CN111595408A - 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法 - Google Patents

一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法 Download PDF

Info

Publication number
CN111595408A
CN111595408A CN202010364744.7A CN202010364744A CN111595408A CN 111595408 A CN111595408 A CN 111595408A CN 202010364744 A CN202010364744 A CN 202010364744A CN 111595408 A CN111595408 A CN 111595408A
Authority
CN
China
Prior art keywords
pneumatic valve
pressure
closed container
end pipeline
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010364744.7A
Other languages
English (en)
Other versions
CN111595408B (zh
Inventor
严大
糜珂
李翔
黎微明
左敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Leadmicro Nano Technology Co Ltd
Original Assignee
Jiangsu Leadmicro Nano Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Leadmicro Nano Technology Co Ltd filed Critical Jiangsu Leadmicro Nano Technology Co Ltd
Priority to CN202010364744.7A priority Critical patent/CN111595408B/zh
Publication of CN111595408A publication Critical patent/CN111595408A/zh
Application granted granted Critical
Publication of CN111595408B publication Critical patent/CN111595408B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/14Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measurement of pressure
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

本发明涉及机械设备领域,具体涉及一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法,包括前端管路,在前端管路上依次设置有第一气动阀、第二气动阀;出气端管路,在出气端管路上依次设置有第三气动阀、第四气动阀;密闭容器,与前端管路末端相连,与出气端管路上靠近第三气动阀的一端相连;压力计,设置于出气端管路上或前端管路上或密闭容器上;真空排气装置,与密闭容器连通。采用本发明的设备及测量方法,可实时、快速、准确地测量小直径的真空容器内的液位,运行可靠稳定,不会有泄漏的风险。

Description

一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的 方法
技术领域
本发明涉及机械设备领域,具体涉及一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法。
背景技术
针对不透明的化学密闭容器液位的测量,目前主要的方法分为内置和外置两种方法,内置的方法需要将测量装置内置到密闭容器内部,容易使密闭容器内的物质受到污染;而外置的方法主要有超声波测量方法和称重方法。但是对于小直径的密闭容器,超声波测量易受干扰,而称重则要求密闭容器上方的连接为软连接,对于如TMA这样的工艺化学源,长时间使用软管存在泄漏风险。
在真空镀膜领域,往往所使用的密闭容器体积较小,因此急需一种不污染密闭容器内化学源的同时快速测量液位的方法和设备。
发明内容
本发明的目的在于提供一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法,使用该测量设备和方法可以准确、快速测量真空负压密闭容器的液位,不会污染被测量容器内的物质,不会有泄漏的风险。
本发明主要采用如下具体方案:
一种测量恒温密闭容器内液位的设备,包括:
前端管路,在前端管路上依次设置有第一气动阀、第二气动阀;
出气端管路,在出气端管路上设置有第三气动阀;第三气动阀可以限制气体被抽走,使后面操作的过程可以让压力计稳定间接测量密闭容器内压力。
密闭容器,与前端管路靠近第二气动阀的一端相连通,同时与出气端管路上靠近第三气动阀的一端相连通;
压力计,设置于第三气动阀与密闭容器之间的出气端管路上或第一气动阀与密闭容器之间的前端管路上或密闭容器上,测量密闭容器中的压力;
真空排气装置,与密闭容器连通。真空排气装置可以直接与密闭容器相连,也可以设置在出气端管路上,还可以设置在进气端管路上,只要能够达到与密闭容器连通即可。
优选的,出气端管路上的第三气动阀和密闭容器之间还设置有第四气动阀,所述的压力计设置在出气端管路上,位于第三气动阀和第四气动阀之间。设置第四气动阀可以进一步保证密闭容器的安全和稳定。
优选的,所述的第二气动阀与密闭容器之间的前端管路上还设置有第一手动阀。设置手动阀的原因是为了密闭容器拆装时的安全。
优选的,所述的第三气动阀与密闭容器之间的出气端管路上还设置有第二手动阀。设置手动阀的原因是为了密闭容器拆装时的安全。
优选的,在所述的前端管路上的第一气动阀之前设置有减压阀。减压阀主要用来调节进气压力,也可以叫调压阀。
优选的,所述的真空排气装置为真空泵。
一种使用上述设备测量恒温密闭容器内部液位的方法,包括如下步骤:
A原始状态时,密闭容器内部无液体,进行抽真空,密闭容器内每分钟压力的变化≤5%后,将所有的不影响压力计与密闭容器连通的阀门改为关闭状态,此时压力计测得压力为P空0;此处所述的“压力计每分钟的变化值≤5%”指的是压力计前一分钟的值为P测0,压力计后一分钟的值为P测1,当(P测0-P测1)/P测1的值≤5%。
此处所述的“所有的不影响压力计与密闭容器连通的阀门改为关闭状态”指的是位于只要不影响压力计与密闭容器的连通的气动阀或者手动阀全部关闭,以保证密闭容器内的真空状态不会改变同时保证压力计可以测得密闭容器内的压力。根据压力计的放置位置来决定关闭哪些阀门,例如若压力计直接插入密闭容器上或在第三气动阀与密闭容器之间,则可以关闭两端管路上的所有气动阀或手动阀;若压力计设置在第一气动阀与第二气动阀之间,则需要关闭第一气动阀和第三气动阀,第二气动阀需保持开启状态。
B继步骤A,打开第一气动阀,第二气动阀和第三气动阀均保持关闭状态,向前端管路注入载气,载气的压力为定值,等待时间t后,关闭第一气动阀,然后打开第二气动阀,压力计测得压力为P空1;步骤B与步骤A中的压力计差值为:ΔP=P空1-P空0
D在待测的同款密闭容器上进行抽真空,密闭容器内每分钟压力变化≤5%后,将所有的不影响压力计与密闭容器连通的阀门改为关闭状态,此时压力计测得压力为Px-1
E继步骤D,打开第一气动阀,第二气动阀和第三气动阀均保持关闭状态,向前端管路注入载气,载气的压力同步骤A中的注气压力定值,等待时间t后,关闭第一气动阀,然后打开第二气动阀,压力计测得压力为Px;步骤E与步骤D中的压力计差值为:ΔPx=Px-Px-1
G液位百分比为:
Figure BDA0002476353790000021
优选的,在步骤B后增加步骤C,步骤C操作如下:关闭第二气动阀,打开第一气动阀,向前端管路注入载气,载气的压力为步骤B注入载气的压力值相同,等待时间t后,关闭第一气动阀,然后打开第二气动阀,压力计测得压力值为P空2;步骤C与步骤B中的压力计差值为:ΔP空2=P空2-P空1;步骤C可以进行一次或多次,测量多个压力计差值,后得到平均值,代入步骤G中的公式。
优选的,在步骤E后增加步骤F,步骤F操作如下:关闭第二气动阀,打开第一气动阀,向前端管路注入载气,载气的压力同步骤B中的注气压力定值,等待时间t后,关闭第一气动阀,然后打开第二气动阀,压力计测得压力值为Px+1;步骤F与步骤E中的压力计差值为:ΔPx+1=Px+1-Px;步骤F可以进行一次或多次,测量多个压力差值,后得到平均值,代入步骤G中的公式。
一种镀膜装置,包括上述所述的测量恒温密闭容器内液位的设备,真空腔,所述的测量恒温密闭容器内液位的设备、真空腔和所述的真空排气装置依次连通。
上述的计算过程原理为:
根据理想气体状态方程可知:
PV=nRT
其中p为理想气体的压强;V为理想气体的体积,n表示气体物质的量,而T则表示理想气体的热力学温度;还有一个常量:R为理想气体常数。
理想气体从微观角度来说是分子本身体积与分子间作用力都可以忽略不计的气体。
原始状态时,密闭容器内部无液体,所有的减压阀、气动阀和手动阀均为关闭状态,密闭容器内为真空负压状态;打开减压阀和第一气动阀,向前端管路注入载气,载气的压力为定值,等待时间t后,关闭第一气动阀。此时第一气动阀和第二气动阀之间的管道会存储定量的气体,此时第一气动阀和第二气动阀之间的管道的气体压力为P,此时的进气此端称之为憋气端,此时憋气端的进气气体满足:
PV=nR T
(其中P代表憋气管路的气体压力、V代表存在憋气的管路的体积、n代表憋气气体的物质的量、T进代表憋气时的温度。)
当步骤A密闭容器中存在液体时,步骤D时的压力为P0,也即密闭容器内存在液体,但尚未通入定量气体时的压力,其同样满足:
P0V0=n0RT0
(其中P0代表密闭容器内的初始压力(理论为饱和蒸气压)、V0代表液面上方空间、n0代表饱和蒸气压物质的量、T0代表密闭容器温度。)
进行上述测量步骤D所得的Px-1即为P0,继续进行步骤E,打开第一气动阀,向前端管路注入载气,载气的压力同步骤B中的注气压力定值,等待时间t后,关闭第一气动阀,然后打开第二气动阀,压力计测得压力为Px,待气体稳定后满足下列等式:
PXVX=nXR TX
(其中Px代表稳定后的气体压力、Vx代表稳定后的气体体积、nx代表稳定后的气体物质的量,也即进气的物质的量和饱和蒸汽物质的量Tx代表稳定后的密闭容器温度。)
接上述步骤E,继续重复步骤D的操作,即关闭第二气动阀,打开第一气动阀(此时因为放走了第一气动阀和第二气动阀中间段管路中的气体,因此瓶中的气体的摩尔量为nx瓶),向前端管路注入载气,载气的压力同步骤B的载气压力,等待时间t后,关闭第一气动阀,打开第二气动阀,压力计测得的压力为Px+1,此时的瓶内压力满足:
PX+1VX+1=nX+1R TX+1
此时进气及出气管路体积很小可忽略不计,所以可以得到:
式I:Vx=Vx+1=V0+V
式II:nx+1=n+nx瓶
此时因为放走了第一气动阀和第二气动阀中间段管路中的气体,因此瓶中的气体的摩尔量为nx瓶,所以得到式III:
Figure BDA0002476353790000041
综合式I式II和式III,结合理想气体方程,整理可得:
Figure BDA0002476353790000042
因为Vx=V0+V
所以
Figure BDA0002476353790000043
因为密闭容器恒温加热,所以温度始终保持不变,而R是一个常数,所以
px+1(V+V0)=pV+pxV0
整理可得:
Figure BDA0002476353790000044
(第x+1次稳定后的瓶内的压力值Px+1与前一次稳定的瓶内的压力值Px的差值为△Px+1。)
最后得:
Figure BDA0002476353790000045
当操作次数较少,即x较小时p>>px+1
Figure BDA0002476353790000046
而在测量过程中,V、V、p为固定值,所以
Figure BDA0002476353790000047
其中k为常数。
所以当液位百分比为0时,也即密闭容器中无液体时,测量Px+1-Px所得到的△P即为k值。
本发明通过依次注入定量载气并检查密闭容器内部压差的变化,通过管路系统的计算及瓶内压差变化推导出计算密闭容器液位的算法。
采用本发明可以达到至少如下一种有益效果:
(1)采用本发明可实时、快速地测量小直径的真空容器内的液位;
(2)本发明设备运行可靠稳定,不会有泄漏的风险;
(3)采用本发明不会污染待测量容器内的物质。
附图说明
图1本发明优选实施例结构图。
图2不同液位下密闭容器压力与注入载气次数关系图。
1-前端管路;2-第一气动阀;3-第二气动阀;4-出气端管路;5-第四气动阀;6-第三气动阀;7-密闭容器;8-压力计;9-第一手动阀;10-第二手动阀;11-减压阀;12-真空腔;13-真空泵。
具体实施方式
下面结合附图对本发明进行详细说明,以方便本领域技术人员理解本发明,并不构成对本发明的限制。
如图1所示为本发明的一个含有测量设备的镀膜装置的具体实施例。
该设备包括前端管路1,在前端管路1上依次设置有第一气动阀2和第二气动阀3;还包括出气端管路4,在出气端管路4上依次设置有第三气动阀6、第四气动阀5;还包括密闭容器7,该密闭容器7即为待测液位的容器,其与前端管路1末端相连,也就是与前端管路1上的接近第二气动阀3的一端相连,且同时与出气端管路4上靠近第四气动阀5的一端相连;还设置有压力计8,压力计8设置于出气端管路4上或前端管路1上。
本实施例中,所述的出气端压力计8设置在出气端管路4上,在第三气动阀6和第四气动阀5之间;所述的前端管路1上在第二气动阀2与密闭容器7之间还设置有第一手动阀9;所述的出气端管路4的第四气动阀5与密闭容器7之间还设置有第二手动阀10;所述的前端管路上的第一气动阀2之前设置有减压阀11。
因为压力计8主要用于测量气体稳定后密闭容器7内的压力,因此压力计8只要能测量到该值,无论设置于哪个位置都可以。也即无论是设置于前端管路1上,还是设置于出气端管路4上,还是直接与密闭容器7相连均可。
还包括真空腔12,真空腔12与出气端管路4的靠近第三气动阀6的一端连通;此处的真空腔12即为进行镀膜的反应装置。
还包括真空泵13,与密闭容器7通过真空腔12连通,也即出气端管路4与真空腔12相连,真空腔12又与真空泵13相连通。
原始状态时,密闭容器7中为真空负压状态。
为了验证该测量方法的准确性,特设计如下实施例使用图1所示装置进行测试:
选择密闭容器为直径168.3mm,高度250mm的容器进行实验验证。
空瓶重7549g,空瓶的总体积为4429ml,装满液体时候重11978g,整个系统的温度维持恒温293.15K。
按照下述步骤开始操作:
A原始状态时,密闭容器7内部无液体,对密闭容器7进行抽真空,也即前端管路1上的所有阀门均处于关闭状态,后端管路4上的所有阀门均处于打开状态,同时打开真空泵13进行抽真空,当密闭容器7内每分钟压力的变化≤5%后,然后关闭出气端管4路上的第三气动阀6,待稳定后,此时压力计8测得压力为P空0为24.3mbar。因密闭容器7内可能会存在化学源残留的蒸发,因此该实施例中此时的测量压力不为0。
B继步骤A,打开减压阀11和第一气动阀2,向前端管路1注入氮气载气,载气的压力为2bar,等待时间30s后,关闭第一气动阀2,打开第二气动阀3和第一手动阀9,压力计8测得压力值为P空1为31.3mbar;
C1-1继步骤B,关闭第二气动阀3,打开第一气动阀2,向前端管路1注入氮气载气,载气的压力为2bar,等待时间30s后,关闭第一气动阀2,然后打开第二气动阀3,压力计8测得压力值为P空2为37.7mbar;
C1-2:继步骤C1-1,关闭第二气动阀3,打开第一气动阀,向前端管路1注入氮气载气,载气的压力为2bar,等待时间30s后,关闭第一气动阀2,然后打开第二气动阀3,压力计8测得压力值为P空3为44mbar;
C1-3:继步骤C1-2,关闭第二气动阀3,打开第一气动阀,向前端管路1注入氮气载气,载气的压力为2bar,等待时间30s后,关闭第一气动阀2,然后打开第二气动阀3,压力计8测得压力值为P空4为50.3mbar;
……
共注入载气6次,得到6个数据,测得的压力如表1中的水液位为0%时的No.2一列,包括未注入载气压力值共7个数据所示分别为24.3mbar、31.3mbar、37.7mbar、44mbar、50.3mbar、56.7mbar、62.7mbar,计算相邻两个数据的差值,并计算平均值得到ΔP为6.4mbar。
重复上述从步骤A开始的所有步骤,再次测得一组压力数据如表1中的水液位为0%时的No.1一列的数据所示,经过计算得到的平均值的ΔP为6.5mbar。
向密闭容器7中注入25%水,然后重复上述从步骤A开始的所有步骤(仅水位不同),测得一组压力数据如表1中的水液位为25%时的No.2一列的数据所示,经过计算得到的平均值的ΔP25%为8.38mbar。
向密闭容器7中注入25%水,然后重复上述从步骤A开始的所有步骤,再次测得一组压力数据如表1中的水液位为25%时的No.1一列的数据所示,经过计算得到的平均值的ΔP25%为8.5mbar。
向密闭容器7中注入50%水,然后重复上述从步骤A开始的所有步骤,测得一组压力数据如表1中的水液位为50%时的No.2一列的数据所示,经过计算得到的平均值的ΔP50%为13mbar。
向密闭容器7中注入50%水,然后重复上述从步骤A开始的所有步骤,再次测得一组压力数据如表1中的水液位为50%时的No.1一列的数据所示,经过计算得到的平均值的ΔP50%为13.17mbar。
向密闭容器7中注入74%水,然后重复上述从步骤A开始的所有步骤,测得一组压力数据如表1中的水液位为74%时的No.2一列的数据所示,经过计算得到的平均值的ΔP74%为26mbar。
向密闭容器7中注入74%水,然后重复上述从步骤A开始的所有步骤,再次测得一组压力数据如表1中的水液位为74%时的No.1一列的数据所示,经过计算得到的平均值的ΔP74%为22.88mbar。
首先,我们将每一液位下的No.1一列的数值,也即密闭容器7的压力作为纵坐标,将注入载气的次数作为横坐标,绘制图如图2所示,可以看出在不同液位情况下,密闭容器压力随着载气通入次数增多而呈线性增长,证明实验数据符合预期。图中R2的解释:在统计学中对变量进行线行回归分析,采用最小二乘法进行参数估计时,R2为回归平方和与总离差平方和的比值,表示总离差平方和中可以由回归平方和解释的比例,这一比例越大越好,模型越精确,回归效果越显著。R平方介于0~1之间,越接近1,回归拟合效果越好,一般认为超过0.8的模型拟合优度比较高。
其次,计算两次空瓶所有测量的ΔP的平均值为(6.4+6.5)/2,为6.45。
液位为25%时测量的ΔP25%的NO.1和NO.2的值分别为8.5和8.38,两者的平均值为8.44.分别代入到所确定的液位公式为:
NO.1:液位=1-6.45/8.5=24.2%。
NO.2:液位=1-6.45/8.38=23%。
平均值:液位=1-6.45/8.44=23.6%
根据公式所计算出来的液位与真实液位25%相差不大,证明该公式的正确性。
同理,液位为50%和74%液位时的测量结果经过验证也同样证明了本发明专利方法的正确性。
表1
Figure BDA0002476353790000071
上表中
Figure BDA0002476353790000074
为相应列的数值的平均值,stdev为相应列的7个数据的标准偏差。
在液位为50%时,采用我方公式
Figure BDA0002476353790000073
进行倒推所得到的密闭容器的每一次注气的模拟值为下列表2中的模拟值一列,而实测值也即为表1中液位为50%时的NO.1列的数值,计算模拟值与实测值差值的平方,如表2第5列所示,后将每组实验数据代入实测值后计算MBE(平均偏差误差)/实测值平均值和RMSE(均方根误差)/实测值平均值,结果越接近0,说明模型建立越接近现实。
表2
Figure BDA0002476353790000072
Figure BDA0002476353790000081
上表中的平均值一行分别指的是第0~6次的实测值、模拟值、模拟值-实测值、(模拟值-实测值)*平方的值的平均值;上表中的总和一行分别指的是第0~6次的实测值的总和、模拟值的总和、模拟值-实测值的总和、(模拟值-实测值)*平方的值的总和。
上表中MBE指的是0~6次模拟值-实测值的总和;MBE/平均值中,平均值指的是0~6次实测值的平均值;RMSE指的是0~6次(模拟值-实测值)*平方的平均值的开方;RMSE/平均值中,平均值指的是0~6次实测值的平均值。
镀膜装置中的实验:
将本发明的方法用于真空镀膜装置的生产线上进行试验:
所用的真空镀膜装置为江苏微导纳米科技股份有限公司生产的两台型号为kf6000的镀膜装置,此两台镀膜装置分别为3号机和5号机,此两台机器内的密闭容器(也即该机器的源瓶装置)内置有液位计,此两台机器的密闭容器均有密闭容器加热,温度稳定不变,密闭容器内液体为三甲基铝,载气为氮气,且此两台机器均为满产状态。每天对现场的两台机器进行液位的记录并采用本专利方法进行液位的计算并比对。
结果记录如下:
3号机实验结果
Figure BDA0002476353790000082
Figure BDA0002476353790000091
5号机实验结果
Figure BDA0002476353790000092
上述两台机器实验结果表中打/处是因为产线协调原因,未能进行测试。共测试了23组数据,实际用内置液位计测量数值与使用本发明方法搜计算出的结果对比全部符合((本专利方法计算值-内置液位计值)/内置液位计值小于等于10%),测试成功率为100%。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。

Claims (8)

1.一种测量恒温密闭容器内液位的设备,其特征在于,包括:
前端管路(1),在前端管路(1)上依次设置有第一气动阀(2)、第二气动阀(3);
出气端管路(4),在出气端管路上设置有第三气动阀(6);
密闭容器(7),与前端管路(1)靠近第二气动阀(3)的一端相连通,同时与出气端管路(4)上靠近第三气动阀(6)的一端相连通;
压力计(8),设置于第三气动阀(6)与密闭容器(7)之间的出气端管路(4)上或第一气动阀(2)与密闭容器(7)之间的前端管路(1)上或密闭容器(7)上,测量密闭容器(7)中的压力;
真空排气装置,与密闭容器(7)连通。
2.根据权利要求1所述的设备,其特征在于,出气端管路(4)上的第三气动阀(6)和密闭容器(7)之间还设置有第四气动阀(5),所述的压力计(8)设置在出气端管路(4)上,位于第三气动阀(5)和第四气动阀(6)之间。
3.根据权利要求1所述的设备,其特征在于,在所述的前端管路(1)上的第一气动阀(2)之前设置有减压阀(11)。
4.根据权利要求1所述的设备,其特征在于,所述的真空排气装置为真空泵(13)。
5.一种镀膜装置,其特征在于,包括权利要求1~4任一项所述的测量恒温密闭容器内液位的设备,真空腔(12),权利要求1~4任一项所述的测量恒温密闭容器内液位的设备、真空腔(12)和所述的真空排气装置依次连通。
6.一种使用权利要求1所述的设备测量恒温密闭容器内部液位的方法,其特征在于,包括如下步骤:
A原始状态时,密闭容器(7)内部无液体,进行抽真空,密闭容器(7)内每分钟压力变化≤5%后,将所有的不影响压力计(8)与密闭容器(7)连通的阀门改为关闭状态,稳定后压力计(8)测得密闭容器(7)内压力为P空0
B继步骤A,打开第一气动阀(2),第二气动阀(3)和第三气动阀(6)均保持关闭状态,向前端管路(1)注入载气,载气的压力为定值,等待时间t后,关闭第一气动阀(2),然后打开第二气动阀(3),压力计(8)测得压力为P空1;步骤B与步骤A中的压力计差值为:ΔP=P空1-P空0
D在待测的同款密闭容器上,进行抽真空,密闭容器内每分钟压力变化≤5%后,将所有的不影响压力计(8)与密闭容器(7)连通的阀门改为关闭状态,稳定后压力计(8)测得压力为Px-1
E继步骤D,打开第一气动阀(2),第二气动阀(3)和第三气动阀(6)均保持关闭状态,向前端管路(1)注入载气,载气的压力同步骤B中的注气压力定值,等待时间t后,关闭第一气动阀(2),然后打开第二气动阀(3),压力计(8)测得压力为Px;步骤E与步骤D中的压力计差值为:ΔPx=Px-Px-1
G液位百分比为:
Figure FDA0002476353780000011
7.根据权利要求6所述的方法,其特征在于,在步骤B后增加步骤C,步骤C操作如下:关闭第二气动阀(3),打开第一气动阀(2),向前端管路(1)注入载气,载气的压力为步骤B注入载气的压力值相同,等待时间t后,关闭第一气动阀(2),然后打开第二气动阀(3),压力计(8)测得压力值为P空2;步骤C与步骤B中的压力计差值为:ΔP空2=P空2-P空1;步骤C可以进行一次或多次,测量多个压力计差值,后得到平均值,代入步骤G中的公式。
8.根据权利要求6或7所述的方法,其特征在于,在步骤E后增加步骤F,步骤F操作如下:关闭第二气动阀(3),打开第一气动阀(2),向前端管路(1)注入载气,载气的压力同步骤B中的注气压力定值,等待时间t后,关闭第一气动阀(2),然后打开第二气动阀(3),压力计(8)测得压力值为Px+1;步骤F与步骤E中的压力计差值为:ΔPx+1=Px+1-Px;步骤F可以进行一次或多次,测量多个压力差值,后得到平均值,代入步骤G中的公式。
CN202010364744.7A 2020-04-30 2020-04-30 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法 Active CN111595408B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010364744.7A CN111595408B (zh) 2020-04-30 2020-04-30 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010364744.7A CN111595408B (zh) 2020-04-30 2020-04-30 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法

Publications (2)

Publication Number Publication Date
CN111595408A true CN111595408A (zh) 2020-08-28
CN111595408B CN111595408B (zh) 2022-10-28

Family

ID=72189599

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010364744.7A Active CN111595408B (zh) 2020-04-30 2020-04-30 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法

Country Status (1)

Country Link
CN (1) CN111595408B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152322A (zh) * 2021-12-06 2022-03-08 中国科学院光电技术研究所 一种化学气相沉积液体源材料的监测装置
CN117348653A (zh) * 2023-12-05 2024-01-05 鸿舸半导体设备(上海)有限公司 一种铝源输送管路的控制方法、装置、设备及介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050510A1 (en) * 2006-08-23 2008-02-28 Applied Materials, Inc. Method for measuring precursor amounts in bubbler sources
CN102220565A (zh) * 2011-06-13 2011-10-19 南开大学 一种用于硅薄膜电池陷光结构研究的化学气相沉积设备
CN108160005A (zh) * 2018-01-23 2018-06-15 温州职业技术学院 气体发生装置
CN110608922A (zh) * 2019-09-10 2019-12-24 北京建筑大学 一种液体样品真空采集装置及控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080050510A1 (en) * 2006-08-23 2008-02-28 Applied Materials, Inc. Method for measuring precursor amounts in bubbler sources
CN102220565A (zh) * 2011-06-13 2011-10-19 南开大学 一种用于硅薄膜电池陷光结构研究的化学气相沉积设备
CN108160005A (zh) * 2018-01-23 2018-06-15 温州职业技术学院 气体发生装置
CN110608922A (zh) * 2019-09-10 2019-12-24 北京建筑大学 一种液体样品真空采集装置及控制方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114152322A (zh) * 2021-12-06 2022-03-08 中国科学院光电技术研究所 一种化学气相沉积液体源材料的监测装置
CN117348653A (zh) * 2023-12-05 2024-01-05 鸿舸半导体设备(上海)有限公司 一种铝源输送管路的控制方法、装置、设备及介质
CN117348653B (zh) * 2023-12-05 2024-02-20 鸿舸半导体设备(上海)有限公司 一种铝源输送管路的控制方法、装置、设备及介质

Also Published As

Publication number Publication date
CN111595408B (zh) 2022-10-28

Similar Documents

Publication Publication Date Title
CN111595408B (zh) 一种测量恒温密闭容器内液位的设备、镀膜装置、测量液位的方法
US20130186471A1 (en) Calibration method and flow rate measurement method for flow rate controller for gas supply device
US8636040B2 (en) Installation for packaging NO using mass flow meters
CN204816244U (zh) 一种在线称量同时配制多瓶标准混合气的装置
CN107036769A (zh) 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
KR20100047236A (ko) 상이한 체적을 제공할 수 있는 질량 유동 검증기 및 그 방법
CN109029619A (zh) 一种基于动态差压衰减的容积测量装置
CN112020689A (zh) 用于基于压力衰减速率来进行质量流量校验的方法、系统和设备
JP4799566B2 (ja) 気体流量計較正スタンド
CN102455245B (zh) 一种采用滞后温度补偿的压力变化检漏方法
CN110470364B (zh) 一种pVTt法标准容器容积标定的装置及方法
CN111157180B (zh) 一种飞艇地面泄漏量的测量系统及测试方法
CN110987291B (zh) 一种低温气瓶真空度与日蒸发率和吸附量关系的测算方法
CN111624133A (zh) 一种用于测量包装袋中气体含量的测量仪器及方法
CN107367440A (zh) 一种用于乙炔吸附测量的方法
CN112629602B (zh) 一种凝汽器及真空系统空气泄漏流量测量方法
CN111122151B (zh) 一种呼吸阀流量测试装置及其测试方法
CN113740202A (zh) 容积法吸附测量方法及装置
KR101304250B1 (ko) 고압가스 실린더 부피변화 측정장치 및 이를 이용한 부피변화 측정방법
US20220028671A1 (en) Device and method for plasma treatment of containers
CN206974849U (zh) 一种气体含量检测装置
CN112857695A (zh) 一种激光陀螺稳定充气和高精度检漏系统
WO2018193444A1 (en) Combined volumetric - gravimetric system and method for preparation of gas mixtures
US1299540A (en) Method for measuring the rate of flow of aqueous fluids.
CN111473833A (zh) 一种容积替代法真空腔体容积测试系统及其测试方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 27 Changjiang South Road, Xinwu District, Wuxi City, Jiangsu Province, China

Patentee after: Jiangsu micro nano technology Co.,Ltd.

Country or region after: China

Address before: 214028 No.11 Lijiang Road, Xinwu District, Wuxi City, Jiangsu Province

Patentee before: Jiangsu micro nano technology Co.,Ltd.

Country or region before: China

CP03 Change of name, title or address