CN109694304A - 二氧化碳氧化乙苯制苯乙烯的连续化生产工艺 - Google Patents

二氧化碳氧化乙苯制苯乙烯的连续化生产工艺 Download PDF

Info

Publication number
CN109694304A
CN109694304A CN201811618368.9A CN201811618368A CN109694304A CN 109694304 A CN109694304 A CN 109694304A CN 201811618368 A CN201811618368 A CN 201811618368A CN 109694304 A CN109694304 A CN 109694304A
Authority
CN
China
Prior art keywords
carbon dioxide
ethylbenzene
continuous production
production technology
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811618368.9A
Other languages
English (en)
Other versions
CN109694304B (zh
Inventor
刘忠文
杨国庆
葛汉青
宋永红
刘昭铁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201811618368.9A priority Critical patent/CN109694304B/zh
Publication of CN109694304A publication Critical patent/CN109694304A/zh
Application granted granted Critical
Publication of CN109694304B publication Critical patent/CN109694304B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/20Vanadium, niobium or tantalum
    • C07C2523/22Vanadium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,该方法采用钒基催化剂,通过多个反应器同时进行氧化脱氢反应,至少一个反应器进行再生反应,实现了苯乙烯的连续高效生产。本发明在再生反应时,采用原料气二氧化碳作为吹扫气,一方面避免了水蒸气或者其他惰性气体的使用,另一方面也省去了水蒸气或者其他惰性气体与乙苯的冷却分离回收的工艺,降低了成本,简化了工艺流程。吹扫流出的气体二氧化碳和未反应的乙苯,可直接循环利用;采用空气或者空气和二氧化碳混合气作为再生气,再生尾气产生的二氧化碳,经分离提纯循环使用。本发明整个工艺流程简单,设备投入低,苯乙烯选择性高(97%以上),能耗小,催化剂循环使用寿命每年达7200h以上。

Description

二氧化碳氧化乙苯制苯乙烯的连续化生产工艺
技术领域
本发明涉及一种二氧化碳氧化乙苯脱氢制苯乙烯的连续化生产工艺。
背景技术
苯乙烯是合成树脂、橡胶、塑料等高分子材料的最重要单体之一。乙苯直接脱氢是工业上生产苯乙烯的主要工艺技术,占全球苯乙烯产量85%以上。然而,在该工艺过程中,存在以下几点问题:(1)乙苯脱氢反应为强吸热反应(△Ho 298.15K=+117.6kJ/mol),导致工艺操作温度高,一般控制在600~700℃;(2)需要大量的过热水蒸气作为稀释剂以降低反应物乙苯的分压,而水的气化潜热较大,且反应过程对反应后水蒸气的气化潜热并未回收利用,仅冷凝成液体,大量水蒸气的使用导致能耗巨大;(3)该工艺使用Fe-K系工业催化剂,但活性组分不稳定,易因K的流失而失活,导致催化剂无法循环利用。现如今,工业生产中,“环境友好”、“节能降耗”、努力实现“绿色化”的趋势不断深入各大石化产业链,在这样的背景下发展新的乙苯脱氢工艺十分必要。
为此,相继研究了以CO2、O2、N2O等作为氧化剂的乙苯氧化脱氢制苯乙烯技术。其中,CO2氧化乙苯脱氢工艺可以明显克服传统乙苯直接脱氢的缺陷,粗略估计,生产一吨苯乙烯的能耗为(1.5~1.9×108卡),与过热水蒸气工艺相比降低约一个数量级(1.5×109卡),同时在提高苯乙烯选择性、温室气体CO2活化转化等方面也具有突出的优点,表现出了很好的发展前景,因此受到国内外研究学者的广泛关注。
尽管前人对CO2氧化乙苯脱氢的高效催化剂筛选、反应机理等已进行了深入研究,而且在改善催化剂活性及CO2氧化乙苯脱氢反应机理等方面取得了一些突破性进展。但是,迄今为止所研究报道的催化剂的稳定性较差,严重制约了CO2氧化乙苯脱氢技术的工业化应用。
发明内容
本发明的目的是针对目前乙苯直接脱氢能耗大,以及目前二氧化碳氧化乙苯脱氢催化剂长周期稳定性差和催化剂循环利用的问题,提供一种工艺流程简单、设备投入低、能耗小、催化剂稳定性及再生性能较好的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺。
针对上述目的,本发明采用的技术方案为:将乙苯和二氧化碳通入装填有钒系催化剂的固定床反应器,进行二氧化碳氧化乙苯脱氢制苯乙烯反应;氧化脱氢反应完后,固定床反应器进入再生模式进行再生反应,再生模式时,先采用二氧化碳为吹扫气进行吹扫,然后采用空气或空气和二氧化碳的混合气为再生气进行再生反应;上述固定床反应器至少为3个以上,其中至少有一个固定床反应器进行再生反应,其余固定床反应器同时进行氧化脱氢反应。
上述钒系催化剂的质量百分比组成为:五氧化二钒3%~15%、二氧化铈1%~5%、二氧化锆1%~5%、三氧化二铝74%~94%。
上述工艺过程中,所述乙苯和二氧化碳的摩尔比为5~30,氧化脱氢反应的温度为500~600℃、压力为0~0.1MPa、时间为50~200h,氧化脱氢反应中乙苯的质量空速为0.5~2h-1
上述工艺过程中,乙苯转化率低于40%时进行再生反应,所述再生反应的温度450~550℃、压力为0.01~0.1MPa、时间5~20h,再生气的体积空速为200~1000h-1
上述工艺过程中,采用二氧化碳吹扫后,脱附的乙苯和二氧化碳的混合气直接通入氧化脱氢反应的固定床反应器,进行原料回收利用;再生反应后尾气经分离纯化,得到的二氧化碳作为原料继续进入氧化脱氢反应的固定床反应器参与反应。
上述的固定床反应器为绝热固定床反应器或等温固定床反应器。
本发明的有益效果如下:
1、本发明利用钒基催化剂优良的活性和再生性能,同时结合多个反应器同时进行氧化脱氢反应,且至少一个反应器进行再生反应的工艺模式,实现了二氧化碳氧化乙苯脱氢制苯乙烯的连续高效生产。
2、本发明再生反应时,采用原料气二氧化碳作为吹扫气,避免了水蒸气或者其他惰性气体的使用,降低了成本,且吹扫后流出的气体为二氧化碳和未反应的乙苯,无须冷却分离可直接循环利用。
3、本发明再生反应时,采用空气和二氧化碳作为再生气,再生尾气产生的二氧化碳,经分离纯化,可继续循环使用。
4、本发明整个工艺流程简单,设备投入低,苯乙烯选择性高(97%以上),能耗小,催化剂循环使用寿命每年达7200h以上(一年中除再生时间外,催化剂能够进行催化脱氢反应的时间)。
附图说明
图1是二氧化碳氧化乙苯制苯乙烯的工艺流程示意图。
图2是实施例1中的催化剂催化二氧化碳氧化乙苯脱氢的催化性能。
图3是实施例2和3中的催化剂催化二氧化碳氧化乙苯脱氢的催化性能。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明的保护范围不仅限于这些实施例。
实施例1
将14.5g聚乙二醇、0.339g硝酸铈、0.293g硝酸锆、22.5g硝酸铝加入到150mL去离子水中,搅拌溶解,用氨水调节pH至10,继续搅拌3h,转入水热反应釜中110℃恒温晶化72h,冷却至室温,离心分离,用蒸馏水洗至中性,80℃干燥12h,然后在空气中550℃焙烧4h,得到载体a。将0.081g偏钒酸铵及0.175g草酸溶于2mL去离子水中,待形成透明溶液后加入1g载体a中进行等体积浸渍,常温静置老化12h,放入烘箱80℃干燥8h,取出,在空气气氛下550℃焙烧4h,获得钒系催化剂,其质量百分比组成为:五氧化二钒6%、二氧化铈4.1%、二氧化锆2.9%、三氧化二铝87%。
采用上述催化剂进行二氧化碳氧化乙苯脱氢制苯乙烯,具体工艺流程如下:
如图1所示,固定床反应器4和13为工作状态下的脱氢反应器。以反应器4为例,详细工艺流程如下。原料乙苯经高温二氧化碳预热后,通过阀门1进入填装催化剂的固定床反应器4,经脱氢反应后的产物通过阀门5,进入下一步的分离提纯,原料回收再利用。反应一段时间,当乙苯转化率低于40%时,停止反应,关闭阀门1,打开阀门7和阀门11,启动固定床反应器10,将原料切换至另一个装有新鲜催化剂的固定床反应器10中,保证脱氢反应持续进行。固定床反应器4进行再生反应。再生过程包括:打开阀门3,二氧化碳进入反应器中,吹扫催化剂,一方面通过阀门5带走未反应的乙苯,进行回收利用,另一方面带走一部分热量,将温度降到450~550℃;然后关闭阀门5,打开阀门2和阀门6,切入二氧化碳和空气混合气作为再生气(空气和二氧化体碳积比为1:1),进行再生反应,再生尾气经处理后,将其中的二氧化碳回收,作为反应原料继续使用。关闭阀门2,二氧化碳吹扫一段时间后,关闭阀门3和阀门6,再生后的固定床反应器4进入待用状态。可通过优化再生周期和再生时间,保证至少两个反应器同时进行脱氢反应,一个反应器进行再生反应。同时可根据实际生产和工艺需求,合理控制14甚至更多的备用固定床反应器的启用。
本实施例中,脱氢反应的温度为550℃,床层压力0.03MPa,乙苯质量空速0.6h-1,二氧化碳和乙苯摩尔比为20。脱氢反应进行200h后乙苯转化率低于40%,此时进行催化剂再生反应,再生温度480℃、压力0.05MPa、再生气的体积空速500h-1。反应结果见表1和图2。
实施例2
将7.45g异丙醇铝加入60mL乙醇与甲苯体积比1:1的混合溶液中,充分混合,得到异丙醇铝溶液;将0.239g硝酸铈、0.158g硝酸锆加入9mL乙醇中搅拌至完全溶解后,加入上述异丙醇铝溶液中,混合均匀后90℃回流3h,常温静置12h,加入5mL水作沉淀剂,形成凝胶后80℃干燥12h,然后在550℃焙烧4h,记做载体b。将0.081g偏钒酸铵与0.175g草酸溶于2mL去离子水中,待形成透明溶液后加入1g载体b进行等体积浸渍,静置12h,放入烘箱80℃干燥5h,取出,在空气中550℃焙烧4h,获得钒系催化剂,其质量百分比组成为:五氧化二钒6%、二氧化铈4.8%、二氧化锆2.5%、三氧化二铝86.7%。
采用上述催化剂,按照实施例1的工艺流程进行二氧化碳氧化乙苯脱氢制苯乙烯,脱氢反应的温度为550℃,床层压力0.02MPa,乙苯质量空速0.6h-1,二氧化碳和乙苯摩尔比为20。脱氢反应进行130h后乙苯转化率低于40%,此时进行催化剂再生反应,再生温度500℃、压力0.05MPa,再生气的体积空速500h-1。反应结果见表1和图3。
实施例3
本实施例的催化剂为实施例2中经过再生后的催化剂,其他工艺条件与实施例2相同。反应结果见表1和图3。
实施例4
将7.45g异丙醇铝加入60mL乙醇与甲苯体积比1:1的混合溶液中,充分混合,得到异丙醇铝溶液;将0.239g硝酸铈、0.158g硝酸锆加入9mL乙醇中搅拌至完全溶解后,加入上述异丙醇铝溶液中,混合均匀后,再加入0.148g偏钒酸铵与0.320g草酸,90℃回流3h,常温静置12h,加入5mL水作沉淀剂,形成凝胶后80℃干燥12h,然后在550℃焙烧4h,获得钒系催化剂,其质量百分比组成为:五氧化二钒6%、二氧化铈4.6%、二氧化锆2.4%、三氧化二铝87%。
采用上述催化剂,按照实施例1的工艺流程进行二氧化碳氧化乙苯脱氢制苯乙烯,脱氢反应的温度为550℃,床层压力0.05MPa,乙苯质量空速0.6h-1。脱氢反应进行150h后乙苯转化率低于40%,此时进行催化剂再生反应,再生温度500℃、压力0.05MPa,再生气的体积空速500h-1。反应结果见表1。
实施例5
将14.5g聚乙二醇、0.3390g硝酸铈、0.2929g硝酸锆、22.5g硝酸铝、0.119g偏钒酸铵、0.257g草酸加入到150mL去离子水中,搅拌溶解,用氨水调节pH至9.5~11.0,继续搅拌3小时,转入水热反应釜中110℃恒温晶化72h,冷却至室温,离心分离,用蒸馏水洗至中性,80℃干燥12h,然后在空气中550℃焙烧4h,获得钒系催化剂,其质量百分比组成为:五氧化二钒6%、二氧化铈4.6%、二氧化锆2.4%、三氧化二铝87%。
采用上述催化剂,按照实施例1的工艺流程进行二氧化碳氧化乙苯脱氢制苯乙烯,脱氢反应温度550℃,床层压力0.05MPa,乙苯质量空速0.6h-1。脱氢反应进行180h后乙苯转化率低于40%,此时进行催化剂再生反应。再生气为空气,再生温度500℃,再生压力0.05MPa,体积空速500h-1。反应结果见表1。
表1不同实施例与对比例的催化剂性能结果
乙苯转化率/(%) 苯乙烯选择性/(%) 再生周期/h 再生时间/h
实施例1 70 98 200 8
实施例2 58 98 130 10
实施例3 59 98 130 10
实施例4 65 97 150 8
实施例5 63 98 180 12
注:表中再生周期是指乙苯转化率低于40%时的脱氢反应时间。
由表1及图1~3可见,不同的催化剂的制备方法制备的钒基催化剂都表现出优良的催化活性(乙苯初始转化率大于55%,苯乙烯选择性97%以上)。同时稳定性好,能够在长时间催化反应中(100~200h),保持较高的乙苯转化率(大于40%)。实施例2和3的反应结果说明,钒基催化剂具有优良的再生性能(再生前后,催化剂活性无明显变化)。因此将钒基催化剂的优势与图1的工艺流程结合,通过优化脱氢反应条件以及再生反应的周期和时间,能够很好地实现二氧化碳氧化乙苯制苯乙烯的连续化生产。

Claims (9)

1.一种二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:将乙苯和二氧化碳通入装填有钒系催化剂的固定床反应器,进行二氧化碳氧化乙苯脱氢制苯乙烯反应;氧化脱氢反应完后,固定床反应器进入再生模式进行再生反应,再生模式时,先采用二氧化碳为吹扫气进行吹扫,然后采用空气或空气和二氧化碳的混合气为再生气进行再生反应;上述固定床反应器至少为3个以上,其中至少有一个固定床反应器进行再生反应,其余固定床反应器同时进行氧化脱氢反应。
2.根据权利要求1所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述钒系催化剂的质量百分比组成为:五氧化二钒3%~15%、二氧化铈1%~5%、二氧化锆1%~5%、三氧化二铝74%~94%。
3.根据权利要求1所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述乙苯和二氧化碳的摩尔比为5~30,氧化脱氢反应的温度为500~600℃、压力为0~0.1MPa、时间为50~200h。
4.根据权利要求3所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述氧化脱氢反应中乙苯的质量空速为0.5~2h-1
5.根据权利要求1所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述乙苯转化率低于40%时进行再生反应。
6.根据权利要求5所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述再生反应的温度450~550℃、压力为0.01~0.1MPa、时间5~20h,再生气的体积空速为200~1000h-1
7.根据权利要求1所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:采用二氧化碳吹扫后,脱附的乙苯和二氧化碳的混合气直接通入氧化脱氢反应的固定床反应器,进行原料回收利用。
8.根据权利要求1所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述再生反应后尾气经分离纯化,得到的二氧化碳作为原料继续进入氧化脱氢反应的固定床反应器参与反应。
9.根据权利要求1~8所述的二氧化碳氧化乙苯制苯乙烯的连续化生产工艺,其特征在于:所述的固定床反应器为绝热固定床反应器或等温固定床反应器。
CN201811618368.9A 2018-12-28 2018-12-28 二氧化碳氧化乙苯制苯乙烯的连续化生产工艺 Active CN109694304B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811618368.9A CN109694304B (zh) 2018-12-28 2018-12-28 二氧化碳氧化乙苯制苯乙烯的连续化生产工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811618368.9A CN109694304B (zh) 2018-12-28 2018-12-28 二氧化碳氧化乙苯制苯乙烯的连续化生产工艺

Publications (2)

Publication Number Publication Date
CN109694304A true CN109694304A (zh) 2019-04-30
CN109694304B CN109694304B (zh) 2021-10-15

Family

ID=66232257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811618368.9A Active CN109694304B (zh) 2018-12-28 2018-12-28 二氧化碳氧化乙苯制苯乙烯的连续化生产工艺

Country Status (1)

Country Link
CN (1) CN109694304B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044646A (zh) * 1989-02-06 1990-08-15 菲利蒲石油公司 脱氢方法
WO2001044146A1 (en) * 1999-12-17 2001-06-21 Dow Global Technologies Inc. Dehydrogenation of an alkyl aromatic compound and catalyst regeneration in a fluidized bed reactor
CN102015590A (zh) * 2008-06-14 2011-04-13 鲁姆斯科技公司 在使用co2作为温和氧化剂的乙苯氧化脱氢基础上的苯乙烯单体加工
CN102284282A (zh) * 2011-05-30 2011-12-21 陕西师范大学 用于乙苯脱氢制苯乙烯的催化剂及其制备方法
CN106478351A (zh) * 2015-08-28 2017-03-08 中国石油化工股份有限公司 异丁烷和/或丙烷脱氢的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1044646A (zh) * 1989-02-06 1990-08-15 菲利蒲石油公司 脱氢方法
WO2001044146A1 (en) * 1999-12-17 2001-06-21 Dow Global Technologies Inc. Dehydrogenation of an alkyl aromatic compound and catalyst regeneration in a fluidized bed reactor
CN102015590A (zh) * 2008-06-14 2011-04-13 鲁姆斯科技公司 在使用co2作为温和氧化剂的乙苯氧化脱氢基础上的苯乙烯单体加工
CN102284282A (zh) * 2011-05-30 2011-12-21 陕西师范大学 用于乙苯脱氢制苯乙烯的催化剂及其制备方法
CN106478351A (zh) * 2015-08-28 2017-03-08 中国石油化工股份有限公司 异丁烷和/或丙烷脱氢的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIU, ZHONG-WEN: "V2O5/Ce0.6Zr0.4O2-Al2O3 as an Efficient Catalyst for the Oxidative Dehydrogenation of Ethylbenzene with Carbon Dioxide", 《CHEMSUSCHEM》 *
王乾: "CO2气氛下乙苯脱氢过程中Ce基催化剂的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
王桂茹: "《催化剂与催化作用》", 31 August 2000, 大连理工大学出版社 *

Also Published As

Publication number Publication date
CN109694304B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
JP4001234B2 (ja) 二酸化炭素酸化剤を用いたアルキル芳香族炭化水素の触媒脱水素化方法
CN106478351B (zh) 异丁烷和/或丙烷脱氢的方法
WO2014173229A1 (zh) 合成气制低碳烯烃的费托合成催化剂、改性分子筛载体及制备方法
CN105622305B (zh) 一种合成气直接转化制芳烃联产甲烷的方法
CN102442874A (zh) 恒温固定床丁烯氧化脱氢制备丁二烯的方法
CN101115700A (zh) 芳香族化合物的制造方法和氢化芳香族化合物的制造方法
JP5082254B2 (ja) 芳香族化合物の製造方法及び水素化芳香族化合物の製造方法
CN105879892A (zh) 酯交换法合成碳酸二甲酯的固体碱催化剂及制法和应用
CN103664587B (zh) 制备乙酸环己酯的方法及制备环己醇和乙醇的方法
CN109748791B (zh) 生产己二酸二甲酯的节能方法
CN103664485A (zh) 甲苯、甲醇侧链烷基化生产乙苯、苯乙烯的方法
CN109694304A (zh) 二氧化碳氧化乙苯制苯乙烯的连续化生产工艺
CN106984297B (zh) 用于二氧化碳气氛下乙烷脱氢制乙烯的镓系催化剂及其制备方法
CN102381922A (zh) 一种由乙醇合成乙烯的方法
CN107285978A (zh) 正丁烷的制备方法
Chen et al. Theoretical and experimental study on reaction coupling: dehydrogenation of ethylbenzene in the presence of carbon dioxide
CN113797854A (zh) 用于甲烷氧化偶联反应的催化剂装填方法和甲烷氧化偶联制乙烯的方法
CN112387272B (zh) 一种钛-锰-铈共氧化物催化材料及其制备方法和在合成甲基丙烯腈中的应用
CN103420767B (zh) 异丁烯的制备方法
CN111013563B (zh) 用于二氧化碳气氛下乙烷脱氢制乙烯的尖晶石催化剂及其制备方法
CN111054353A (zh) 用于丁烯氧化脱氢制丁二烯的催化剂
JP2009084257A (ja) 芳香族化合物の製造方法
CN114797946A (zh) 一种丙烷脱氢制丙烯的负载型Pt基催化剂
JPH08176034A (ja) メタノールの合成方法
CN1915491A (zh) 乙苯脱氢制苯乙烯的催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant