CN109694464A - 一种n型有机半导体材料及其制备方法和应用 - Google Patents

一种n型有机半导体材料及其制备方法和应用 Download PDF

Info

Publication number
CN109694464A
CN109694464A CN201710992444.1A CN201710992444A CN109694464A CN 109694464 A CN109694464 A CN 109694464A CN 201710992444 A CN201710992444 A CN 201710992444A CN 109694464 A CN109694464 A CN 109694464A
Authority
CN
China
Prior art keywords
semiconducting materials
organic semiconducting
shaped organic
carbon
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710992444.1A
Other languages
English (en)
Inventor
黄飞
谢锐浩
应磊
曹镛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan volt ampere Photoelectric Technology Co., Ltd
Original Assignee
South China Institute of Collaborative Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Institute of Collaborative Innovation filed Critical South China Institute of Collaborative Innovation
Priority to CN201710992444.1A priority Critical patent/CN109694464A/zh
Publication of CN109694464A publication Critical patent/CN109694464A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种n型有机半导体材料及其制备方法与应用。所述n型有机半导体材料结构式为式(1)所示,式中Ar为富电子性共轭单元;π为含有碳碳双键、碳氮键的共轭单元;n为所述n型有机半导体材料的聚合度,n为1到10000的自然数。所述材料的具体特征是含有氰基环戊酮并噻吩化学结构的有机半导体材料,该类有机半导体材料具有较强的光捕获能力(吸收系数高、吸收光谱宽),合适的电子能级,较高的电子迁移率等独特优势,可作为电子受体材料应用于有机电池器件领域。所述材料作为电子受体材料应用于有机太阳电池器件中,获得良好的器件性能,是一类具有商业化应用前景的材料。

Description

一种n型有机半导体材料及其制备方法和应用
技术领域
本发明属于有机光电技术领域,具体涉及一种n型有机半导体材料及其制备方法和应用。
背景技术
能源短缺、环境污染是我国经济可持续发展面临的重大问题,同时也是世界各国重视关注的问题。发展新型绿色能源技术是解决上述问题的重要途径之一,而太阳能由于其具有的绿色可再生、储量大、分布广和易获取等优势成为广泛关注的焦点。因此发展太阳能发电技术,对于降低污染和减少二氧化碳排放,实现低碳经济的发展具有重要意义。经过多年努力,太阳电池发电技术已取得重要进展,晶体硅太阳电池技术已发展得比较成熟并进入市场,在太阳电池市场中占主导地位。但是由于硅基太阳电池成本相对较高,且其加工制备过程会产生严重的环境污染,限制了其进一步大规模的推广应用。相比而言,利用有机半导体材料制备的有机太阳电池,可以通过溶液加工方式制备出质量轻、成本低、可柔性弯曲的器件,还可通过卷对卷(Roll-to-Roll)方式高速制备大面积器件,很好的克服了无机太阳电池器件面临的部分问题。此外,有机太阳电池作为一种新型薄膜光伏电池技术,具有全固态、光伏材料性质可调范围宽、可实现半透明、可制成柔性电池器件以及大面积低成本制备等突出优点,极具潜力应用在建筑物外窗、汽车挡风玻璃、可折叠窗帘等场所。
目前基于富勒烯衍生物的有机太阳电池的单节能量转换效率已经超过了13%,但富勒烯衍生物本身的局限性,如价格昂贵,热稳定性差,光化学稳定性差和弱的可见吸收光谱等,这些都将成为有机太阳电池产业化发展路上难以克服的困难。与富勒烯衍生物相比,n-型聚合物具有自身独特的优势,如价格低,强而宽的可见-近红外的吸收光谱和良好的热稳定性等,而且,n-型聚合物的分子量、吸收光谱、电子能级和分子取向等可以更容易通过化学修饰手段得到,其具有的多样性有利于有机光伏器件效率的进一步提高。目前报道的聚合物电子受体材料还比较少,因此设计开发新型高效的聚合物受体材料,对有机太阳电池领域的发展具有重要意义。
发明内容
为了解决目前全聚合物太阳电池器件效率还比较低的问题,本发明的首要目的在于提供一种高性能的n型有机半导体材料,提高材料的吸收系数,有利于提高器件的短路电流密度,有望得到更好的器件性能。
本发明的另一目的在于提供上述n型有机半导体材料的设计思路和合成方法。
本发明的再一目的在于提供上述n型有机半导体材料在有机光电转换器件中的应用。
本发明目的通过以下技术方案实现:
一种含氰基环戊酮并噻吩的有机半导体材料,即n型有机半导体材料,其结构式为式(1)所示:
其中,Ar为富电子性共轭单元;π为含有碳碳双键或碳氮键的共轭单元;n为所述n型有机半导体材料的聚合度,n为1到10000的自然数。
优选的,所述Ar和π为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基所形成的基团;或者,Ar和π为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基中的一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
优选的,所述Ar为噻吩、并噻吩、二联噻吩、三联噻吩、氟代噻吩、氟代联噻吩、并三噻吩、苯并二噻吩、噻唑或苯环等。
优选的,所述Ar为以下结构中的一种:
上述结构式中的R为氢,或者是具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
优选的,所述π为以下结构中的一种:
上述结构式中的R为氢,或者是具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
一种n型有机半导体材料的制备方法,包括以下步骤:
(1)合成含有溴代的吸电子单元(二氰基取代的环戊酮并噻吩);
(2)Knoevenagel缩合反应:将含有溴代的吸电子单元在碱的催化作用下,与含有醛基取代的π共轭单元进行Knoevenagel缩合反应,得到含有双溴的目标聚合单体;
(3)金属催化偶联聚合反应:将含有双溴的目标聚合单体与含有上述Ar的具有金属偶联反应活性官能团的单体在金属催化剂下反应,得到目标聚合物,在此步骤中可以通过改变不同的Ar结构,设计不同的Ar结构的具有金属催化偶联反应活性官能团的单体,可获得不同共轭主链的聚合物,从而获得不同性能的有机半导体。
本发明通过核磁共振(NMR)、质谱(MS)、或凝胶渗透色谱(GPC)等表征了小分子与聚合物材料结构,通过循环伏安法表征了它们的电化学性质,通过紫外-可见光谱仪测试聚合物材料的光谱性质,同时制备成有机光伏器件表征它们的光电性能。
循环伏安法测试表明这类材料具有合适的LUMO值;紫外-可见吸收光谱表明这类材料具有较宽的吸收,这表明这类材料有可能会在全聚合物太阳电池中具有较好的应用前景。
上述n型有机半导体材料在有机光电转换器件中的应用。
与现有技术相比,本发明具有以下优点及有益效果:
本发明首次合成了含有二氰基取代的噻吩并环戊酮吸电子单元的有机半导体材料。该类有机半导体材料具有宽而强吸收光谱,吸收系数比一般聚合物受体材料高一个数量级,并具有合适的电子能级。得到的聚合物应用于全聚合物太阳电池器件中,可以获得高效的全聚合物太阳电池器件。
附图说明
图1为实施例1所得化合物的合成路线图。
图2为实施例2所得化合物的合成路线图。
图3为实施例3所得化合物的合成路线图。
图4为实施例4所得聚合物的合成路线图。
图5为实施例4所得聚合物的热失重分析图。
图6为实施例4所得聚合物的溶液吸收光谱图。
图7为实施例4所得聚合物的薄膜吸收光谱图。
图8为实施例4所得聚合物的氧化还原电势曲线图。
图9为实施例4所得聚合物制备的有机太阳电池器件J-V曲线图。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
本发明的实践可采用本领域技术内的聚合物化学的常规技术。在以下实施例中,努力确保所用数字(包括量、温度、反应时间等)的准确性,但应考虑一些实验误差和偏差。在以下实施例中所用的温度以℃表示,压力为大气压或接近大气压。所有溶剂为分析级或色谱级购买,并且所有反应在氩气惰性气氛下进行。除非另外指出,否则所有试剂都是商业获得的。
实施例1:化合物4的合成
将5-溴-2-羧基噻吩(5g,24.15mmol)加入250ml双口烧瓶中,加入搅拌子和100ml氯化亚砜,置于氮气保护氛围内,搅拌溶解得到溶液,室温下反应过夜,加热至75℃回流4个小时,旋蒸去除溶剂,得到棕黑色液体,为5-溴噻吩-2-甲酰氯粗产物,直接投入下一步反应。将8.87g氯化铝溶于二氯甲烷中,置于氮气保护氛围内,冰浴,将丙二酰氯(14.06g,99.79mmol)溶于二氯甲烷中缓慢加入到溶液中,缓慢加入5-溴噻吩-2-甲酰氯(5.00g,22.17mmol)粗产物,60℃回流反应过夜。待反应液冷却后,缓慢加入到10%的草酸水溶液中,缓慢加入碳酸氢钠水溶液,将溶液pH值调至7,使用二氯甲烷萃取,无水硫酸镁干燥,旋蒸除去溶剂,使用二氯甲烷为洗脱剂用硅胶过柱,得到淡黄色固体纯品1.60g,两步反应产率为31%。
1H NMR(500MHz,CDCl3,δ):7.42(s,1H),3.38(s,2H).
实施例2:化合物5的合成
将化合物4(1.00g,4.33mmol)和丙二腈(0.43g,6.49mmol)加入到150ml两口烧瓶中,置于氮气氛围内,加入80ml的二甲基亚砜和搅拌子,搅拌使其充分溶解,缓慢加入醋酸钠固体(0.53g,6.49mmol),室温下反应1个小时。加入适量去离子水,缓慢滴加浓盐酸,将溶液pH值调至1~2,过滤取滤渣,使用二氯甲烷为洗脱剂用硅胶过柱,得到土黄色固体纯品0.70g,产率为70%。
1H NMR(500MHz,CDCl3,δ):7.93(s,1H),3.84(s,2H).
实施例3:化合物7的合成
将化合物6(0.30g,0.25mmol)和化合物5(0.34g,1.23mmol)的加入到50ml两口烧瓶中,置于氮气氛围内,加入15ml三氯甲烷和搅拌子,搅拌使其充分溶解,加入0.5ml吡啶,加热回流过夜。待反应液冷却后,使用二氯甲烷和石油醚为2:3的混合溶剂为洗脱剂,用硅胶过柱,四氢呋喃和甲醇的混合溶液重结晶,得到0.38g深蓝色固体纯品,产率为88%。
1H NMR(500MHz,CDCl3,δ):8.72(s,2H),8.00(s,2H),7.66(s,2H),7.55(s,2H),2.05(m,8H),1.04-1.31(m,112H),0.71-0.94(m,12H).
实施例4:目标聚合物P1的合成
称取化合物7(348.5mg,0.2mmol),化合物8(82.0mg,0.2mmol)于反应管中,加入氯苯(3mL),通氩气20分钟。随后快速加入催化剂及配体,Pd2(dba)3(3mg),P(o-tol)3(6mg),通氩气使反应管中充满氩气,盖好盖子,进行聚合反应,于140℃反应48小时。反应结束,将反应液滴入甲醇中析出聚合物,然后将聚合物用丙酮、正己烷在索氏提取器中洗涤,最后用氯仿反抽提得到聚合物,最后将聚合物在真空干燥箱中烘干,得到280mg聚合物P1。1H NMR、13CNMR、MS和元素分析结果表明所得到的化合物为目标产物。
图5是实施例4所得聚合物P1的热失重分析图,从热力学实验结果可以看出,聚合物P1具有较高的热分解温度(超过400摄氏度),说明该聚合物结构稳定,热稳定性优异。
图6和图7分别是实施例4所得聚合物P1的溶液和薄膜吸收光谱图。可以发现该材料是窄带系聚合物,具有较红的吸收光谱,吸收系数达到105L mol-1级别。薄膜吸收边接近800纳米,从聚合物的吸收边可计算得到其光学带隙,为1.61eV。
图8为实施例4所得聚合物的氧化还原电势曲线图。可以计算得出P1的HOMO/LUMO能级分别为-5.81/-3.87eV。聚合物具有合适的电子能级,可以作为电子受体材料用于有机太阳电池中。
图9为实施例4所得聚合物制备的有机太阳电池器件J-V曲线图。为了研究目标聚合物受体材料P1在全聚合物太阳电池的光伏性能,我们制备了正装的全聚合物太阳电池器件,以聚合物PCE10作为给体材料,P1作为受体材料。经过器件的表征,基于PCE10:P1的光伏器件,能量转换效率为7.91%,其中短路电流密度(Jsc)为14.95mA cm-2,开路电压(Voc)为0.86V,填充因子(FF)为61.47%。
我们发现,本发明公开的有机半导体材料P1作为电子受体材料,用于有机太阳电池中,获得了很好的器件效果,能量转换效率接近8%,说明了本发明的可行性和新型n型有机半导体材料在有机光伏器件的应用潜力。
表1 PCE10:P1本体异质结太阳电池的光伏性能参数
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

1.一种n型有机半导体材料,其特征在于,其结构式为式(1)所示:
其中,Ar为富电子性共轭单元;π为含有碳碳双键或碳氮键的共轭单元;n为所述n型有机半导体材料的聚合度,n为1到10000的自然数。
2.根据权利要求1所述的n型有机半导体材料,其特征在于,所述Ar和π为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基或通过单键连接的2-6个亚芳基所形成的基团;或者,Ar和π为亚乙烯基、亚乙炔基、亚芳基、杂亚芳基、通过单键连接的2-6个亚芳基中的一个或多个碳原子被氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
3.根据权利要求1所述的n型有机半导体材料,其特征在于,所述Ar为噻吩、并噻吩、二联噻吩、三联噻吩、氟代噻吩、氟代联噻吩、并三噻吩、苯并二噻吩、噻唑或苯环。
4.根据权利要求1所述的n型有机半导体材料,其特征在于,所述Ar为以下结构中的一种:
上述结构式中的R为氢,或者是具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
5.根据权利要求1所述的n型有机半导体材料,其特征在于,所述π为以下结构中的一种:
上述结构式中的R为氢,或者是具有1-30个碳原子的烷基,或者是所述具有1-30个碳原子的烷基中一个或多个碳原子被卤素原子、氧原子、烯基、炔基、芳基、羟基、氨基、羰基、羧基、酯基、氰基或硝基取代形成的基团。
6.权利要求1至5任一项所述的n型有机半导体材料的制备方法,其特征在于,包括以下步骤:
(1)合成含有溴代的吸电子单元;
(2)Knoevenagel缩合反应:将含有溴代的吸电子单元在碱的催化作用下,与含有醛基取代的π共轭单元进行Knoevenagel缩合反应,得到含有双溴的目标聚合单体;
(3)金属催化偶联聚合反应:将含有双溴的目标聚合单体与含有Ar的具有金属偶联反应活性官能团的单体在金属催化剂下反应,得到目标聚合物。
7.权利要求1至5任一项所述的n型有机半导体材料在有机光电转换器件中的应用。
CN201710992444.1A 2017-10-23 2017-10-23 一种n型有机半导体材料及其制备方法和应用 Pending CN109694464A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710992444.1A CN109694464A (zh) 2017-10-23 2017-10-23 一种n型有机半导体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710992444.1A CN109694464A (zh) 2017-10-23 2017-10-23 一种n型有机半导体材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN109694464A true CN109694464A (zh) 2019-04-30

Family

ID=66226630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710992444.1A Pending CN109694464A (zh) 2017-10-23 2017-10-23 一种n型有机半导体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109694464A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200347077A1 (en) * 2019-05-01 2020-11-05 The Hong Kong University Of Science And Technology Thiophene end groups of non-fullerene acceptors for electronic and photonic applications
CN112047958A (zh) * 2020-09-14 2020-12-08 广东技术师范大学 一种含噻蒽端基的有机共轭小分子材料及其制备方法
CN112375212A (zh) * 2020-10-20 2021-02-19 华南理工大学 一类n型有机半导体材料及其制备方法与应用
WO2021118238A1 (ko) * 2019-12-10 2021-06-17 경상국립대학교산학협력단 신규한 중합체 및 이를 이용하는 유기 전자 소자
CN112979682A (zh) * 2019-12-16 2021-06-18 位速科技股份有限公司 非富勒烯电子受体材料与有机光伏电池
CN113087720A (zh) * 2021-03-03 2021-07-09 北京大学深圳研究生院 一类基于苯并噻吩并[3,2-b]苯并噻吩的n型有机半导体材料及其制备方法和应用
CN115057995A (zh) * 2022-06-15 2022-09-16 苏州大学 一种基于D-π-IC型的聚合物材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106883247A (zh) * 2017-02-24 2017-06-23 武汉大学 基于噻吩并环戊二酮衍生物的a‑d‑a共轭分子及其制备方法
CN107057042A (zh) * 2016-12-16 2017-08-18 南京工业大学 含硫羰基的共轭齐聚物及聚合物的合成方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107057042A (zh) * 2016-12-16 2017-08-18 南京工业大学 含硫羰基的共轭齐聚物及聚合物的合成方法及其应用
CN106883247A (zh) * 2017-02-24 2017-06-23 武汉大学 基于噻吩并环戊二酮衍生物的a‑d‑a共轭分子及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHALLURI VIJAY KUMAR ET AL.: "Solution processed organic solar cells based on A–D–D′–D–A small molecule with benzo[1,2-b:4,5-b′]dithiophene donor (D′) unit, cyclopentadithiophene donor (D) and ethylrhodanine acceptor unit having 6% light to energy conversion efficiency", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
HUIFENG YAO ET AL.: "Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Open-Circuit Voltage", 《ADVANCED MATERIALS》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200347077A1 (en) * 2019-05-01 2020-11-05 The Hong Kong University Of Science And Technology Thiophene end groups of non-fullerene acceptors for electronic and photonic applications
US11535631B2 (en) * 2019-05-01 2022-12-27 The Hong Kong University Of Science And Technology Thiophene end groups of non-fullerene acceptors for electronic and photonic applications
WO2021118238A1 (ko) * 2019-12-10 2021-06-17 경상국립대학교산학협력단 신규한 중합체 및 이를 이용하는 유기 전자 소자
CN112979682A (zh) * 2019-12-16 2021-06-18 位速科技股份有限公司 非富勒烯电子受体材料与有机光伏电池
CN112047958A (zh) * 2020-09-14 2020-12-08 广东技术师范大学 一种含噻蒽端基的有机共轭小分子材料及其制备方法
CN112375212A (zh) * 2020-10-20 2021-02-19 华南理工大学 一类n型有机半导体材料及其制备方法与应用
CN113087720A (zh) * 2021-03-03 2021-07-09 北京大学深圳研究生院 一类基于苯并噻吩并[3,2-b]苯并噻吩的n型有机半导体材料及其制备方法和应用
CN115057995A (zh) * 2022-06-15 2022-09-16 苏州大学 一种基于D-π-IC型的聚合物材料及其制备方法和应用
CN115057995B (zh) * 2022-06-15 2023-11-28 苏州大学 一种基于D-π-IC型的聚合物材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN109694464A (zh) 一种n型有机半导体材料及其制备方法和应用
JP4576494B2 (ja) 光増感色素
CN107275490B (zh) 一种以环戊双噻吩衍生物为电子受体的有机太阳电池
WO2021037278A1 (zh) A-d-a共轭分子、制备方法、在有机太阳能电池中的应用、及有机太阳能电池
CN104045657B (zh) 五元杂环衍生物桥联的苝二酰亚胺二聚体、其制备方法及其在有机光伏器件中的应用
CN108546267B (zh) 一种端基含环烷基链的有机共轭小分子材料及其制备方法与在太阳能电池中的应用
CN105017264B (zh) 一种有机小分子光电功能材料及其制备方法
CN103435782B (zh) 含9,9’-联亚芴基及其衍生物的有机半导体材料及其制备方法与应用
CN101525334A (zh) 一种有机太阳能电池材料及其制备
CN107778319A (zh) 一类含有七并稠环结构引达省a‑d‑a型小分子化合物及其制备方法
CN101787020A (zh) 一种可溶液加工的有机共轭分子及在太阳能电池中的应用
CN109337047A (zh) 一种双缆聚合物的制备方法及应用
CN107698744B (zh) 一种聚合物受体材料的制备方法及其应用
CN110606856A (zh) 基于3-烷基并噻吩的七并稠杂环类共轭小分子及其制备方法与应用
CN102329418B (zh) 一种基于1,2,4,5-四嗪的共轭聚合物及用于制备太阳能电池
CN110343235A (zh) 一种萘并二噻吩共轭聚合物及其制备方法与应用
CN110423486A (zh) 三苯胺类有机染料及其合成方法
CN110143976A (zh) 基于支化卟啉-苝二酰亚胺小分子受体的合成方法及应用
CN110964040B (zh) 基于苯并氧族二唑的受体材料及其制备方法和应用
CN106800556A (zh) 一种立体的三苯胺类空穴传输材料的结构、合成及应用
CN103613522B (zh) 二苊醌基硫醚、制备方法及其应用
CN108864142A (zh) 一种itic衍生物的新型合成方法
CN112592464B (zh) 一种二维共轭2-氯苯基芴类共聚物光伏材料、制备方法和应用
CN105153182B (zh) 一种5‑烷基‑2,3‑二氢苯并呋喃‑c60富勒烯双加成物及其制备方法和用途
CN110982047B (zh) 一类引达省并二呋喃基有机太阳能电池给体材料、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20210705

Address after: 523808 room 236, building 15, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Applicant after: Dongguan Hua Gong Cooperative Innovation Technology Development Co.,Ltd.

Applicant after: Huang Fei

Applicant after: Ying Lei

Address before: 523808 room 168, productivity building, Songshan Lake high tech Industrial Development Zone, Dongguan, Guangdong

Applicant before: SOUTH CHINA INSTITUTE OF COLLABORATIVE INNOVATION

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210816

Address after: 523808 room 533, building 15, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Applicant after: Dongguan volt ampere Photoelectric Technology Co., Ltd

Address before: 523808 room 236, building 15, No.1 Xuefu Road, Songshanhu Park, Dongguan City, Guangdong Province

Applicant before: Dongguan Hua Gong Cooperative Innovation Technology Development Co.,Ltd.

Applicant before: Huang Fei

Applicant before: Ying Lei

TA01 Transfer of patent application right