CN109715854A - 均热板的涂布 - Google Patents

均热板的涂布 Download PDF

Info

Publication number
CN109715854A
CN109715854A CN201680088907.5A CN201680088907A CN109715854A CN 109715854 A CN109715854 A CN 109715854A CN 201680088907 A CN201680088907 A CN 201680088907A CN 109715854 A CN109715854 A CN 109715854A
Authority
CN
China
Prior art keywords
silica
cnt
derivative
coating
soaking plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680088907.5A
Other languages
English (en)
Inventor
吴冠霆
K·沃斯
C-H·张
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN109715854A publication Critical patent/CN109715854A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes

Abstract

在示例性实施方案中,提供了均热板。该均热板包括金属外壳。在金属外壳的内壁上施加镍涂层。在金属外壳的内壁上的镍涂层上施加二氧化硅衍生碳纳米管(CNT)气凝胶涂层。将二氧化硅衍生CNT气凝胶涂层喷涂到镍涂层上,干燥并固化。

Description

均热板的涂布
背景
均热板用于各种电子设备以助于从电子设备转移热。例如,高温会不利地影响电子设备如计算机处理器的运行。
均热板通过在一侧上从电子设备吸收热以将均热板内的液体加热成蒸气来工作。蒸气上升到充当冷凝器的均热板的相反侧。蒸气紧靠均热板的冷凝器部分冷凝回液体形式。液体随后回到吸热侧并重复该过程以从电子设备散热。
均热板的现有设计使用铜粉形成芯吸结构(wick structure)。对于高工艺温度,可将铜烧结以形成较厚的涂层。另一些实例使用光刻法在均热板的内壁上形成芯吸结构。但是,烧结法和光刻法可具有长工艺时间和高成本。
附图简述
图1是本公开的示例性均热板的方框图;
图2是本公开的示例性工艺流程图的方框图;
图3是用于形成本公开的二氧化硅衍生碳纳米管(CNT)气凝胶的示例性方法的流程图;且
图4是二氧化硅衍生CNT气凝胶的示例性化学结构的图。
详述
本公开提供了均热板和建造均热板的方法。如上文论述,均热板用于各种电子设备以助于从电子设备转移热。
均热板的现有设计使用铜粉形成芯吸结构。对于高工艺温度,可将铜烧结以形成较厚的涂层。另一些实例使用光刻法在均热板的内壁上形成芯吸结构。但是,烧结法和光刻法可具有长工艺时间和高成本。
本公开使用二氧化硅衍生CNT气凝胶,将其喷涂到均热板的内壁上,干燥并固化以形成芯吸结构。该二氧化硅衍生CNT气凝胶与目前用于均热板的芯吸结构相比具有许多优点。例如,该二氧化硅衍生CNT气凝胶容易施加而不使用光刻法或烧结法。此外,该二氧化硅衍生CNT气凝胶具有低密度、轻重量、高孔隙率和高表面积,其增强均热板内的传热和散热性能。此外,二氧化硅衍生CNT气凝胶的化学性质提供强氢键合以具有高吸水性并增强芯吸结构的毛细力能力。
图1图示说明本公开的示例性均热板100的方框图。均热板100包括金属外壳102、镍涂层104和二氧化硅衍生碳纳米管(CNT)气凝胶涂层106。在一个实施方案中,金属外壳102可以是任何传导性金属(conductive metal),例如铜、铝、不锈钢等。金属外壳102可具有大约0.1毫米(mm)至6mm的厚度114。
在一个实例中,镍涂层104可使用电镀处理器或物理气相沉积(PVD)法施加。可以施加镍涂层104以防止金属外壳102氧化(氧化会导致金属外壳102的表面腐蚀)。
在一个实例中,可以喷涂、干燥和固化二氧化硅衍生CNT气凝胶涂层106。二氧化硅衍生CNT气凝胶涂层106可提供实施传热的芯吸结构。下面描述如何配制二氧化硅衍生CNT气凝胶涂层106的一个实例并图示说明在图3中。下面论述二氧化硅衍生CNT气凝胶涂层106的化学结构的一个实例并图示说明在图4中。
二氧化硅衍生CNT气凝胶涂层106可具有高孔隙率,这提供较大表面积。大表面积有助于改进均热板100内的传热效率。此外,可将二氧化硅衍生CNT气凝胶涂层106喷涂到金属外壳102的表面上,而非使用光刻法或烧结形成芯吸结构。
图1图示说明均热板100如何工作的一个实例。在一个实例中,一个或多个表面108(例如底表面)可与热源(例如运行中的电子设备)接触。例如,表面108可与处理器、存储设备或其它产生热的电子组件接触。热可经表面108进入均热板100。
均热板100可具有内侧或内部体积112。内部体积112可以真空密封并注入少量液体(例如水),其润湿二氧化硅衍生CNT气凝胶涂层106。进入均热板100的热加热该液体并将液体转化成蒸气。
随着蒸气上升(如箭头116所示),蒸气可接触与表面108相反的第二表面110(例如顶表面)。第二表面110可充当冷凝器,其将蒸气转化回液体形式。液体可回到内部体积112的底部以再润湿二氧化硅衍生CNT气凝胶涂层106,因此该过程可重复。
热可经顶部第二表面110从电子设备中消散。在一些实例中,可将散热翅片或其它导热材料连接到第二表面110的外侧以助于进一步散热。
如上所述,二氧化硅衍生CNT气凝胶涂层106的化学性质和结构性质可助于改进传热效率。二氧化硅衍生CNT气凝胶涂层106可具有高孔隙率,这极大增加可用于实施传热的表面积。例如,二氧化硅衍生CNT气凝胶涂层106可具有大约90%-95%孔隙率。换言之,二氧化硅衍生CNT气凝胶涂层106可具有大约250平方米/克(m2/g)至1,000m2/g的表面积。
在一个实例中,二氧化硅衍生CNT气凝胶涂层106内的碳纳米管可具有大约7-12纳米(nm)的直径并具有大约1-3微米(μm)的长度。在一个实例中,二氧化硅衍生CNT气凝胶涂层106可喷涂或施加到大约3-25μm的厚度118。
图2图示说明如何形成均热板100的示例性工艺流程图。在方框202,提供第一金属基底1021和第二金属基底1022。第一金属基底1021和第二金属基底1022可以是两半,它们如下论述组合以形成金属外壳102。
第一金属基底1021和第二金属基底1022可以是相同传导性金属。例如,第一金属基底1021和第二金属基底1022可以是铜、铝、不锈钢等。
在方框204,将镍涂层104施加到第一金属基底1021和第二金属基底1022上。镍涂层104可经由电镀法或PVD法施加。
在方框206,可将二氧化硅衍生CNT气凝胶涂层106喷涂到第一金属基底1021和第二金属基底1022的镍涂层104上。二氧化硅衍生CNT气凝胶涂层106可形成均热板100的芯吸结构。尤其可以喷涂或施加二氧化硅衍生气凝胶涂层106而不使用光刻法或烧结。
在方框208,可将二氧化硅衍生CNT气凝胶涂层106干燥。在一个实例中,可以使用冻干法将二氧化硅衍生CNT气凝胶涂层106干燥。可在大约-4摄氏度(℃)至-80℃的温度和大约4x 10-4至5x 10-4毫托(mTorr)的压力下施加冻干法大约24小时至48小时。
在另一实例中,可以使用超临界干燥法将二氧化硅衍生CNT气凝胶涂层106干燥。可在大约35℃至250℃的温度和大约30巴至150巴的压力下施加超临界干燥法大约30分钟至120分钟。
在方框210,可将二氧化硅衍生CNT气凝胶涂层106固化。可在大约300℃至500℃的温度下进行固化大约30分钟至40分钟。
在方框212,可将第一金属基底1021和第二金属基底1022焊接在一起以形成具有固化到在均热板100的内部112的镍涂层104上的二氧化硅衍生CNT气凝胶涂层106的均热板100。在一个实施方案中,均热板100可真空密封以从均热板100的内部112除去任何空气。此外,可将少量液体,如水注入均热板100的内部112以润湿二氧化硅衍生CNT气凝胶涂层106。
图3图示说明用于形成本公开的二氧化硅衍生碳纳米管(CNT)气凝胶的示例性方法300的流程图。在方框302,方法300开始。
在方框304,方法300在室温下在搅拌的同时使原硅酸四乙酯(TEOS)和乙醇或异丙醇的混合物与酸催化剂反应大约30-60分钟。该酸催化剂可以是碳酸、草酸、磷酸、盐酸或硝酸之一。室温可被定义为大约20℃。
在方框306,方法300在室温下将该混合物老化大约24小时以形成二氧化硅衍生CNT气凝胶涂层前体。二氧化硅衍生CNT气凝胶可形成具有大约8-12nm的直径和大约1-3μm的长度的碳纳米管。如上所述,二氧化硅衍生CNT气凝胶可具有高孔隙率,其产生大约250-1,000m2/g的大表面积。
图4图示说明二氧化硅衍生CNT气凝胶的示例性化学结构400。化学结构400表明二氧化硅衍生CNT气凝胶包含大量在硅烷醇基团402、404和406上的羟基(OH)基团410。大量OH基团410提供强氢键合以具有高吸水性并增强二氧化硅衍生CNT气凝胶的毛细力能力。化学结构400的这些性质为均热板100提供非常高效的传热并有助于改进芯吸结构内的液体回流率。
回到图3,在方框308,方法300喷涂二氧化硅衍生CNT气凝胶以涂布均热板的内侧涂镍表面至大约3μm至25μm的厚度。可将二氧化硅衍生CNT气凝胶的涂层干燥和固化。在一个实例中,可将二氧化硅衍生CNT气凝胶涂层前体喷涂到均热板的金属外壳的两半上,最后将它们焊接在一起。在方框310,方法300结束。
因此,本公开提供比目前使用的均热板更高效生产并且更高效散热的均热板设计。二氧化硅衍生CNT气凝胶的组成和结构有助于提供容易将二氧化硅衍生CNT气凝胶施加到均热板的内壁并提高均热板的传热效率的性质和特征。
此外,本公开的均热板的设计与通过铜粉烧结处理制成的均热板相比具有降低的厚度。二氧化硅衍生CNT气凝胶涂层的轻重量也提供灵活设计能力以与重量减轻的电子设备的设计空间匹配。
借助本公开的均热板提供的改进的传热效率,可以延长产品,如液晶显示(LDC)面板、发光二极管(LED)、计算机处理单元(CPU)、电池等的寿命。此外,通过高效冷却电子设备,本公开的均热板可改进这些电子设备的速度、功率效率和安全性(例如降低电池爆炸风险)。
要认识到,上文公开的和其它的特征和功能的变体或其替代方案可组合到许多其它不同的系统或应用中。本领域技术人员可随后作出各种目前未预见的或未预料到的替代方案、修改、变动或改进,下列权利要求书也意在涵盖这些。

Claims (15)

1.一种方法,其包括:
提供第一金属基底和第二金属基底;
将镍涂层施加到所述第一金属基底和第二金属基底上;
将二氧化硅衍生碳纳米管(CNT)气凝胶涂层喷涂到所述第一金属基底和第二金属基底的镍涂层上;
干燥所述二氧化硅衍生CNT气凝胶涂层;
固化所述二氧化硅衍生CNT气凝胶涂层;和
将所述第一金属基底焊接到所述第二金属基底上以形成具有固化到均热板内部的镍涂层上的二氧化硅衍生CNT气凝胶涂层的均热板。
2.权利要求1的方法,其中所述第一金属基底和第二金属基底各自包含下列至少一种:铜、铝或不锈钢。
3.权利要求1的方法,其中所述镍涂层经由下列至少一种施加:电镀法或物理气相沉积法。
4.权利要求1的方法,其中在大约-4摄氏度(℃)至-80℃的温度和大约4 x 10-4至5 x10-4毫托(mTorr)的压力下使用冻干法将所述二氧化硅衍生CNT气凝胶干燥大约24小时至48小时。
5.权利要求1的方法,其中在大约35摄氏度(℃)至250℃的温度和大约30巴至150巴的压力下使用超临界干燥法将所述二氧化硅衍生CNT气凝胶干燥大约30分钟至120分钟。
6.权利要求1的方法,其中在大约300摄氏度(℃)至500℃的温度下将所述二氧化硅衍生CNT气凝胶固化大约30分钟至40分钟。
7.一种均热板,其包括:
金属外壳;
在所述金属外壳的内壁上的镍涂层;和
在所述金属外壳的内壁上的镍涂层上的二氧化硅衍生碳纳米管(CNT)气凝胶涂层,其中将所述二氧化硅衍生CNT气凝胶涂层喷涂到所述镍涂层上,干燥并固化。
8.权利要求7的均热板,其中所述金属外壳包含下列至少一种:铜、铝或不锈钢。
9.权利要求7的均热板,其中所述二氧化硅衍生CNT气凝胶涂层包含具有大约8-12纳米(nm)的直径和大约1-3微米(μm)的长度的碳纳米管。
10.权利要求7的均热板,其中所述二氧化硅衍生CNT气凝胶涂层具有大约250-1,000平方米/克(m2/g)的表面积。
11.权利要求7的均热板,其中喷涂所述二氧化硅衍生CNT气凝胶涂层以具有大约3微米(μm)至25μm的厚度。
12.权利要求7的均热板,其中所述金属外壳的内壁具有大约0.1毫米(mm)至6mm的厚度。
13.一种方法,其包括:
在室温下在搅拌的同时使原硅酸四乙酯(TEOS)和乙醇或异丙醇的混合物与酸催化剂反应大约30-60分钟;
在室温下将所述混合物老化大约24小时以形成二氧化硅衍生碳纳米管(CNT)气凝胶涂层前体;和
喷涂所述二氧化硅衍生CNT气凝胶涂层前体以涂布均热板的内侧涂镍表面至大约3微米(μm)至25μm的厚度。
14.权利要求13的方法,其中所述酸催化剂包含下列至少一种:碳酸、草酸、磷酸、盐酸或硝酸。
15.权利要求13的方法,其中所述二氧化硅衍生CNT气凝胶包含具有大约8-12纳米(nm)的直径和大约1-3μm的长度的碳纳米管并具有大约250-1,000平方米/克(m2/g)的表面积。
CN201680088907.5A 2016-10-07 2016-10-07 均热板的涂布 Pending CN109715854A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2016/056017 WO2018067174A1 (en) 2016-10-07 2016-10-07 Coating for a vapor chamber

Publications (1)

Publication Number Publication Date
CN109715854A true CN109715854A (zh) 2019-05-03

Family

ID=61831234

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680088907.5A Pending CN109715854A (zh) 2016-10-07 2016-10-07 均热板的涂布

Country Status (4)

Country Link
US (1) US10851460B2 (zh)
EP (1) EP3485062A4 (zh)
CN (1) CN109715854A (zh)
WO (1) WO2018067174A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128116A1 (en) * 2003-08-25 2008-06-05 Carlos Dangelo Vapor chamber heat sink having a carbon nanotube fluid interface
US20100294467A1 (en) * 2009-05-22 2010-11-25 General Electric Company High performance heat transfer device, methods of manufacture thereof and articles comprising the same
CN102065984A (zh) * 2008-05-05 2011-05-18 康奈尔大学 高性能吸液芯
CN102351494A (zh) * 2011-07-20 2012-02-15 厦门大学 一种泡沫材料增强二氧化硅气凝胶复合材料的制备方法
CN102732070A (zh) * 2011-04-07 2012-10-17 陈群 一种电子元件奈米炭热导层构造
CN105392343A (zh) * 2015-12-11 2016-03-09 赛尔康技术(深圳)有限公司 一种散热处理结构

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063714A (en) * 1995-11-16 2000-05-16 Texas Instruments Incorporated Nanoporous dielectric thin film surface modification
EP1089938A1 (en) 1998-06-19 2001-04-11 The Research Foundation Of State University Of New York Free-standing and aligned carbon nanotubes and synthesis thereof
US20070284089A1 (en) 2006-05-31 2007-12-13 Intel Corporation Method, apparatus and system for carbon nanotube wick structures
CN101232794B (zh) 2007-01-24 2011-11-30 富准精密工业(深圳)有限公司 均热板及散热装置
CN101309573A (zh) 2007-05-18 2008-11-19 富准精密工业(深圳)有限公司 均热板及散热装置
US20090040726A1 (en) * 2007-08-09 2009-02-12 Paul Hoffman Vapor chamber structure and method for manufacturing the same
DE102008053030A1 (de) * 2008-10-24 2010-04-29 Kme Germany Ag & Co. Kg Metall/CNT-und/oder Fulleren-Komposit-Beschichtung auf Bandwerkstoffen
US8323439B2 (en) 2009-03-08 2012-12-04 Hewlett-Packard Development Company, L.P. Depositing carbon nanotubes onto substrate
US10018428B2 (en) 2011-06-27 2018-07-10 Raytheon Company Method and apparatus for heat spreaders having a vapor chamber with a wick structure to promote incipient boiling
WO2013056847A1 (en) * 2011-10-19 2013-04-25 Tata Steel Uk Limited Anti-scale and anti-corrosion hybrid coatings for steel substrates

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080128116A1 (en) * 2003-08-25 2008-06-05 Carlos Dangelo Vapor chamber heat sink having a carbon nanotube fluid interface
CN102065984A (zh) * 2008-05-05 2011-05-18 康奈尔大学 高性能吸液芯
US20100294467A1 (en) * 2009-05-22 2010-11-25 General Electric Company High performance heat transfer device, methods of manufacture thereof and articles comprising the same
CN102732070A (zh) * 2011-04-07 2012-10-17 陈群 一种电子元件奈米炭热导层构造
CN102351494A (zh) * 2011-07-20 2012-02-15 厦门大学 一种泡沫材料增强二氧化硅气凝胶复合材料的制备方法
CN105392343A (zh) * 2015-12-11 2016-03-09 赛尔康技术(深圳)有限公司 一种散热处理结构

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张志华等: ""SiO2气凝胶材料的制备、性能及其低温保温隔热应用"", 《航空材料学报》 *
曲绪平等: ""正硅酸乙酯水解-聚合的工艺参数研究及纳米SiO2的合成"", 《玻璃与搪瓷》 *

Also Published As

Publication number Publication date
EP3485062A4 (en) 2020-03-11
US20190048476A1 (en) 2019-02-14
WO2018067174A1 (en) 2018-04-12
US10851460B2 (en) 2020-12-01
EP3485062A1 (en) 2019-05-22

Similar Documents

Publication Publication Date Title
Bahru et al. A review of thermal interface material fabrication method toward enhancing heat dissipation
JP2019057731A (ja) 電磁波吸収組成物塗料
US20140116661A1 (en) Thermal Pad, Method for Fabricating Thermal Pad, Heat Dissipating Apparatus and Electronic Device
KR100949786B1 (ko) 히트 싱크용 세라믹 조성물 및 이를 이용한 방열 및 열 흡수 특성이 우수한 히트 싱크
Lim et al. Anomalously enhanced light-emitting diode cooling via nucleate boiling using graphene-nanoplatelets coatings
CN106604607B (zh) 一种无吸液芯超薄热管装置
Lay et al. Effective micro-spray cooling for light-emitting diode with graphene nanoporous layers
CN100424905C (zh) 热电变换元件及其制造方法、使用该热电变换元件的冷却装置以及该冷却装置的控制方法
CN104445173A (zh) 具有高导热性能的泡沫石墨烯热界面材料的制备方法
Park et al. Pool boiling enhancement using hierarchically structured ZnO nanowires grown via electrospraying and chemical bath deposition
KR100928548B1 (ko) 점착 테이프 및 그 제조 방법
CN103834258A (zh) 纳米类金刚石散热节能环保薄膜涂料及其制备使用方法
CN109715854A (zh) 均热板的涂布
CN103219250A (zh) 石墨烯散热片的制备方法
CN105679725A (zh) 一种用于激光显示的散热装置及其制备方法
Yang et al. Vertically Aligned Boron Nitride Nanosheets Films for Superior Electronic Cooling
CN106888548A (zh) 一种具有石墨烯/碳纳米管复合散热涂层的铝基覆铜箔层压板及其涂覆方法
JP2018145330A (ja) ゾル塗液
KR20140105069A (ko) 두께 방향으로 우수한 열전도 특성을 갖는 방열판의 제조방법과 이 방법에 의해 제조된 방열판
KR101508202B1 (ko) 수직 배열된 그래핀을 포함하는 방열 코팅층의 형성방법
CN102226665B (zh) 一种提高管式间接蒸发冷却器热湿交换效率的方法
CN108962602A (zh) 一种提高高压电容电池用铝箔比容的方法
CN109867999A (zh) 一种纳米材料、涂料、涂膜形成构件与喷涂形成构件
TWM536989U (zh) 大面積陶瓷基板結構
JP2011231356A (ja) 金属基材の絶縁被膜方法、絶縁被膜金属基材、および、これを用いた半導体製造装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190503