CN109752139B - 一种氮氢混合气体真空漏孔校准装置及方法 - Google Patents

一种氮氢混合气体真空漏孔校准装置及方法 Download PDF

Info

Publication number
CN109752139B
CN109752139B CN201811534398.1A CN201811534398A CN109752139B CN 109752139 B CN109752139 B CN 109752139B CN 201811534398 A CN201811534398 A CN 201811534398A CN 109752139 B CN109752139 B CN 109752139B
Authority
CN
China
Prior art keywords
chamber
gas
stop valve
hydrogen
calibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811534398.1A
Other languages
English (en)
Other versions
CN109752139A (zh
Inventor
赵澜
孙雯君
郭美如
管保国
张瑞芳
马亚芳
高洁
刘珈彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Original Assignee
Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Physics of Chinese Academy of Space Technology filed Critical Lanzhou Institute of Physics of Chinese Academy of Space Technology
Priority to CN201811534398.1A priority Critical patent/CN109752139B/zh
Publication of CN109752139A publication Critical patent/CN109752139A/zh
Application granted granted Critical
Publication of CN109752139B publication Critical patent/CN109752139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

本发明公开了一种氮氢混合气体真空漏孔校准装置,包括氢气和氮气供气系统,配气室,压力计,取气室,低真空泵,进气室,真空计,高真空泵,渗流装置,质谱计,非蒸散型吸气剂泵,校准系统,抽气系统;配气室上设置压力计;配气室分出两路,一路与取气室和进气室相连;另一路通过管路与高真空泵相连,在配气室和高真空泵之间设置氢气和氮气供气系统及低真空泵;高真空泵和进气室连接;进气室通过管路依次与渗流装置、校准系统、抽气系统相连;在进气室上分别设置压力计和真空计;在渗流装置和校准系统之间设置截止阀;氮氢混合气体真空漏孔连接在校准系统上;校准系统上设置压力计、真空计和质谱计;非蒸散型吸气剂泵连在校准系统上。

Description

一种氮氢混合气体真空漏孔校准装置及方法
技术领域
本发明涉及测量领域,具体涉及一种氮氢混合气体真空漏孔校准装置及方法。
背景技术
我国空间高轨道卫星、低轨道卫星、氢原子钟、火箭氢氧发动机等型号研制工作,主要针对高轨道卫星及低轨道卫星用的镍氢电池、氢原子钟、火箭氢氧发动机等型号零部件的氢气泄漏问题,上述型号任务中均采用了氢气为工作介质,由于氢气的渗透率高,粘滞度很小,且易燃易爆,一旦发生泄漏,后果不堪设想,如采用其他示漏气体检漏,则会导致实际漏率值发生偏差,严重影响型号研制人员对其性能的判断,这些都影响型号任务的高可靠性及工作寿命。因此,为确保型号任务运行安全、可靠,必须采用氢气为工作气体进行检漏。为了降低氢气的危险性,一般采用示漏气体为95%氮气和5%氢气的混合气体作为氢气漏率检测的定标源,其有效气体成分为氢气,因此氮氢混合气体真空漏孔的精确校准至关重要。
目前,国内外多采用氦气进行定标及检测,国内外许多实验室都建立了氦气漏率标准装置,校准方法主要有定容法、恒压法、流量计比较法等。定容法是将氦气漏孔流出的示漏气体氦气直接引入定容室,测量单位时间内定容室内压力变化而获得氦气漏率的方法;恒压法是将氦气漏孔流出的被校流量引入变容室,压力不变情况下测量单位时间内变容室体积变化而获得氦气漏孔漏率的方法;流量计比较法是将流量计流出的氦气标准流量与被校氦气流出的氢气流量进行比较实现校准。以上三种方法主要应用于单一气体氦气的校准,应用于氮氢混合气体真空漏孔时只能通过近似换算粗略校准氮氢混合气体漏孔漏率,尚未解决氮氢混合气体漏孔漏率的精确校准。
发明内容
有鉴于此,本发明提供了一种氮氢混合气体真空漏孔校准装置及方法,能够精确校准氮氢混合气体真空漏孔的氢气漏率。
本发明校准装置的技术方案为:一种氮氢混合气体真空漏孔校准装置,包括:氢气供气系统,氮气供气系统,配气室,压力计A,取气室,低真空泵A,压力计B,进气室,真空计A,高真空泵A,渗流装置,压力计C,真空计B,质谱计,非蒸散型吸气剂泵,校准系统,抽气系统;
所述压力计A设置在所述配气室上,用于监控所述配气室(6)的压力;
所述配气室分出两路,一路通过管路依次与取气室和进气室相连;在所述配气室和取气室之间的管路上设置截止阀D;在所述取气室和进气室之间的管路上设置截止阀E;
另一路通过管路与高真空泵A相连,在配气室和高真空泵A之间的管路上依次设置针阀、截止阀F和截止阀G;氢气供气系统和氮气供气系统分别通过设置有截止阀的管路连接在针阀和截止阀F之间的管路上;低真空泵A通过管路连接在截止阀F和截止阀G之间的管路上;其中,氢气供气系统的管路上的截止阀为截止阀A,氮气供气系统的管路上的截止阀设有截止阀B;所述高真空泵A和进气室通过设有截止阀H的管路连接;
所述进气室通过管路依次与渗流装置、校准系统、抽气系统相连,所述抽气系统用于排出所述校准系统中的气体;
在进气室和渗流装置之间的管路上设置截止阀I;在所述进气室上分别设置压力计B和真空计A;在所述渗流装置和所述校准系统之间的管路上设置截止阀J;氮氢混合气体真空漏孔通过设有截止阀K的管路连接在截止阀J和校准系统之间的管路上;压力计B和真空计A分别用于检测进气室的压力和真空度;
所述校准系统包括校准室、抽气室及连通所述校准室和抽气室的限流孔;所述校准室连接在截止阀J和截止阀K之间的管路上,所述校准室上设置所述压力计C、真空计B和质谱计,所述非蒸散型吸气剂泵通过设有截止阀L的管路连接在所述校准室上;所述抽气室与所述抽气系统相连;所述压力计C、真空计B和质谱计分别用于测量校准室中压力、真空度和氢气离子流。
作为本发明的一种优选方案,所述配气室上还连接有设置有截止阀C的管路,用于向所述配气室充入预先配好的氮氢混合气体进行漏率检测或将配气室内配置好的氮氢混合气体引出供其他设备使用。
作为本发明的一种优选方案,所述抽气系统包括高真空泵B和低真空泵B,所述高真空泵B一端与所述抽气室相连,另一端与所述低真空泵B相连。
作为本发明的一种优选方案,所述配气室与取气室有效容积比大于10,所述取气室与进气室的有效容积比小于0.01。
本发明校准装置的校准方法的技术方案为:它使用权利要求3所述的氮氢混合气体真空漏孔校准装置,其特征在于,该校准方法包括如下步骤:
步骤1:打开针阀,截止阀D,截止阀E,截止阀F,截止阀G,截止阀H,截止阀I,截止阀J;
启动低真空泵A和高真空泵A,对配气室、取气室和进气室抽真空,并通过真空计A监测进气室的真空度;启动抽气系统,对校准室和抽气室抽真空,并通过真空计B监测其压力和真空度;当进气室和抽气室的真空度均达到设定值时,停止低真空泵A、高真空泵A和抽气系统;
步骤2:关闭截止阀D、截止阀E、截止阀F、截止阀G、截止阀H、截止阀I、截止阀J;
打开截止阀A,氢气供气系统向配气室充入氢气,压力计A监测配气室内压力变化,用于控制充入设定量氢气;
再关闭所述针阀和截止阀A,打开截止阀F,通过低真空泵A对所述针阀和低真空泵A之间的管道抽气,排出其中的氢气;
再关闭所述截止阀F,打开截止阀B和所述针阀,所述氮气供气系统向所述配气室充入设定量氮气,保证配气室内充入的混合气体为95%的氮气和5%的氢气,关闭截止阀B和所述针阀,打开所述截止阀F,通过低真空泵A对所述针阀和低真空泵A之间的管道抽气,排出其中的气体;
步骤3:打开所述截止阀D,联通所述取气室和配气室,当所述取气室和配气室之间的气体压力平衡后,关闭所述截止阀D,打开截止阀E,联通所述取气室和进气室,当所述取气室和进气室之间的气体压力平衡后,读取此时压力计检测的压力,记为p
打开截止阀I和截止阀J,进气室内的氮氢混合气体通过渗流装置的纳米孔进入校准室,再通过限流孔进入抽气室后,启动抽气系统,抽气室中氮氢混合气体被抽气系统抽走,校准室内压力稳定不变后,读取所述压力计C检测的压力值,记为p′,读取此时质谱计测量的校准室中氢气离子流,记为IS,则氢气标准流量按以下公式计算:
Figure GDA0002462606180000031
式中:
Figure GDA0002462606180000032
Figure GDA0002462606180000033
—氢气标准流量,单位为Pa·m3/s;
Figure GDA0002462606180000034
—氢气对限流孔的流导值,单位为m3/s;
所述限流孔流导值
Figure GDA0002462606180000035
可用以下公式计算:
Figure GDA0002462606180000036
式中:
R—氢气气体常数,单位为J/(K·mol);
T—氢气气体温度,单位为K;
Figure GDA0002462606180000041
—氢气气体摩尔质量,单位为Kg/mol;
A—限流孔(31)的流通面积,单位为m2
步骤4:关闭截止阀J,打开截止阀L,用非蒸散型吸气剂泵抽除吸附在所述校准室内表面的氢气,当压力计C监测校准室中的气体压力到达本底值时,读取此时质谱计测量的校准室中的氢气离子流,记为I0
步骤5:关闭所述截止阀L,打开截止阀K,将氮氢混合气体真空漏孔流出的气体引入所述校准室,气体经过限流孔流出到抽气室后被抽气系统抽走,在校准室中建立起动态平衡压力,读取此时质谱计测量的校准室的氮氢混合气体中H2的离子流,记为IL,待校氮氢混合气体真空漏孔的氢气漏率QL如下公式,校准过程中,尽可能保证当H2分压的标准流量对应的离子流IS与IL一致,以提高校准的准确度;当H2分压的标准流量对应的离子流IS与IL一致时,待校真空漏孔氢气的漏率与H2分压的标准流量相等:
Figure GDA0002462606180000042
式中:
QL—待校氮氢混合气体真空漏孔中氢气的漏率,单位为Pa·m3/s;
IL—待校氮氢混合气体真空漏孔中氢气的离子流,单位为A;
IS—H2标准流量的离子流,单位为A;
I0—系统氢气本底离子流,单位为A;
测得的待校氮氢混合气体真空漏孔的氢气漏率QL与待校氮氢混合气体真空漏孔标设的值不一致时,采用测得的QL作为标定值使用。
有益效果:
(1)本发明通过配制氮氢混合气体,采用压力衰减经过渗流装置和限流孔后,得到氢气的分压标准流量,氮氢混合气体漏孔有效漏率为氢气漏率,其流出的气体通过与氢气分压标准流量比较实现氮氢混合气体真空漏孔氢气漏率的精确校准,与单一气体漏孔的校准相比,采用标准氮氢混合气体校准,减小了氢气校准的危险性,提高了氮氢混合气体真空漏孔校准的准确度,实现了氮氢混合气体真空漏孔氢气漏率的精确校准。
(2)本发明在配气室上还设置了截止阀,可以充入已经预先配制好的混合气体,使用该校准装置对真空漏孔进行校准。
附图说明
图1为本发明氮氢混合气体真空漏孔校准装置的结构示意图。
其中,1-氢气供气系统,2-氮气供气系统,3-截止阀A,4-截止阀B,5-针阀,6-配气室,7-截止阀C,8-压力计A,9-截止阀D,10-取气室,11-截止阀E,12-截止阀F,13-低真空泵A,14-截止阀G,15-压力计B,16-进气室,17-真空计A,18-截止阀H,19-高真空泵A,20-截止阀I,21-渗流装置,22-截止阀J,23-截止阀K,24-氮氢混合气体真空漏孔,25-压力计C,26-真空计B,27-校准室,28-质谱计,29-截止阀L,30-非蒸散型吸气剂泵,31-限流孔,32-抽气室,33-高真空泵B,34-低真空泵B
具体实施方式
下面结合附图并举实施例,对本发明进行详细描述。
本实施例提供了一种氮氢混合气体真空漏孔校准装置及方法,能够校准氮氢混合气体真空漏孔的氢气漏率。
如图1所示,氮氢混合气体真空漏孔校准装置包括氢气供气系统,氮气供气系统,配气室6,压力计A8,取气室10,低真空泵A13,压力计B15,进气室16,真空计A17,高真空泵A19,渗流装置21,压力计C25,真空计B26,校准室27,质谱计28,非蒸散型吸气剂泵30,限流孔31,抽气室32,高真空泵B33,低真空泵B34;
配气室6上设置压力计A8,用于监控配气室6的压力变化;
配气室6分出两路,一路通过管路依次与取气室10和进气室16相连,取气室10从配气室6中取气后为进气室16供气,在配气室6和取气室10之间的管路上设置截止阀D9,用于控制取气室10的取气量以及控制配气室6和取气室10之间的压力平衡,在取气室10和进气室16之间的管路上设置截止阀E11,用于控制进气室16的进气量以及控制取气室10和进气室16之间的压力平衡;
另一路通过管路与高真空泵A19相连,在配气室6和高真空泵A19之间的管路上依次设置针阀5、截止阀F12和截止阀G14,氢气供气系统1通过设有截止阀A3的管路、氮气供气系统2通过设有截止阀B4的管路分别连入针阀5和截止阀F12之间的管路,用于向配气室6提供氢气气源和氮气气源;低真空泵A13设置在截止阀F12和截止阀G14之间的管路上,用于对针阀5和低真空泵A13之间的管路抽真空;
高真空泵A19和进气室16通过管路连接,在其管路上设置截止阀H18,高真空泵A19和低真空泵A13配合使用,用于对进气室16抽真空,初始时,启动低真空泵A13进行粗略的抽真空,此时,高真空泵A19只是充当通气管路;到达设定真空度时,启动高真空泵A19,高真空泵A19和低真空泵A13同时对进气室16进一步抽真空,进气室16内的真空度达到要求后关闭截止阀H18用于维持进气室16的真空环境;
配气室6上设置截止阀C7,通过截止阀C7可以向配气室6充入预先配好的氮氢混合气体进行漏率检测;
进气室16通过管路依次与渗流装置21、校准系统、抽气系统相连,所述校准系统用于校准所述进气室16中通过渗流装置21上设置的纳米孔流入所述校准系统的氮氢混合气体,所述抽气系统用于排出所述校准系统中的气体;在进气室16和校准系统之间的管路上依次设置截止阀I20、渗流装置21和截止阀J22;在进气室16上设置压力计B15,用于监测进气室16的压力;氮氢混合气体真空漏孔24通过设有截止阀K23的管路连接在校准系统上,截止阀K23用于控制氮氢混合气体真空漏孔24中流出气体量;
校准系统包括校准室27、抽气室32及连通校准室27和抽气室32的限流孔31;
校准室27分别通过管路与质谱计28和非蒸散型吸气剂泵30相连,非蒸散型吸气剂泵30用于校准前抽除校准室27中的氢气,质谱计28用于测量校准室27中的氢气离子流,在校准室27和非蒸散型吸气剂泵30之间的管路上设置截止阀L29;
校准室27上还设置有压力计C25和真空计B26,分别用于监测校准室27的压力和真空度;
抽气室32通过管路与抽气系统相连,该抽气系统包括高真空泵B33和低真空泵B34,即抽气室32依次与高真空泵B33和低真空泵B34相连,高真空泵B33和低真空泵B34配合对抽气室32抽真空,初始时,启动低真空泵B34对抽气室32进行粗略的抽真空,此时,高真空泵B33只是充当通气管路,当真空度达到设定值时,启动高真空泵B33,高真空泵B33和低真空泵B34同时对抽气室32进一步抽真空,以便得到所需的真空度。
为了保证准确性,配气室6、取气室10、进气室16的有效容积预先进行精确测量后使用。
为了得到足够的压力衰减比,配气室6与取气室10有效容积比大于10,取气室10与进气室16的有效容积比小于0.01。
为了保证气体进气前后气体组分稳定性,进气室16在进气过程中控制其气体压力变化不大于5%。
上述氮氢混合气体真空漏孔校准装置可以实现氮氢混合气体真空漏孔的精确校准,该校准装置的校准方法包括如下步骤:
步骤1:初始状态整个装置处于关闭状态,打开针阀5,截止阀D9,截止阀E11,截止阀F12,截止阀G14,截止阀H18,截止阀I20,截止阀J22;
启动低真空泵A13和高真空泵A19,用于对配气室6、取气室10和进气室16抽真空,并通过真空计A17监测进气室16的真空度的变化;启动低真空泵34及高真空泵33,用于对校准系统抽真空,并通过真空计B26监测其压力和真空度的变化;当进气室16和抽气室32的真空度均达到设定值时,停止低真空泵A13、高真空泵A19和抽气系统。
步骤2:关闭截止阀D9、截止阀E11、截止阀F12、截止阀G14、截止阀H18、截止阀I20、截止阀J22;
打开截止阀A3,氢气供气系统1向配气室6充入氢气,通过压力计A8监测配气室6内压力变化,进而控制充入设定量的氢气;
关闭针阀5和截止阀A3,打开截止阀F12,通过低真空泵A13对管道抽气,排出管道中的氢气,防止管道内压力变化引起氢气爆炸;
关闭截止阀F12,打开截止阀B4和针阀5,氮气供气系统向配气室6再充入设定量的氮气,保证配气室6内充入的混合气体为95%的氮气和5%的氢气,关闭针阀5和截止阀B4,打开截止阀F12通过低真空泵A13对管道抽气,排出管道中多余的气体。
步骤3:打开截止阀D9,联通取气室10和配气室6,当取气室10与配气室6之间的气体压力平衡后,用压力计8读取压力,记为p1;关闭截止阀D9,打开截止阀E11,联通取气室10和进气室16,当取气室10与进气室16之间的气体压力平衡后,关闭截止阀E11,用压力计15读取压力,记为p,打开截止阀I20和截止阀J22,进气室16内的氮氢混合气体通过渗流装置21上的纳米孔进入校准室27,再通过限流孔31进入抽气室32后被抽气系统抽走,校准室27内压力稳定不变后采用压力计25测量压力,记为p′,用质谱计28测量此时校准室27中氢气离子流,记为IS,则氢气标准流量按公式(1)计算:
Figure GDA0002462606180000071
式中:
Figure GDA0002462606180000072
—氢气标准流量,单位为Pa·m3/s;
Figure GDA0002462606180000073
—氢气对渗流装置21上纳米孔的流导值,单位为m3/s;
Figure GDA0002462606180000074
—分别为进气室16与校准室27中混合气体中H2的分压力,单位为Pa。
又因为:
Figure GDA0002462606180000075
则有:
Figure GDA0002462606180000076
Figure GDA0002462606180000081
式中:
Figure GDA0002462606180000082
—氢气对限流孔31的流导值,单位为m3/s;
氢气对限流孔31的流导值
Figure GDA0002462606180000083
可用公式(5)计算:
Figure GDA0002462606180000084
式中:
R—氢气气体常数,单位为J/(K·mol);
T—氢气气体温度,单位为K;
Figure GDA0002462606180000085
—氢气气体摩尔质量,单位为Kg/mol;
A—限流孔31的流通面积,单位为m2
步骤4:关闭截止阀J22,用压力计C25监测校准室27中的气体压力,打开截止阀L29,用非蒸散型吸气剂泵30抽除吸附在校准室27内表面的氢气,当气体压力到达本底值时,用质谱计28测量此时校准室27内氢气离子流,记为I0
步骤5:关闭截止阀L29,打开截止阀K23,将氮氢混合气体真空漏孔24流出的气体引入校准室27,气体再经过限流孔31流出到抽气室32后被抽气系统抽走,在校准室27中建立起动态平衡压力,用质谱计28测量此时校准室27内氮氢混合气体中H2的离子流,记为IL,待校氮氢混合气体真空漏孔24的氢气漏率QL用(6)式计算,校准过程中,尽可能保证当H2分压的标准流量对应的离子流IS与IL一致,以提高校准的准确度;当H2分压的标准流量对应的离子流IS与IL一致时,待校真空漏孔氢气的漏率与H2分压的标准流量相等:
Figure GDA0002462606180000086
式中:
QL—待校氮氢混合气体中真空漏孔氢气的漏率,单位为Pa·m3/s;
IL—待校氮氢混合气体真空漏孔中氢气的离子流,单位为A;
IS—H2标准流量的离子流,单位为A;
I0—系统氢气本底离子流,单位为A;
测得的待校氮氢混合气体真空漏孔24的氢气漏率QL与待校氮氢混合气体真空漏孔24标设的值不一致时,采用测得的QL作为标定值使用,每隔12个月校准一次。
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.一种氮氢混合气体真空漏孔校准装置,其特征在于,包括:氢气供气系统(1),氮气供气系统(2),配气室(6),压力计A(8),取气室(10),低真空泵A(13),压力计B(15),进气室(16),真空计A(17),高真空泵A(19),渗流装置(21),压力计C(25),真空计B(26),质谱计(28),非蒸散型吸气剂泵(30),校准系统,抽气系统;
所述压力计A(8)设置在所述配气室(6)上,用于监控所述配气室(6)的压力;
所述配气室(6)分出两路,一路通过管路依次与取气室(10)和进气室(16)相连;在所述配气室(6)和取气室(10)之间的管路上设置截止阀D(9);在所述取气室(10)和进气室(16)之间的管路上设置截止阀E(11);
另一路通过管路与高真空泵A(19)相连,在配气室(6)和高真空泵A(19)之间的管路上依次设置针阀(5)、截止阀F(12)和截止阀G(14);氢气供气系统(1)和氮气供气系统(2)分别通过设置有截止阀的管路连接在针阀(5)和截止阀F(12)之间的管路上;低真空泵A(13)通过管路连接在截止阀F(12)和截止阀G(14)之间的管路上;其中,氢气供气系统(1)的管路上的截止阀为截止阀A(3),氮气供气系统(2)的管路上的截止阀设有截止阀B(4);所述高真空泵A(19)和进气室(16)通过设有截止阀H(18)的管路连接;
所述进气室(16)通过管路依次与渗流装置(21)、校准系统、抽气系统相连,所述抽气系统用于排出所述校准系统中的气体;
在进气室(16)和渗流装置(21)之间的管路上设置截止阀I(20);在所述进气室(16)上分别设置压力计B(15)和真空计A(17);在所述渗流装置(21)和所述校准系统之间的管路上设置截止阀J(22);氮氢混合气体真空漏孔(24)通过设有截止阀K(23)的管路连接在截止阀J(22)和校准系统之间的管路上;所述压力计B(15)和真空计A(17)分别用于检测进气室(16)的压力和真空度;
所述校准系统包括校准室(27)、抽气室(32)及连通所述校准室(27)和抽气室(32)的限流孔(31);所述校准室(27)连接在截止阀J(22)和截止阀K(23)之间的管路上,所述校准室(27)上设置所述压力计C(25)、真空计B(26)和质谱计(28),所述非蒸散型吸气剂泵(30)通过设有截止阀L(29)的管路连接在所述校准室(27)上;所述抽气室(32)与所述抽气系统相连;所述压力计C(25)、真空计B(26)和质谱计(28)分别用于测量校准室(27)中压力、真空度和氢气离子流。
2.如权利要求1所述的氮氢混合气体真空漏孔校准装置,其特征在于,所述配气室(6)上还连接有设置有截止阀C(7)的管路,用于向所述配气室(6)充入预先配好的氮氢混合气体进行漏率检测或将配气室(6)内配置好的氮氢混合气体引出供其他设备使用。
3.如权利要求1所述的氮氢混合气体真空漏孔校准装置,其特征在于,所述抽气系统包括高真空泵B(33)和低真空泵B(34),所述高真空泵B(33)一端与所述抽气室(32)相连,另一端与所述低真空泵B(34)相连。
4.如权利要求1所述的氮氢混合气体真空漏孔校准装置,其特征在于,所述配气室(6)与取气室(10)有效容积比大于10,所述取气室(10)与进气室(16)的有效容积比小于0.01。
5.一种氮氢混合气体真空漏孔校准装置的校准方法,它使用权利要求1所述的氮氢混合气体真空漏孔校准装置,其特征在于,该校准方法包括如下步骤:
步骤1:打开针阀(5),截止阀D(9),截止阀E(11),截止阀F(12),截止阀G(14),截止阀H(18),截止阀I(20),截止阀J(22);
启动低真空泵A(13)和高真空泵A(19),对配气室(6)、取气室(10)和进气室(16)抽真空,并通过真空计A(17)监测进气室(16)的真空度;启动抽气系统,对校准室(27)和抽气室(32)抽真空,并通过真空计B(26)监测其真空度;当进气室(16)和抽气室(32)的真空度均达到设定值时,停止低真空泵A(13)、高真空泵A(19)和抽气系统;
步骤2:关闭截止阀D(9)、截止阀E(11)、截止阀F(12)、截止阀G(14)、截止阀H(18)、截止阀I(20)、截止阀J(22);
打开截止阀A(3),氢气供气系统(1)向配气室(6)充入氢气,压力计A(8)监测配气室(6)内压力变化,用于控制充入设定量氢气;
再关闭所述针阀(5)和截止阀A(3),打开截止阀F(12),通过低真空泵A(13)对所述针阀(5)和低真空泵A(13)之间的管道抽气,排出其中的氢气;
再关闭所述截止阀F(12),打开截止阀B(4)和所述针阀(5),所述氮气供气系统(2)向所述配气室(6)充入设定量氮气,保证配气室(6)内充入的混合气体为95%的氮气和5%的氢气,关闭截止阀B(4)和所述针阀(5),打开所述截止阀F(12),通过低真空泵A(13)对所述针阀(5)和低真空泵A(13)之间的管道抽气,排出其中的气体;
步骤3:打开所述截止阀D(9),联通所述取气室(10)和配气室(6),当所述取气室(10)和配气室(6)之间的气体压力平衡后关闭所述截止阀D(9),打开截止阀E(11),联通所述取气室(10)和进气室(16),当所述取气室(10)和进气室(16)之间的气体压力平衡后,读取此时压力计(15)检测的压力值,记为p
打开截止阀I(20)和截止阀J(22),进气室(16)内的氮氢混合气体通过渗流装置(21)的纳米孔进入校准室(27),再通过限流孔(31)进入抽气室(32)后,启动抽气系统,抽气室(32)中氮氢混合气体被抽气系统抽走,校准室(27)内压力稳定不变后,读取所述压力计C(25)检测的压力值,记为p′,读取此时质谱计(28)测量的校准室(27)中的氢气离子流,记为IS,则氢气标准流量按以下公式计算:
Figure FDA0002462606170000031
式中:
Figure FDA0002462606170000032
Figure FDA0002462606170000033
—氢气标准流量,单位为Pa·m3/s;
Figure FDA0002462606170000034
—氢气对限流孔(31)的限流孔的流导值,m3/s;
Figure FDA0002462606170000035
式中:
R—氢气气体常数,单位为J/(K·mol);
T—氢气气体温度,单位为K;
Figure FDA0002462606170000036
—氢气气体摩尔质量,单位为Kg/mol;
A—限流孔(31)的流通面积,单位为m2
步骤4:关闭截止阀J(22),打开截止阀L(29),用非蒸散型吸气剂泵(30)抽除吸附在所述校准室(27)内表面的氢气,当压力计C(25)监测所述校准室(27)中的气体压力到达本底值时,读取此时质谱计(28)测量的校准室(27)中的氢气离子流,记为I0
步骤5:关闭所述截止阀L(29),打开截止阀K(23),将氮氢混合气体真空漏孔(24)流出的气体引入所述校准室(27),气体经过限流孔(31)流出到抽气室(32)后被抽气系统抽走,在校准室(27)中建立起动态平衡压力,读取此时质谱计(28)测量的校准室(27)中的氢气离子流,记为IL;待校氮氢混合气体真空漏孔(24)的氢气漏率QL为:
Figure FDA0002462606170000041
式中:
QL—待校氮氢混合气体真空漏孔中氢气的漏率,单位为Pa·m3/s;
IL—待校氮氢混合气体真空漏孔中氢气的离子流,单位为A;
IS—H2标准流量的离子流,单位为A;
I0—系统氢气本底离子流,单位为A;
测得的待校氮氢混合气体真空漏孔(24)的氢气漏率QL与待校氮氢混合气体真空漏孔(24)标设的值不一致时,采用测得的QL作为标定值使用。
CN201811534398.1A 2018-12-14 2018-12-14 一种氮氢混合气体真空漏孔校准装置及方法 Active CN109752139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811534398.1A CN109752139B (zh) 2018-12-14 2018-12-14 一种氮氢混合气体真空漏孔校准装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811534398.1A CN109752139B (zh) 2018-12-14 2018-12-14 一种氮氢混合气体真空漏孔校准装置及方法

Publications (2)

Publication Number Publication Date
CN109752139A CN109752139A (zh) 2019-05-14
CN109752139B true CN109752139B (zh) 2020-08-18

Family

ID=66403718

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811534398.1A Active CN109752139B (zh) 2018-12-14 2018-12-14 一种氮氢混合气体真空漏孔校准装置及方法

Country Status (1)

Country Link
CN (1) CN109752139B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112285193B (zh) * 2020-10-19 2022-06-07 中国科学院长春应用化学研究所 一种电池质谱进样系统
CN112945356B (zh) * 2021-01-28 2023-02-03 北京东方计量测试研究所 气体流量计系统及其使用方法
CN113063547B (zh) * 2021-03-22 2021-12-07 攀钢集团攀枝花钢钒有限公司 Rh炉真空系统泄漏查找方法
CN113686493B (zh) * 2021-08-25 2022-05-31 安徽诺益科技有限公司 氦质谱检漏仪校准系统及校准方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734670B2 (ja) * 2006-05-19 2011-07-27 独立行政法人産業技術総合研究所 高速ガス漏洩検知器
CN203037419U (zh) * 2012-12-27 2013-07-03 博益(天津)气动技术研究所有限公司 一种用于空调管路气密检测的氮氢式检漏装置
CN106289666A (zh) * 2016-08-31 2017-01-04 兰州空间技术物理研究所 一种用于环境温度下真空漏孔的校准装置及方法
CN107036769A (zh) * 2017-04-18 2017-08-11 中国工程物理研究院材料研究所 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
JP6220286B2 (ja) * 2014-02-27 2017-10-25 株式会社フクダ 漏れ試験方法及び装置
CN207540734U (zh) * 2017-11-24 2018-06-26 昆山阿普顿自动化系统有限公司 一种氢气质谱法检漏装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4734670B2 (ja) * 2006-05-19 2011-07-27 独立行政法人産業技術総合研究所 高速ガス漏洩検知器
CN203037419U (zh) * 2012-12-27 2013-07-03 博益(天津)气动技术研究所有限公司 一种用于空调管路气密检测的氮氢式检漏装置
JP6220286B2 (ja) * 2014-02-27 2017-10-25 株式会社フクダ 漏れ試験方法及び装置
CN106289666A (zh) * 2016-08-31 2017-01-04 兰州空间技术物理研究所 一种用于环境温度下真空漏孔的校准装置及方法
CN107036769A (zh) * 2017-04-18 2017-08-11 中国工程物理研究院材料研究所 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
CN207540734U (zh) * 2017-11-24 2018-06-26 昆山阿普顿自动化系统有限公司 一种氢气质谱法检漏装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
比较法真空标准漏孔校准方法研究;赵澜 等;《真空与低温》;20131231;第19卷(第4期);第228-232页 *

Also Published As

Publication number Publication date
CN109752139A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
CN109752139B (zh) 一种氮氢混合气体真空漏孔校准装置及方法
CN107036769B (zh) 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
CN105158788B (zh) 开环式同步测量有效衰变常数及氡析出率的方法
CN109029619B (zh) 一种基于动态差压衰减的容积测量装置
CN109187266A (zh) 瓦斯含量直接测定法瓦斯损失量补偿模型实验系统及方法
CN111208037B (zh) 一种岩样绝对吸附量测定方法及测量岩样等温吸附曲线的方法
CN106525683B (zh) 一种薄膜渗透率测量装置和测量方法
JP2635587B2 (ja) リーク検査装置のディテクタを較正する装置
CN103808458A (zh) 基于动态流量法测试真空规吸放气量的装置及方法
CN103808383A (zh) 减小器壁出气误差的工作用容积测量装置及方法
CN109141770B (zh) 一种减少检漏仪状态变化对氦质谱吸枪积累法影响的方法
CN108980626B (zh) 一种氦气检测密封器件的充注回收方法
CN109752442A (zh) 一种基于吸附富集原理的高压气体微量组份检测装置及方法
CN106556430A (zh) 一种具有自校准功能的气体实流测试系统及方法
CN109520681A (zh) 一种多介质漏率可调的漏率标定系统
CN113740202B (zh) 容积法吸附测量方法及装置
CN108760182B (zh) 氦气和压力联合并行检漏多个独立设备的系统和方法
CN111595408A (zh) 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法
CN110595982A (zh) 一种岩石气体各向异性渗透率的测试装置及计算方法
CN216871896U (zh) 质谱仪分压校准系统
CN110455670A (zh) 一种考虑初始解吸的煤粉瓦斯解吸试验装置与方法
CN110873674B (zh) 测定固体物质饱和蒸气压的装置
CN110243444B (zh) 负压源装置、燃气表检定气路系统及检定方法
CN109084939B (zh) 一种检验喇叭密封性的方法
CN207742157U (zh) 在线吸气剂吸气测试装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant