CN109743886B - 用于制造pv层序列的室温印刷方法以及根据该方法获得的pv层序列 - Google Patents

用于制造pv层序列的室温印刷方法以及根据该方法获得的pv层序列 Download PDF

Info

Publication number
CN109743886B
CN109743886B CN201780055564.7A CN201780055564A CN109743886B CN 109743886 B CN109743886 B CN 109743886B CN 201780055564 A CN201780055564 A CN 201780055564A CN 109743886 B CN109743886 B CN 109743886B
Authority
CN
China
Prior art keywords
particles
reaction solution
sections
layer
layer sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780055564.7A
Other languages
English (en)
Other versions
CN109743886A (zh
Inventor
丹尼尔·林德
帕特里克·林德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Solar Systems AG
Original Assignee
Dynamic Solar Systems AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Solar Systems AG filed Critical Dynamic Solar Systems AG
Publication of CN109743886A publication Critical patent/CN109743886A/zh
Application granted granted Critical
Publication of CN109743886B publication Critical patent/CN109743886B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02601Nanoparticles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • H01L31/03125Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0384Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material
    • H01L31/03845Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including other non-monocrystalline materials, e.g. semiconductor particles embedded in an insulating material comprising semiconductor nanoparticles embedded in a semiconductor matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Hybrid Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Printing Methods (AREA)

Abstract

在已经充分确立的PV层序列和对应的制造方法中不利的是,其方法工艺复杂而且昂贵,需要纯的原料才能可靠地提供PV活性。因此本发明的目的就是克服这些缺点,并且提供一种方法和一种根据该方法的PV层序列,该PV层序列尽管制造成本极低,但仍然能够可靠且长期地提供PV功能。在室温印刷方法的范围内通过对无机颗粒的反应活性调节实现了这个目的;表面反应活性调节精确地调节PV活性,提供动力学受控的反应产物,并且即使使用纯度约为97%的工业纯原料也能保证所追求的PV活性。在具体的实施方式中,在局部区段内的复合材料中将颗粒(100)印刷到载体(300)上,其中每个局部区段自身具有经还原处理的区段(102)和经氧化处理的区段103,并且这些区段具有符号相反的PV活性。通过顶面触点(400)将这些区段串联级联,并且可以通过PV测量组件(500)截取随光线变化的准确的电势总和。

Description

用于制造PV层序列的室温印刷方法以及根据该方法获得的PV 层序列
技术领域
本发明总体上涉及一种用于制造PV层序列的室温印刷方法以及根据该方法获得的PV层序列。
一般来说,本技术领域可以使用术语“电学工艺薄层”来概括描述。此类薄层厚度从几分之一微米到几百微米,并且可用于生产、加工、控制、调节、测量和传导电流。
本发明具体涉及光伏式电学工艺系统,在该系统中可从光子产生电流。“光伏式(Photovoltaisch)”以及“光伏(Photovoltaik)”通常简称为“PV”,以下也是如此。本发明人已与PV领域的多家关联公司一起工作了很长时间。举例来说可参阅WO 2014-019560 A1,可以将其与该专利族中列举和检索的文件一起视作本文中相关的PV技术领域的印刷式系统的基本技术背景。
从已知且充分确立的系统出发,本发明人已经研究并开发了能够以尽可能低的生产成本稳健且长期地获取、加工、储存和利用PV能量的方法和产品。举例来说可参阅DE 102015 102 801.8、DE 10 2015 01 54 35.4、DE 10 2015 01 56 00.4和DE 10 2016 002213.2 A的专利族,其技术传授内容是本发明的基础并且有意义地概述了相关的能力和知识。以下准备根据现有技术粗略概述上述专利权的传授内容和核心成分。
背景技术
已经证实有利的是,将在室温下用水性分散液和溶液制造无机核心成分作为本发明的主要组成部分:
无机核心成分与对应的有机体系相比可维持时间明显更长。有机PV层序列维持数天至数月,而无机PV活性成分则在标准气候箱试验中在长达30年模拟寿命下始终表现出初始功率的至少90%;在对应的试验中,有机调节剂、助剂和添加剂(例如玻璃-玻璃载体的聚合物嵌入物质,或者PV活性薄层组合的有机纤维复合载体)均已失效,尽管整个产品风化严重且面目全非,但是产生电流的核心成分及其金属引线依然能实现所希望的功能并且提供电流。发明人将此归因于PV层序列的核心成分的无机性质,该核心成分自然没有聚合物或者有机烃类化合物。
可以通过如下反应体系实现室温方法,该反应体系引入化学反应能以形成和调整这些层。“室温”在此包括工业生产的常见温度范围,依据工厂的地点不同,该温度范围可能在零上几摄氏度至80摄氏度之间。在此显示出,与具有已知的压实和/或烧结步骤的方法相比,在室温下进行的反应能够提供明显更宽以及部分极为不同的带隙结构。于是可以首次产生一种能够以很窄的波长范围窗口将温水的接触热辐射特异地转化成电流的层状结构。
水性分散液和溶液在PV市场中没有得到充分确认。常见的且在制造中要求苛刻的Si晶片不能忍受湿气。导电糊剂和可施用的导电电极物质的供应商尤其经常面对这样的要求:提供完全无水的体系,该体系最后能在真空系统中至少150℃下与涂覆或者蒸镀步骤并行地被压实和烧结。正因为如此,发明人认为无法在这里应用基于水性糊剂的已知印刷系统和印刷技术解决方案。但是与“室温”措施相结合,就能出乎意料地使用这些老方法:
事实证明,即使将PV活性半导体、金属-非金属化合物、金属-金属硫族化合物以及金属-金属卤化物加工成水性分散液或者溶液并且进行印刷,它们在低于100摄氏度的温度下也是足够稳定的。
在此已知的印刷系统和印刷技术解决方案包括上述申请中列明的以及还有例如在印刷技术方面的文件DE 122 1651 A、DE 2012 651 B、DE 2529 043 B2、DE 10004997 A、DE 1 907 582 B、DE 2 017 326 A、DE 23 45 493 C2、GB 1 449 821A、DE 27 33 853 A、DE34 47 713 A、JP H043 688 87 A、JP H06 001 852 A和DE 43 22 999 A1中公开的措施、特征、调节剂和助剂。这里尤其要提及的是DE 197 20 004 C1,因为该文件公开了在喷墨打印方法中顺序使用彼此相配的彩色反应活性墨水,可以将其视作与本发明开发的电学工艺的反应活性印刷措施是并行的并且在技术上证明了通过已知的印刷技术措施可以实现反应活性印刷系统。
然而发明人并未从竞争对手那里了解到如下类别的印刷方法:该印刷方法在室温下后续稳定(abstellt)制造完整的无机PV层序列,包括尤其形成完整接触部的进出电导线。
现有技术的缺点在于,作为PV层序列的成分始终使用如下的糊剂或者材料:该糊剂或材料包含有害的有机溶剂,和/或包括如铅、镉的有毒重金属或者硒,和/或必须在大约100℃和更高的温度下进行烧结/压实,然后形成包括电流引取导体和完整接触部的PV活性层序列。没有文件公开如何在室温下以可施用的形式获得完整PV层序列(包括电极)的完整且自恰的传授内容。另外不利的是,已经充分确立的PV层序列总是必须追溯到昂贵的、非常纯净的原料,才能可靠地提供PV活性。
在PV层序列的经典层结构被证实为尤其是不利的,其中在第一侧上,底面的第一电极接触PV活性层并且作为对侧的第二侧应被顶面的对电极接触:PV活性层中的孔隙、针孔和断裂部使得顶面接触部几乎无法利用液态或者糊状体系实现,因为这些系统可能经由断裂部和缺陷使得两个电极层相互短路,从而使得大的平坦区域内的PV活性无法有意义地转化成电流:PV电流经由短路/断裂部直接流向PV活性层的对侧,并且不再可用:该层因为PV电流而生热,电学上的磨损使得所涉及的区域严重老化并且提前风化。
发明内容
因此本发明的目的是克服现有技术的缺点并且提供一种方法以及一种根据该方法的PV层序列,即使在室温下进行工业过程控制、有无机核心成分并且使用水性溶液和/或水性分散液,该方法和层序列仍然提供完整的PV层序列作为可接触的成品层状复合物的一部分。
根据本发明实现了这个目的。有利的实施方式自以下说明得出。
本发明涉及一种用于制造PV层序列的方法,在该方法中,在室温下,在使用水性溶液和/或水性分散液的情况下,通过印刷方法将无机核心成分加工成为完整的、可以通过电极接触的PV层序列,其特征在于,该方法包括以下步骤:在步骤a)中将由至少两种元素组成的0.5至100微米大小的半导体颗粒100分散在水性反应溶液200中,将其氧化性或还原性地溶解,并且平坦地施加到载体300上,在步骤b)中在体积收缩的情况下将反应溶液200转化成经固化的反应溶液层201,其中颗粒100超出经固化的反应溶液层201突出并且具有固定在反应溶液层201中的底面和超出反应溶液层201突出的顶面,并且在步骤c)中至少局部地给该颗粒的顶面设置顶面触点400。
本发明所述的PV层序列可通过上述方法获得并且其特征在于颗粒100,这些颗粒以平坦的区段印刷到载体上并且通过伴随的化学反应调节其PV行为。
对本发明和有利特征的说明
根据本发明的用于制造PV层序列的方法基于既有的发展并且首先在于:在室温下在使用水性溶液和/或水性分散液的情况下通过印刷方法将有PV活性的核心成分加工成完整的、可以通过集电极接触的PV层序列。
重要的是,该方法包括以下步骤:在步骤a中将由至少两种元素组成的0.5至100微米大小的半导体颗粒100分散在水性反应溶液200中、以氧化或还原的方式溶解、并且平坦地施加到载体300上。通过溶解来活化由至少两种元素构成的PV活性材料并且改变其化学计量比。之前均匀且一致的掺杂或者组成因此在外侧薄层中经历显著的改变。这种改变在室温下受动力学控制,并且形成能以最快速度达到的相和化合物,因此这使得产物至少为亚稳态性质并且显著不同于热力学稳定的产物。
在步骤b中在体积收缩的情况下将所印刷的反应溶液200转化成经固化的反应溶液层201。该层先前作为分散液来准备和印刷,其中基本上通过水性的反应性溶液来填充颗粒之间的空隙体积。因此体积收缩使得溶液首先略微下降,并且露出颗粒100的一部分。在此期间形成的亚稳相被固定,并且颗粒100被牢固地固定在载体300上。颗粒100最终超出经固化的反应溶液层201突出。因此这些颗粒在最终结果中具有固定在反应溶液层201中的底面和超出反应溶液层201突出的顶面。伴随的反应此时逐步停止;接触反应溶液200的时间越长,在固化过程中溶液反应进行的程度就越大。发明人认为这种反应性调节在颗粒中至少在顶面处产生了能够反应固化过程中的接触时间的梯度,该梯度使得能以受支持和改进的方式实现PV活性。
在步骤c)中至少局部地给颗粒100的顶面设置顶面触点400。
如此获得的PV层序列在具有SiC颗粒的具体实施例中可实现几百毫伏的电势差。发明人认为,这可以使用带隙之内的附加能级来进行解释,这些附加能级可以归因于反应过程中产生的来自颗粒100的外表面的亚化学计量比化合物和缺陷。因此可以使用原则上已知的PV活性材料组合以特别简单而且廉价的方式产生PV活性层序列,该材料组合作为均质颗粒存在、以反应性方式并且按照要求保护的方法进行印刷、并且同时在化学计量比上被改变。例如在DE 39 36 666 C2中存在已经充分确立的且可行的PV活性材料组合的示例;同样可以使用以上所述的已知的金属-金属氧化物以及金属-金属卤化物组合。
优选地,该方法特征在于,在至少一个附加步骤中在至少一个表面区段中以氧化或还原的方式调节这些颗粒100,由此预先确定经还原处理的颗粒102的表面或者经氧化处理的颗粒103的表面。在具体的实施例中,在SiC颗粒处可以通过氧化性/碱性或者还原性/酸性调节使得可截取的光伏电流的符号反转。此时无法测量暗电流,该暗电流表示即使在暗处没有光线的情况下也会进行的纯电化学过程。发明人认为,这里通过氧化性或还原性措施填充或者排空了带隙之内的至少两个能级,使得这两个能级之间的多数载流子的性质依据调节情况而被调节到受主型传导或者施主型传导。
优选地,该方法特征在于,在另外的方法步骤中形成与至少一个表面区段、尤其顶面上的表面区段的颗粒100直接接触的纳米尺度的结构,该结构包括选自由链、网络、网络-管组成的组中的至少一种结构。通过与不同长度的原子链或者分子链的电耦合可以额外地改变能级。在具体的实验中,反应溶液200中的基于炭黑的添加剂、碳纳米管以及成链卤素和金属卤化物产生了更宽而且改善的波长范围,在其中可以确定PV层序列的PV活性。这可以用通过纳米管和纳米链对颗粒外侧的电接触以及改性来进行合理解释。
优选地,该方法特征在于,使用不同的溶液来调节这些颗粒100的相邻的表面区段,其中使得这些颗粒100的这些相邻的表面区段以交替顺序形成经还原处理的颗粒102的区段和经氧化处理的颗粒103的区段。这些表面特别优选分别形成为组合并且以相对彼此的窄间距排列,由此使得顶面触点400能够以特别简单的方式提供局部表面的串联电路。因此可以将局部表面相互连接成为级联系统,其中将PV活性的电势加和式地相结合。这在布置于木质载体300上的实际实验中产生了所印刷的特定PV层的仅仅在顶面上级联的1至2伏特的可截取电压。
优选地,该方法特征在于,在至少一个另外的方法步骤中将至少包括载体电极301和/或顶面触点400的电极预备性地施加到平坦延伸的材料上并且最后通过该平坦延伸的材料与该PV层序列相连。为此特别优选将空气干燥的和/或反应式固化的电极溶液印刷到透明的膜上,并且接着将膜在预定的位置中平坦地粘贴到所印刷的PV活性层上。
优选地,该方法特征在于,使用连续延伸的平面幅材作为该PV层序列的载体,优选使用膜幅材和/或纸幅,特别优选使用大麻纸幅。大麻具有不需要硫酸盐就能生产的优点;配以附加的防潮剂和/或杀生物剂,这种大麻纸能有利地耐受高温,而不会发黄或者在力学方面明显衰退或者在其性能方面下降。
优选地,该方法特征在于,使用粒径为最大50微米、优选粒径为30+-15微米、特别优选粒径为0.5至10微米的经粉碎、优选经机械粉碎的颗粒100。经机械粉碎的颗粒具有角和边,这些角和边在印刷过程中可以更好地被压入到载体中并且固定在载体上。
优选地,该方法特征在于,在嵌入膜的内侧上印刷和/或布置接触电极,并且在产生从嵌入物质引出的电学工艺触点的情况下,将根据该方法获得的PV层序列叠层在该嵌入膜中。这允许如DE 40 18 013 A中针对电极接线所说明的一样,以特别高效的方式同时形成和接触整个模块。
其他优点和有利的措施从实施例和以下说明中得出。这些实施例在此理解为没有局限性。所说明的附加特征和附加措施以及从现有技术已知的附加的有利措施和附加特征均可以在独立权利要求的范围内应用于要求保护的主题,而并不脱离本发明的范围。
附图说明
附图以原理示意图展示了如下内容:
图1a展示了该方法的步骤a)的结果,其中包括反应溶液200中的颗粒100的涂层已被印刷到载体300上;
图1b展示了该方法的步骤b)的结果,其中反应溶液200已经固化为较薄的层,也就是经固化的反应溶液201,其中颗粒100在底面处现在已通过经固化的层固定在载体300上并且在顶面处从经固化的反应溶液201中突出;
图1c展示了最终施加顶面触点400之后的根据图1a)和1b)的层;
图2展示了具有顶面101和经还原处理的底面102的颗粒100按照该方法通过经固化的反应溶液201固定在载体300上;
图3展示了根据图2的颗粒100的经印刷的局部表面在具有底面的对电极(图中没有绘出)的简单PV层序列中的排列和接触;
图4展示了具有a)经氧化处理的区段103和b)经还原处理的区段102的PV层序列的经印刷的局部表面的可能的连接和所产生的符号,其中底面的载体电极301和在顶面设置的取电触点分别将该区段与PV测量组件500(这里举例展示为电容器)相连;
图5展示了印刷到载体300上的包括颗粒100的局部区段的序列的可能连接,其中在每个局部区段中将一个经氧化处理的区段102与经还原处理的区段103组合并且所有局部区段通过顶面触点400串联级联,并且级联系统与PV测量组件500相连;
图6展示了包括颗粒100的经印刷的局部区段的可能的电流传导,其中经还原处理的区段102和经氧化处理的区段103不仅在这些区段中而且还在彼此间通过接触而级联排列;
图7展示了包括载体300、底面的载体电极301、包括颗粒100和顶面触点400的区段的层序列的排列;
图8以局部视图展示了根据图7的排列,具有突出显示的元件:载体300、载体电极301和以凸版印刷制造的不导电边框302;
图9展示了根据现有技术的PV层序列的REM照片和在相同意义上形成的具有附图标记的原理示意图,该层序列具有Cu-Ni背面电极601的表面,在截面图中观察,在背面电极602之后是TCO层603,随后是具有TCO面层和AR面层的硅基PV活性层604,最后是具有顶面的在顶面处的玻璃载体605;按照5微米的标尺606,整个层状复合物的厚度为几微米;
图10展示了根据该方法的PV层序列的REM照片和在相同意义上形成的具有附图标记的原理示意图,该层序列具有以机械方式粉碎并且用反应溶液调节和固定的颗粒701,这些颗粒被经固化的玻璃状无定形反应溶液702所覆盖和固定,其中20微米的标尺703展示了明显不同的形貌尺寸比例;
图11展示了根据该方法的PV层序列的扫描电镜照片和在相同意义上形成的具有附图标记的原理示意图,该层序列具有互穿地形成的并且固定地包围颗粒803的相801和802,其中5微米的标尺804展示了明显不同的形貌尺寸比例。
具体实施方式
以有利的实施方式执行了一种方法,其中在步骤a中将最大30+-15微米大小的工业纯的SiC半导体颗粒100分散在水性反应溶液200中,该水性反应溶液由在略微产生气体的情况下用苛性钠溶液调节为碱性的硅酸溶液组成,将这些颗粒以氧化方式溶解并且平坦施加到膜和/或纸载体300的具有先前涂覆的载体电极301且优选具有附加印刷的边框302的区段上,
-在步骤b中在体积收缩的情况下将该反应溶液200转化成经固化的反应溶液层201,其中这些颗粒100超出该经固化的反应溶液层201突出并且具有固定在该反应溶液层201中的底面和超出该反应溶液层201突出的顶面,
-以氧化或还原方式调节顶面的表面区段,由此预先确定经还原处理的颗粒102或者经氧化处理的颗粒103的表面,其中进而
-形成与至少一个表面区段的颗粒100直接接触的纳米尺度的结构,这些结构包括选自由以下项组成的组的至少一种结构:链、网络、网络-管,优选CNT链和/或卤素链,并且
-使用不同的溶液来调节这些颗粒100的相邻的表面区段,其中使得这些颗粒100的相邻的表面区段以交替顺序形成经还原处理的颗粒102的区段和经氧化处理的颗粒103的区段,
-在步骤c)中至少局部地给这些颗粒的顶面设置顶面触点400,并且将这些颗粒100的这些交替调节的表面区段串联连接并且将这些表面区段与最终的接触电极相连。
加入具有反应溶液200的几个重量百分比比例的鲁哥氏溶液作为形成卤化物链的添加剂。
加入具有反应溶液的0.1至2重量百分比的可水分散的淀粉聚醚作为弹性调节剂。
一方面使用水性的酸性表面活性剂且另一方面使用水性的碱性多元醇作为调节助剂,其中表面活性剂和多元醇作为可通过水相一起蒸发的湿润助剂起作用;在薄至极薄的层中以大约每平方米1克来平坦地印刷这两种助剂来调节经固化的区段,并且抽出蒸发的水相。根据所展示的附图,不同的接触可以得到各种不同的优点和应用。将单个区段序列直接级联允许截取能精确反映所存在的光的强度的光伏电势;这样即可得到印刷的光传感器。相对而言,平坦电极以及优化的区段尺寸和层厚使得可用的电流最大化并且提供了以下可能性:在标准效率方面,将印刷的PV层组合比经典的PV电流源提高10%。由这两种措施形成的组合允许匹配可用的最大电压,以便针对特定的设备或者应用提供必要的电压。
图9至11也说明了根据该方法获得的产品在形貌上大不相同的特性:与通过共蒸发或者其他气相产物获得的已经充分确立的体系和PV层不同,根据本发明的方法的超大的块和粗颗粒看起来十分粗糙。然而通过特殊的方法措施,能以合理而且成本极其低廉的方式,将这些便利的、可用且工业纯的原料加工成寿命长而且有竞争力的PV层序列。
工业实用性
在已经充分确立的PV层序列和对应的制造方法中不利的是,其方法工艺复杂而且昂贵,需要纯的原料才能可靠地提供PV活性。
因此本发明的目的就是克服这些缺点,并且提供一种方法和一种根据该方法的PV层序列,该PV层序列尽管制造成本极低,但仍然能够可靠且长期地提供PV功能。
在室温印刷方法的范围内通过对无机颗粒的反应活性调节实现了这个目的;表面反应活性调节精确地调节PV活性,提供动力学受控的反应产物,并且即使使用纯度约为97%的工业纯原料也能保证所追求的PV活性。
权利要求书的参考标记清单
100 颗粒
101 顶面
102 经还原处理的区段
103 经氧化处理的区段
200 反应溶液
201 经固化的反应溶液
300 载体
301 载体电极
302 边框(例如凸版印刷)
400 顶面触点
说明书的参考标记清单
100 颗粒
101 顶面
102 经还原处理的区段
103 经氧化处理的区段
200 反应溶液
201 经固化的反应溶液
300 载体
301 载体电极
302 边框(凸版印刷)
400 顶面触点
500 PV测量组件
601 背面电极
602 以剖面图示出的背面电极
603 TCO层
604 具有TCO面层和AR面层的PV活性Si层
605 玻璃载体和顶面
606 5微米标尺
701 用反应溶液调节的颗粒
702 经固化的玻璃状无定形反应溶液
703 20微米标尺
801 由两种互穿相构成的基质的相1
802 由两种互穿相构成的基质的相2
803 固定在基质中的颗粒
804 5微米标尺

Claims (18)

1.一种用于制造PV层序列的方法,其中
-在室温,
-将无机核心成分
-在使用水性溶液和/或水性分散液情况下
通过印刷方法加工成能够通过电极接触的完整PV层序列,其特征在于,该方法包括以下步骤,
-在步骤a)中将由至少两种元素组成的0.5至100微米大小的半导体颗粒(100)分散在水性反应溶液(200)中、以氧化或还原的方式溶解、并且平坦地施加到载体(300)上,
-在步骤b)中在体积收缩的情况下将该反应溶液(200)转化成经固化的反应溶液层(201),其中这些颗粒(100)超出该经固化的反应溶液层(201)突出并且具有固定在该反应溶液层(201)中的底面和超出该反应溶液层(201)突出的顶面,
-在步骤c)中至少局部地给这些颗粒的顶面设置顶面触点(400),
其中使用不同的溶液来调节这些颗粒(100)的相互相邻的表面区段,使得这些颗粒(100)的这些相互相邻的表面区段以交替顺序形成经还原处理的颗粒(102)的区段和经氧化处理的颗粒(103)的区段。
2.根据权利要求1所述的方法,其特征在于,在至少一个附加步骤中在至少一个表面区段中以氧化或还原的方式调节这些颗粒(100),由此预先确定经还原处理的颗粒(102)的表面或者经氧化处理的颗粒(103)的表面。
3.根据权利要求1或2所述的方法,其特征在于,在另外的方法步骤中形成与至少一个表面区段的颗粒(100)直接接触的纳米尺度的结构,该结构包括选自由链、网络、网络-管组成的组中的至少一种结构。
4.根据权利要求1或2所述的方法,其特征在于,在另外的方法步骤中形成与顶面上的表面区段的颗粒(100)直接接触的纳米尺度的结构,该结构包括选自由链、网络、网络-管组成的组中的至少一种结构。
5.根据权利要求1或2所述的方法,其特征在于,在至少一个另外的方法步骤中将至少包括载体电极(301)和/或顶面触点(400)的电极预备性地施加到平坦延伸的材料上并且最后通过该平坦延伸的材料与该PV层序列相连。
6.根据权利要求1或2所述的方法,其特征在于,使用连续延伸的平面幅材作为该PV层序列的载体。
7.根据权利要求6所述的方法,其特征在于,使用膜幅材和/或纸幅作为该PV层序列的载体。
8.根据权利要求7所述的方法,其特征在于,使用大麻纸幅作为该PV层序列的载体。
9.根据权利要求1-2和7-8中任一项所述的方法,其特征在于,使用粒径为最大50微米的经粉碎的颗粒(100)。
10.根据权利要求9所述的方法,其特征在于,使用粒径为30±15微米的经粉碎的颗粒(100)。
11.根据权利要求9所述的方法,其特征在于,使用粒径为0.5至10微米的经粉碎的颗粒(100)。
12.根据权利要求9所述的方法,其特征在于,所述颗粒是经机械粉碎的颗粒。
13.根据权利要求10所述的方法,其特征在于,所述颗粒是经机械粉碎的颗粒。
14.根据权利要求11所述的方法,其特征在于,所述颗粒是经机械粉碎的颗粒。
15.根据权利要求1-2、7-8和10-14中任一项所述的方法,其特征在于,在步骤a)中将最大30±15微米大小的SiC半导体颗粒(100)分散在水性反应溶液(200)中,该水性反应溶液由在略微产生气体的情况下用苛性钠溶液调节为碱性的硅酸溶液组成,将这些颗粒以氧化方式溶解并且平坦施加到膜和/或纸载体(300)的具有先前涂覆的载体电极(301)的区段上,
-在步骤b)中在体积收缩的情况下将该反应溶液(200)转化成经固化的反应溶液层(201),其中这些颗粒(100)超出该经固化的反应溶液层(201)突出并且具有固定在该反应溶液层(201)中的底面和超出该反应溶液层(201)突出的顶面,
-以氧化或还原方式调节顶面的表面区段,由此预先确定经还原处理的颗粒(102)或者经氧化处理的颗粒(103)的表面,其中进而
-形成与至少一个表面区段的颗粒(100)直接接触的纳米尺度的结构,这些结构包括选自由以下项组成的组的至少一种结构:链、网络、网络管,并且
-使用不同的溶液来调节这些颗粒(100)的相邻的表面区段,其中使得这些颗粒(100)的相邻的表面区段以交替顺序形成经还原处理的颗粒(102)的区段和经氧化处理的颗粒(103)的区段,
-在步骤c)中至少局部地给这些颗粒的顶面设置顶面触点(400),并且将这些颗粒(100)的这些交替调节的表面区段串联连接并且将这些表面区段与最终的接触电极相连。
16.根据权利要求1-2、7-8和10-14中任一项所述的方法,其特征在于,在步骤a)中将最大30±15微米大小的SiC半导体颗粒(100)分散在水性反应溶液(200)中,该水性反应溶液由在略微产生气体的情况下用苛性钠溶液调节为碱性的硅酸溶液组成,将这些颗粒以氧化方式溶解并且平坦施加到膜和/或纸载体(300)的具有先前涂覆的载体电极(301)且具有附加印刷的边框(302)的区段上,
-在步骤b)中在体积收缩的情况下将该反应溶液(200)转化成经固化的反应溶液层(201),其中这些颗粒(100)超出该经固化的反应溶液层(201)突出并且具有固定在该反应溶液层(201)中的底面和超出该反应溶液层(201)突出的顶面,
-以氧化或还原方式调节顶面的表面区段,由此界定经还原处理的颗粒(102)或者经氧化处理的颗粒(103)的表面,其中进而
-形成与至少一个表面区段的颗粒(100)直接接触的纳米尺度的结构,这些结构包括选自由以下项组成的组的至少一种结构:CNT链和/或卤素链,并且
-使用不同的溶液来调节这些颗粒(100)的相邻的表面区段,其中使得这些颗粒(100)的相邻的表面区段以交替顺序形成经还原处理的颗粒(102)的区段和经氧化处理的颗粒(103)的区段,
-在步骤c)中至少局部地给这些颗粒的顶面设置顶面触点(400),并且将这些颗粒(100)的这些交替调节的表面区段串联连接并且将这些表面区段与最终的接触电极相连。
17.根据权利要求1-2、7-8和10-14中任一项所述的方法,其特征在于,在嵌入膜的内侧上印刷和/或布置接触电极,并且在产生从嵌入物质引出的电学工艺触点的情况下,将根据该方法获得的PV层序列叠层在该嵌入膜中。
18.一种根据权利要求1-17中任一项所述的方法获得的PV层序列。
CN201780055564.7A 2016-07-12 2017-07-11 用于制造pv层序列的室温印刷方法以及根据该方法获得的pv层序列 Active CN109743886B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016008383 2016-07-12
DE102016008383.2 2016-07-12
PCT/DE2017/100572 WO2018010727A1 (de) 2016-07-12 2017-07-11 Raumtemperatur-druckverfahren zur herstellung einer pv-schichtfolge und verfahrensgemäss erhaltene pv-schichtfolge

Publications (2)

Publication Number Publication Date
CN109743886A CN109743886A (zh) 2019-05-10
CN109743886B true CN109743886B (zh) 2022-11-22

Family

ID=59558148

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780055564.7A Active CN109743886B (zh) 2016-07-12 2017-07-11 用于制造pv层序列的室温印刷方法以及根据该方法获得的pv层序列

Country Status (9)

Country Link
US (1) US11404592B2 (zh)
EP (1) EP3523829B1 (zh)
JP (2) JP2019522382A (zh)
CN (1) CN109743886B (zh)
BR (1) BR112019000712B1 (zh)
DE (1) DE102017115533A1 (zh)
PL (1) PL3523829T3 (zh)
RU (1) RU2750998C2 (zh)
WO (1) WO2018010727A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020003811A1 (de) 2020-06-25 2021-12-30 Dynamic Solar Systems Ag Fußbodenheizungs-System mit verbessertem Schichtaufbau

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866506A1 (en) * 1996-10-09 1998-09-23 Josuke Nakata Semiconductor device

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL286090A (zh) 1962-03-12
US3633502A (en) 1969-03-13 1972-01-11 Minnesota Mining & Mfg Intaglio printing block with reservoir for powdered ink
DE2017326A1 (en) 1969-12-03 1972-02-17 Arthur D Little, Inc , Cambridge, Mass (V St A) High gloss paper/board - by applying coating contg minute vesicles
US3804797A (en) 1972-09-13 1974-04-16 Dow Chemical Co Coating compositions comprising cyclic sulfonium zwitterions with carboxy containing polymers
GB1449821A (en) 1972-10-27 1976-09-15 Ici Ltd Aqueous compositions
DE2529043C3 (de) 1975-06-30 1979-03-29 Kissel & Wolf Gmbh, 6908 Wiesloch Verfahren und Druckfarbe zur Herstellung von Blindenschrift-Drucken
LU75539A1 (zh) 1976-08-05 1978-02-13
JPS60141590A (ja) 1983-12-28 1985-07-26 Sakata Shokai Ltd 水性オ−バ−コ−テイング用組成物およびそれを用いた印刷方法
JP2717583B2 (ja) 1988-11-04 1998-02-18 キヤノン株式会社 積層型光起電力素子
DE4018013A1 (de) 1990-06-05 1991-12-12 Siemens Ag Verfahren zur herstellung von elektrodenstrukturen fuer solarzellen
JP2641800B2 (ja) * 1990-11-30 1997-08-20 シャープ株式会社 太陽電池及びその製造方法
JPH04368887A (ja) 1991-06-17 1992-12-21 Sharp Corp プリント基板印刷用スクリーン
JPH061852A (ja) 1992-06-19 1994-01-11 Toyo Ink Mfg Co Ltd 水性顔料分散体
DE4322999A1 (de) 1993-07-09 1995-01-12 Henkel Kgaa Anionisch basierte wässrige Druckfarben mit verbesserter Deinkbarkeit
DE19720004C1 (de) 1997-05-13 1999-02-04 Pelikan Produktions Ag Tintenstrahl-Druckverfahren und Tintenset für den Mehrfarben-Tintenstrahldruck
JPH11317534A (ja) * 1998-04-30 1999-11-16 Konica Corp 太陽電池及びその製造方法
DE10004997A1 (de) 1999-03-19 2000-09-21 Heidelberger Druckmasch Ag Druckverfahren und -maschine
US8456393B2 (en) * 2007-05-31 2013-06-04 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
US8133768B2 (en) * 2007-05-31 2012-03-13 Nthdegree Technologies Worldwide Inc Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system
JP2012507872A (ja) * 2008-10-30 2012-03-29 フェイ プーン、ハク ハイブリッド透明導電性電極
JP5302345B2 (ja) * 2011-02-09 2013-10-02 株式会社ジャパンディスプレイ 表示装置
WO2013096336A1 (en) * 2011-12-19 2013-06-27 Nthdegree Technologies Worldwide Inc. Forming graded index lens in an all atmospheric pressure printing process to form photovoltaic panels
WO2014019560A1 (de) 2012-08-02 2014-02-06 Dynamic Solar Systems Inc. Verbesserte schichtsolarzelle
CN107466422B (zh) 2015-02-26 2021-03-19 动态太阳能系统公司 通过室温方法获得pv膜结构以及用于生产pv膜结构的室温方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0866506A1 (en) * 1996-10-09 1998-09-23 Josuke Nakata Semiconductor device

Also Published As

Publication number Publication date
EP3523829A1 (de) 2019-08-14
BR112019000712A2 (pt) 2019-05-14
DE102017115533A1 (de) 2018-01-18
EP3523829B1 (de) 2023-09-06
CN109743886A (zh) 2019-05-10
RU2019103581A3 (zh) 2020-08-25
JP2022163082A (ja) 2022-10-25
RU2750998C2 (ru) 2021-07-07
US20190280135A1 (en) 2019-09-12
RU2019103581A (ru) 2020-08-12
US11404592B2 (en) 2022-08-02
WO2018010727A1 (de) 2018-01-18
JP2019522382A (ja) 2019-08-08
EP3523829C0 (de) 2023-09-06
BR112019000712B1 (pt) 2023-02-28
PL3523829T3 (pl) 2024-03-18

Similar Documents

Publication Publication Date Title
Frolova et al. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2
Liang et al. All-inorganic perovskite solar cells
Wang et al. Gradient self-doped CuBi2O4 with highly improved charge separation efficiency
Park et al. Towards stable and commercially available perovskite solar cells
Gao et al. TiO2 nanorod arrays based self-powered UV photodetector: heterojunction with NiO nanoflakes and enhanced UV photoresponse
Lian et al. High-performance planar-type photodetector on (100) facet of MAPbI 3 single crystal
Zhang et al. Structure engineering of hole–conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode
Green et al. The emergence of perovskite solar cells
Sinha et al. Growth of carbon dot-decorated ZnO nanorods on a graphite-coated paper substrate to fabricate a flexible and self-powered schottky diode for UV detection
Rodriguez-Gutierrez et al. Charge transfer and recombination dynamics at inkjet-printed CuBi2O4 electrodes for photoelectrochemical water splitting
Zhang et al. Synthesis and optoelectronics of mixed-dimensional Bi/Te binary heterostructures
Li et al. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects
Ye et al. Strain-relaxed tetragonal MAPbI3 results in efficient mesoporous solar cells
Parrey et al. Synthesis and characterization of an efficient hole-conductor free halide perovskite CH3NH3PbI3 semiconductor absorber based photovoltaic device for IOT
Silipigni et al. Template electrochemical growth and properties of Mo oxide nanostructures
JP2020504455A (ja) 強誘電体強化太陽電池及びその製造方法
Xue et al. Type-I SnSe2/ZnS heterostructure improving photoelectrochemical photodetection and water splitting
Hosseini et al. Concrete embedded dye-synthesized photovoltaic solar cell
Adams et al. Fabrication of rapid response self-powered photodetector using solution-processed triple cation lead-halide perovskite
Chi et al. Preparation and photoelectric performance of ITO/TiO2/CdS composite thin films
CN109743886B (zh) 用于制造pv层序列的室温印刷方法以及根据该方法获得的pv层序列
Havigh et al. Improving the performance of the self-powered polymer-based UV/Vis photodetectors via carbon fibers
Berruet et al. Electrodeposition of single and duplex layers of ZnO with different morphologies and electrical properties
Yu et al. Fabrication of a cost effective and broadband self-powered photodetector based on Sb2Te3 and silicon
Fu et al. Layer and material-type dependent photoresponse in WSe2/WS2 vertical heterostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40001878

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant