程大学 一种惯性导航系统横卯酉面曲率半径测量方法
CN104240541A (zh) * 2014-09-09 2014-12-24 中国电子科技集团公司第二十八研究所 一种4d航迹生成方法
CN106643729A (zh) * 2015-12-22 2017-05-10 中国电子科技集团公司第二十研究所 一种海用卫星导航设备大圆航线航路点划分与航程计算方法
US20170248969A1 (en) * 2016-02-29 2017-08-31 Thinkware Corporation Method and system for providing route of unmanned air vehicle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849376A (zh) * 2019-12-04 2020-02-28 中国直升机设计研究所 基于公式的大圆航线二维地图显示方法
CN111426311B (zh) * 2020-03-10 2022-01-04 民航数据通信有限责任公司 基于测地线的大圆航线计算体系方法及装置
CN111426311A (zh) * 2020-03-10 2020-07-17 民航数据通信有限责任公司 基于测地线的大圆航线计算体系方法及装置
CN111984917A (zh) * 2020-07-15 2020-11-24 北京机电工程研究所 一种球大圆航迹转弯过程中转弯中心的计算方法
CN111984917B (zh) * 2020-07-15 2024-01-05 北京机电工程研究所 一种球大圆航迹转弯过程中转弯中心的计算方法
CN112414429B (zh) * 2020-11-26 2023-03-31 包头市绘宇测绘服务有限责任公司 一种铁路里程测量方法
CN112414429A (zh) * 2020-11-26 2021-02-26 包头市绘宇测绘服务有限责任公司 一种铁路里程测量方法
CN112651106A (zh) * 2020-12-04 2021-04-13 中国航空工业集团公司沈阳飞机设计研究所 一种等间距大圆航线确定方法及装置
CN112651106B (zh) * 2020-12-04 2023-10-27 中国航空工业集团公司沈阳飞机设计研究所 一种等间距大圆航线确定方法及装置
CN112699531A (zh) * 2020-12-08 2021-04-23 浩亚信息科技有限公司 一种通用航空低空飞行目视参考点建立方法
CN112699531B (zh) * 2020-12-08 2023-06-09 浩亚信息科技有限公司 一种通用航空低空飞行目视参考点建立方法
CN113569197A (zh) * 2021-07-28 2021-10-29 国家海洋信息中心 一种基于地球椭球面两点等距离点解算方法
CN115290024A (zh) * 2022-07-11 2022-11-04 兵器工业卫生研究所 一种完全基于绘图的距离测量方法
CN115290024B (zh) * 2022-07-11 2024-06-04 兵器工业卫生研究所 一种完全基于绘图的距离测量方法

Also Published As

Publication number Publication date
CN109753549B (zh) 2021-01-19

Similar Documents

Publication Publication Date Title
CN109753549A (zh) 一种大圆航线距离计算方法
CN104180808B (zh) 一种用于自主空中加油的圆形锥套视觉位姿解算方法
CN104880191B (zh) 一种基于太阳矢量的偏振辅助导航方法
US10670689B2 (en) System and method for determining geo location of a target using a cone coordinate system
CN103675834B (zh) 一种室内卫星信号仿真系统
CN105043382B (zh) 无人机巡航方法及装置
CN103542816B (zh) 基于时间延迟补偿的船体变形测量方法
CN105259913B (zh) 确定飞行器自动着陆引导指令的方法及装置
CN102819019B (zh) 一种卫星波束与地球交点坐标的确定方法
CN108981734A (zh) 电子地图道路拓展方法、装置、电子设备及存储介质
CN112651106B (zh) 一种等间距大圆航线确定方法及装置
CN103471613A (zh) 一种飞行器惯性导航系统参数仿真方法
CN104215242A (zh) 一种基于横向游移坐标系的极区惯性导航方法
CN110849376A (zh) 基于公式的大圆航线二维地图显示方法
CN110515110B (zh) 数据评估的方法、装置、设备和计算机可读存储介质
CN103471614A (zh) 一种基于逆坐标系的极区传递对准方法
CN103729510A (zh) 基于内蕴变换的三维复杂模型精确镜像对称性计算方法
CN108917698B (zh) 一种方位角计算方法
CN105180950A (zh) 基于气压传感的车辆导航系统
CN109975745A (zh) 一种基于到达时间差的近远场统一定位方法
CN109099905A (zh) 一种单天体天文定位快速、直接计算法
CN104391311B (zh) 基于gps广播数据的星上无源定位方法
CN103674000B (zh) 电子罗盘实时校准算法
CN113218380B (zh) 一种电子罗盘的校正方法、装置、电子设备及存储介质
CN110909456A (zh) 一种建模方法、装置、终端设备及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant