CN109690847A - 包含重掺杂二氧化铈的电极 - Google Patents

包含重掺杂二氧化铈的电极 Download PDF

Info

Publication number
CN109690847A
CN109690847A CN201780042762.XA CN201780042762A CN109690847A CN 109690847 A CN109690847 A CN 109690847A CN 201780042762 A CN201780042762 A CN 201780042762A CN 109690847 A CN109690847 A CN 109690847A
Authority
CN
China
Prior art keywords
ceria
volume
electrode
functional layer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201780042762.XA
Other languages
English (en)
Other versions
CN109690847B (zh
Inventor
S·M·C·波伊兹伊乌
D·采廷
S·高普兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston University
Saint Gobain Ceramics and Plastics Inc
Original Assignee
Boston University
Saint Gobain Industrial Ceramics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Boston University, Saint Gobain Industrial Ceramics Inc filed Critical Boston University
Publication of CN109690847A publication Critical patent/CN109690847A/zh
Application granted granted Critical
Publication of CN109690847B publication Critical patent/CN109690847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63408Polyalkenes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/04Diaphragms; Spacing elements characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8647Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites
    • H01M4/8652Inert electrodes with catalytic activity, e.g. for fuel cells consisting of more than one material, e.g. consisting of composites as mixture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8882Heat treatment, e.g. drying, baking
    • H01M4/8885Sintering or firing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/126Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing cerium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/405Iron metal group, e.g. Co or Ni
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Inert Electrodes (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Fuel Cell (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

电极可包括功能层,其具有Ln2MO4相和重掺杂的二氧化铈相,其中Ln是任选掺杂金属的至少一种镧系元素,M是至少一种3d过渡金属。电化学装置或传感器装置可包括所述电极。

Description

包含重掺杂二氧化铈的电极
技术领域
本公开涉及电极和包含电极的装置。
背景技术
在固体氧化物燃料和电解槽电池的情况下,对于气体反应物的更容易的动力学和离子膜的较低电阻,期望大于700℃的操作温度。高操作温度还允许烃燃料的内部重整,与具有外部重整的系统相比,这可以显著减小系统尺寸。但是,高操作温度会降低电极性能。需要一种改进的电极材料。
附图说明
实施方式通过示例的方式示出,并且不限于附图。
图1至8包括实施例中描述的各种样品的XRD图谱。
图9包括实施例中描述的SOFC纽扣电池的照片。
图10包括图9的SOFC纽扣电池的性能特性图。
技术人员了解到,附图中的元件是为了简单和清楚起见而展示的,并且不一定按比例绘制。例如,图中一些元件的尺寸可能相对于其它元件而被放大以有助于改善对本发明的实施方式的理解。
具体实施方式
提供结合图的以下描述以辅助理解本文中公开的教导。以下讨论将集中于教导内容的具体执行方式和实施方式。提供该焦点是为了帮助描述本教导,并且不应该被解释为对本教导的范围或适用性的限制。然而,可以基于本申请中公开的教导使用其它实施方式。
术语“包含(comprises/comprising)”、“包括(includes/including)”、“具有(has/having)”或其任何其它变型旨在涵盖非排他性的包含关系。例如,包含一系列特征的方法、物品或装置不一定仅限于那些特征,而是可以包括未明确列出的或这种方法、物品或装置固有的其它特征。此外,除非有相反的明确说明,否则“或”指的是包含性的或者和非包含性的或者。例如,以下任何一个满足条件A或B:A为真(或存在)且B为假(或不存在),A为假(或不存在)且B为真(或存在),A和B都是真的(或都存在)。
此外,使用“一”或“一个”来描述本文所述的元件和部件。这仅仅是为了方便并且给出对本发明范围的一般意义。除非另有明确说明,否则该描述应该被理解为包括一个、至少一个,或单数也包括复数,或反之亦然。例如,当本文描述了单个项目,可以使用多于一个项目来代替单个项目。类似地,在本文描述多于一个项目的情况下,单个项目可以被多于一个项目代替。
除非另有说明,否则术语“体积%”在本文中用于描述层的组成时,是指该层的固体总体积的百分比,例如,不包括孔隙率。此外,除非另有说明,术语“mol%”,当在本文中用于描述掺杂剂浓度时,是指给定化合物中阳离子的总量(摩尔)的百分比。此外,下面提供的任何式中的氧化学计量可以略微变化,因此,认为包括+/-0.5的Δ(过量或不足),称为“d”。特别地,掺杂的二氧化铈(CeABO(2-d))可具有氧低化学计量(氧缺乏),其中d是至多0.29、至多0.27或至多0.25的不足;并且Ln2MO4+d可以具有氧过量化学计量(氧过量),其中d是至多0.34、至多0.32或至多0.3的过量。例如,La0.40Ce0.60O2将包括例如La0.40Ce0.60O2-d,其中d为至多0.25,并且La2NiO4+d将包括例如La2NiO4+d,其中d最多为0.3。
除非另外界定,否则本文中所使用的所有技术和科技术语具有本发明所属领域的技术人员通常所理解的相同含义。所述材料、方法和实例仅是说明性的并且不旨在是限制性的。在本文未描述的范围内,关于具体材料和加工行为的许多细节都是常规的,并且可以在电化学领域的教科书和其它来源中找到。
电极可包括复合功能层,该复合功能层包括适于操作温度高于700℃的重掺杂二氧化铈。如本文所用,术语“重掺杂”是指掺杂剂浓度为至少40摩尔%。在一个实施方式中,电极可以包括第一相和第二相,第一相包括重掺杂的二氧化铈,第二相包括Ln2MO4相,其中Ln是至少一种任选掺杂有金属的镧系元素,M是至少一种3d过渡金属,没有现有复合电极材料遇到的反应性问题。该概念基于下面描述实施方式被更好的理解,其说明且不限制本发明的范围。
高温电化学电池可包括高性能的许多要求。理想情况下,材料应能承受至少1000℃的加工温度而不会分解或形成电阻相,并在操作条件下保持稳定的组成和晶体结构。此外,功能层应保留孔隙率和容易的电子转移反应动力学。
Ln2MO4材料通常可提供高的电极性能,其中Ln是任何镧系元素,M是3d过渡金属。特别地,相比于只适合更高或更低温度的其它材料,Ln2MO4族材料可以提供更宽的操作温度范围(例如700℃至900℃)。所述Ln2MO4族材料提供混合离子电子传导性的附加优点。
然而,Ln2MO4族材料可以与共同的高温电解质反应。此外,Ln2MO4材料具有高热膨胀系数(在此称为“CTE”),减小了在多层结构中的机械稳定性。
稀土掺杂的氧化铈可以形成与Ln2MO4材料的复合物,以形成具有减小的CTE的复合电极。然而,在升高温度下紧密接触时轻掺杂的二氧化铈可与Ln2MO4反应。如本文所用,术语“轻掺杂”是指掺杂剂浓度小于40mol%。
申请人已经发现,Ln2MO4:二氧化铈复合材料,其包括重掺杂的二氧化铈,尤其是靠近二氧化铈的溶解度极限,令人惊讶地不表现出与轻度掺杂的二氧化铈相同的反应性。溶解度极限是可以掺入二氧化铈晶格中同时保持其萤石结构的稀土氧化物的量。此外,镧系元素从Ln2MO4扩散迁移到二氧化铈被抑制,因为掺杂剂浓度接近氧化铈中至Ln的溶解度极限。
如上所述,Ln2MO4相的Ln包括至少一种镧系元素。在一个实施方式中,Ln2MO4相的Ln包括至少一种选自La、Sm、Er、Pr、Nd、Gd、Dy或其任意组合的镧系元素。此外,至少一种镧系元素或其组合可以掺杂金属。金属掺杂剂可包括碱土金属。在一个具体实施方式中,碱土金属可包括至少一种选自Sr、Ca、Ba或其任何组合的碱土金属,以增加空穴传导性。
此外,如上所述,Ln2MO4相的M包括3d过渡金属。在一个实施方式中,Ln2MO4相的M包括至少一种选自Ni、Cu、Co、Fe、Mn或其任意组合的3d过渡金属。
重掺杂的二氧化铈相可包括二氧化铈和至少一种掺杂剂,使得总掺杂剂浓度为至少40摩尔%且不大于二氧化铈的溶解度极限。在一个实施方式中,重掺杂的二氧化铈可具有通式:
Ce(1-x-y)AxByO2,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少为0.2,y在0至0.2的范围,并且x+y至少为0.4且不大于二氧化铈的溶解度极限。
在一个实施方式中,稀土掺杂剂A包括至少一种选自La、Gd、Nd、Sm、Dy、Er、Y、Yb、Ho或其任何组合的掺杂剂。在更具体的实施方式中,稀土掺杂剂A包括La、Gd、Nd或Sm中的至少一种。在进一步的实施方式中,x+y为至少0.4,或大于0.4,或至少0.41,或至少0.42,或至少0.43,或至少0.44,或至少0.45,或至少0.46,或在至少0.47。可以预期,使用重掺杂的二氧化铈作为阴极功能层会导致较低的离子传导率。此外,目前的文献表明,随着x+y增加到0.4,电极性能下降。参见,例如,Perez-Coll等人“使用Ce1-xSmxO2-δ电解质系统优化La2NiO4基阴极的界面极化”的图11。然而,申请人发现,与Perez-Coll等人相反,随着x+y增加至40mol%或更高,甚至达到二氧化铈的溶解度极限,相的热力学稳定性越高,镧系元素从Ln2MO4的扩散减少。话虽如此,超过二氧化铈的溶解度极限,增加掺杂剂浓度的好处开始恶化。在进一步的实施方式中,x+y不大于溶解度极限。在特定实施方式中,x+y不大于0.5。
在一个实施方式中,碱土金属掺杂剂B包括至少一种选自Sr、Ca、Ba或其任何组合的掺杂剂。在进一步的实施方式中,y可以是0,意味着重掺杂的二氧化铈相不包括碱土金属掺杂剂B。在其他实施方式中,y为至少0.01,或至少0.05,或至少0.1。在另外的实施方式中,‘y’可以是至多0.24或至多0.22或至多0.2。
如前所述,轻掺杂的二氧化铈相可以与Ln2MO4相反应。这种反应可以引起Ln扩散到轻掺杂的二氧化铈中,导致Ln从Ln2MO4相中减少或甚至完全除去。此外,这种反应可导致金属氧化物(MO)和/或游离稀土氧化物(RE2O3)的存在,其最初不存在于电极中,特别是当M为Ni时。然而,在本文所述的复合电极中,降低或避免了该反应性,使得在一个实施方式中,在电极的功能层中可检测到小于5vol%的游离RE2O3稀土氧化物。在一个实施方式中,在电极的功能层中可检测到小于5vol%的MO金属氧化物。检测方法是检测限为5体积%的X射线衍射。
在一个实施方式中,基于功能层的总体积减去孔隙率占据的体积,二氧化铈相可以存在于电极的功能层中的量至少40体积%,或至少45体积%,或至少50体积%,或至少55体积%,或至少60体积%,或至少65体积%,或至少70体积%,或至少75体积%。对于轻掺杂的二氧化铈相,增加二氧化铈相的体积百分比会增加稀土扩散的可能性。因此,包括轻掺杂二氧化铈相的复合电极的更高性能将在较低浓度的二氧化铈相中表现出。另一方面,当重掺杂的二氧化铈接近二氧化铈的溶解度极限时,热力学稳定性增加,因此,二氧化铈相的体积百分比可以增加而不增加稀土扩散的可能性。
在一个实施方式中,基于功能层的总体积,电极的功能层具有至少10体积%、或至少15体积%、或至少18体积%的孔隙率。在一个实施方式中,基于功能层的总体积,电极的功能层具有至多60体积%、或至多50体积%、或至多40体积%、或至多35体积%的孔隙率。通过使用ImageJ等图像分析工具对层的横截面进行图像分析以通过对比度观察和测量孔隙率来确定孔隙率。
在一个实施方式中,电极的功能层具有至少5微米、或至少10微米、或至少12微米、或至少15微米、或至少20微米的厚度。此外,在一个实施方式中,电极的功能层具有至多100微米、至多90微米、至多80微米、或至多70微米的厚度。
本文所述的电极可通过提供起始材料、混合起始材料和烧结混合物来制备。在一个实施方式中,起始材料包括Ln2MO4材料,其中Ln是任选掺杂金属的至少一种镧系元素,M是至少一种3d过渡金属,和包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈的二氧化铈材料,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少为0.2,y在0至0.2的范围内,并且x+y至少为0.4并且不大于二氧化铈的溶解度极限。
在一个实施方式中,可以将粘合剂体系添加到Ln2MO4材料和二氧化铈材料中以形成浆料。在一个实施方式中,粘合剂体系可包括至少一种聚合物。浆料可以通过诸如喷涂、带式浇铸或丝网印刷的陶瓷成型技术沉积,然后烧结以形成具有Ln2MO4相和二氧化铈相的电极。烧结温度可以高于操作温度。例如,烧结温度可以是至少1000℃,或至少1100℃,或至少1200℃,或至少1300℃。在一个实施方式中,烧结温度可以不大于1800℃,或不大于1700℃,或不大于1600℃。
本文所述的电极可用作各种装置中的组件,包括电化学装置、传感器装置等。
在一个实施方式中,包含本文所述电极的电化学装置包含电解质层、任选的阻挡层和阳极层。电解质层可包含至少一种选自二氧化铈、氧化锆、镓酸镧或其组合的电解质材料。
在特定实施方式中,电解质材料包括稳定的氧化锆。
在特定实施方式中,电解质层包括具有以下通式的掺杂二氧化铈:
Ce(1-x-y)AxByO2,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少为0.05,y在0至0.1的范围内,和x+y大于0.05且小于0.25。在一个具体实施方式中,A是La、Gd、Nd、Sm、Dy、Er、Y、Yb、Ho或其任何组合。在一个具体实施方式中,B是Sr、Ca、Ba或其任何组合。
电解质层可具有至多800微米、或至多600微米、或至多400微米、或至多200微米、或至多50微米的厚度。此外,电解质层可具有至少1微米、至少3微米或至少5微米的厚度。
基于电解质层的总体积,电解质层可具有至多10体积%、或至多8体积%、或至多6体积%、或至多4体积%的孔隙率。此外,虽然电解质可以是完全致密的,但是可以存在一些孔隙率,例如至少0.01体积%,或至少0.05体积%,或至少0.1体积%。
在一个实施方式中,电化学装置包括设置在电极和电解质层之间的阻挡层。在特定实施方式中,阻挡层包括具有以下通式的掺杂二氧化铈:
Ce(1-x-y)AxByO2,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少为0.05,y在0至0.2的范围,并且x+y大于0.05且不大于二氧化铈的溶解度极限。在一个具体实施方式中,A是La、Gd、Nd、Sm、Dy、Er、Y、Yb、Ho、Pr或其任何组合。在一个具体实施方式中,B是Sr、Ca、Ba或其任何组合。
在实施方式中,基于阻挡层的总体积,阻挡层可具有至多15vol%、或至多12vol%、或至多10vol%的孔隙率。在实施方式中,基于阻挡层的总体积,阻挡层可具有至少0.5vol%、或至少1vol%、或至少2vol%、或至少3vol%的孔隙率。
在一个实施方式中,阻挡层的厚度小于电解质层和功能层的厚度。
在一个具体实施方式中,电化学装置包括固体氧化物燃料电池(也称为“SOFC”)、固体氧化物电解槽(也称为“SOEC”)或可逆SOFC-SOEC。在特定实施方式中,电极可以是氧电极。
此外,该装置可以是包括本文所述电极的传感器装置。在特定实施方式中,传感器装置是电流传感器。在另一个实施方式中,传感器装置是电位传感器。
许多不同方面和实施方式都是可以的。以下描述这些方面和实施方式中的一些。在阅读本说明书之后,技术人员将理解,那些方面和实施方式仅是说明性的,并不限制本发明的范围。实施方式可以根据作为如下实施方式的项目中的任何一个或多个。
实施方式1.一种电极,包括:
包含Ln2MO4相的功能层,其中Ln是至少一种任选掺杂有金属的镧系元素,M是至少一种3d过渡金属;
功能层还包含二氧化铈相,该二氧化铈相包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x大于0.2,y在0至0.2的范围内,x+y大于0.4且不大于二氧化铈的溶解度极限。
实施方式2.一种电极,包括:
包含Ln2MO4相的功能层,其中Ln是至少一种任选掺杂有金属的镧系元素,M是至少一种3d过渡金属;
功能层还包含二氧化铈相,该二氧化铈相包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少0.2,y在0至0.2的范围内,x+y至少0.4且不大于二氧化铈的溶解度极限。
其中Ln2MO4相的至少一种镧系元素与二氧化铈相的至少一种稀土掺杂剂相同。
实施方式3.一种电极,包括:
包含Ln2MO4相的功能层,其中Ln是至少一种任选掺杂有金属的镧系元素,M是至少一种3d过渡金属;
功能层还包含二氧化铈相,该二氧化铈相包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少0.2,y在0至0.2的范围内,x+y至少0.4且不大于二氧化铈的溶解度极限。
其中基于功能层的总体积(没有任何孔隙率),所述二氧化铈相存在于所述功能层中的量至少40体积%。
实施方式4.一种形成电极的方法,包括:
提供Ln2MO4材料,其中Ln是至少一种任选掺杂金属的镧系元素,M是至少一种3d过渡金属;
提供包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈的二氧化铈材料,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x是至少0.2,y在0至0.2的范围内,x+y至少0.4且不大于二氧化铈的溶解度极限;
混合Ln2MO4材料和二氧化铈材料,形成混合物;和
在至少1000℃且高于操作温度的温度下烧结混合物,以形成具有Ln2MO4相和二氧化铈相的氧电极的功能层。
实施方式5.实施方式4的方法,其中烧结温度为至少1100℃,或至少1200℃,或至少1300℃。
实施方式6.前述实施方式中任一项的电极或方法,其中Ln2MO4相的镧系元素包括La、Sm、Er、Pr、Nd、Gd、Dy或其任何组合中的至少一种。
实施方式7.前述实施方式中任一项的电极或方法,其中Ln2MO4相的镧系元素掺杂有碱土金属。
实施方式8.前述实施方式中任一项的电极或方法,其中Ln2MO4相的镧系元素掺杂有碱土金属,所述碱土金属包括Sr、Ca、Ba或其任何组合中的至少一种。
实施方式9.前述实施方式中任一项的电极或方法,其中Ln2MO4相的3d过渡金属包括Ni、Cu、Co、Fe、Mn或其任何组合中的至少一种。
实施方式10.前述实施方式中任一项的电极或方法,其中A是La、Gd、Nd、Sm、Dy、Er、Y、Yb、Ho或其任何组合。
实施方式11.前述实施方式中任一项的电极或方法,其中x+y为至少0.41,或至少0.42,或至少0.43,或至少0.44,或至少0.45,或至少0.46,或在至少0.47。
实施方式12.前述实施方式中任一项的电极或方法,其中x+y为至多0.5。
实施方式13.前述实施方式中任一项的电极或方法,其中在功能层中可检测到小于5vol%的游离稀土氧化物。
实施方式14.前述实施方式中任一项的电极或方法,其中在功能层中可检测到小于5vol%的3d过渡金属氧化物。
实施方式15.前述实施方式中任一项的电极或方法,其中基于功能层的总体积减去孔隙率,二氧化铈相存在于功能层中的量至少40体积%,或至少45体积%,或至少50体积%,或至少55体积%,或至少60体积%,或至少65体积%,或至少70体积%,或至少75体积%。
实施方式16.前述实施方式中任一项的电极或方法,其中基于功能层的总体积,功能层具有至少10体积%、或至少15体积%、或至少18体积%的孔隙率。
实施方式17.前述实施方式中任一项的电极或方法,其中基于功能层的总体积,功能层具有至多60体积%、或至多50体积%、或至多40体积%、或至多35体积%的孔隙率。
实施方式18.前述实施方式中任一项的电极或方法,其中功能层的厚度为至少5微米、或至少10微米、或至少12微米、或至少15微米、或至少20微米。
实施方式19.前述实施方式中任一项的电极或方法,其中功能层的厚度为至多100微米、至多90微米、至多80微米、或至多70微米。
实施方式20.前述实施方式中任一项的电极或方法,其中功能层包括初始组合物中的Ln2MO4相。
实施方式21.一种电化学装置,包括前述实施方式中任一项的电极。
实施方式22.实施方式21的电化学装置,其中电化学装置是SOFC、SOEC或可逆SOFC-SOEC。
实施方式23.实施方式21和22中任一项的电化学装置,还包含电解质层。
实施方式24.实施方式23的电化学装置,其中电解质层具有至多800微米、或至多600微米、或至多400微米、或至多200微米、或至多50微米的厚度。
实施方式25.实施方式23和24中任一项的电化学装置,其中基于电解质层的总体积,所述电解质层具有至多10体积%、或至多8体积%、或至多6体积%、或至多4体积%的孔隙率。
实施方式26.实施方式23至25中任一项的电化学装置,其中所述电解质层包含二氧化铈、氧化锆、镓酸镧或其组合中的至少一种。
实施方式27.实施方式26的电化学装置,其中电解质层包括具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少为0.05,y在0至0.1的范围内,和x+y大于0且小于0.25。
实施方式28.实施方式26的电化学装置,其中电解质层包括稳定的氧化锆。
实施方式29.实施方式28的电化学装置,还包括设置在功能层和电解质层之间的阻挡层。
实施方式30.实施方式29的电化学装置,其中阻挡层包括具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x是至少0.05,y在0至0.2的范围内,x+y大于0.05且不大于二氧化铈的溶解度极限。
实施方式31.实施方式30的电化学装置,其中A是La、Gd、Nd、Sm、Dy、Er、Y、Yb、Ho、Pr或其任何组合。
实施方式32.实施方式29至31中任一项的电化学装置,其中所述阻挡层具有至多15体积%、或至多12体积%、或至多10体积%的孔隙率。
实施方式33.实施方式29至32中任一项的电化学装置,其中阻挡层的厚度小于电解质层和功能层的厚度。
实施方式34.实施方式22至33中任一项的电化学装置,其中电化学装置是固体氧化物燃料电池,电极是氧电极。
实施方式35.实施方式34的电化学装置,其中燃料电极包含Ni-YSZ阳极。
实施方式36.实施方式22至33中任一项的电化学装置,其中电化学装置是固体氧化物电解槽,电极是阳极。
实施方式37.一种传感器装置,包括实施方式1至20中任一项的电极。
实施方式38.实施方式37的传感器装置,其中传感器装置是电流传感器。
实施方式39.实施方式37的传感器装置,其中传感器装置是电位传感器。
实施例
实施例1:热膨胀系数
测量各种样品的CTE。
对于样品1,SDC:LNO混合物是混合的聚(乙二醇)400和聚(乙烯醇)205作为粘合剂体系以形成浆料。用0.6g在室温下在6mm直径圆筒中压制的浆料制备每个样品。烧结后,将它们加热至1200℃并以2℃/min的速度回到室温以测量CTE。表1中报告的CTE是在1200℃至100℃范围内的冷却循环的值。表1中描述的LNO-SDC混合物的CTE足够低,可用于具有YSZ作为电解质的SOFC阴极。对于样品1,在初始组合物中包括SDC作为Sm0.2Ce0.8O2和LNO作为La2NiO4
表1
样品2的制备同样品1,除了SDC用LDC40代替,其中初始组合物包括LDC40作为La0.40Ce0.60O2和LNO作为La2NiO4。样品2的结果在表2中提供。
表2
有利地,与样品1类似,使用重掺杂的二氧化铈降低了LNO相的CTE。然而,与样品1不同,样品2中重掺杂二氧化铈的CTE值遵循混合规则,这进一步表明样品2的相是热力学稳定的。
实施例2:X射线衍射
样品3包含46∶54体积%SDC∶LNO、56∶44体积%SDC∶LNO和66∶34体积%SDC∶LNO的SDC-LNO组合物(每个在1300℃下退火5小时后)。样品3的初始组成包括轻度掺杂的SDC相(Sm0.2Ce0.8O2)和LNO相(La2NiO4)。样品3的X射线衍射(XRD)图案提供在图1的图表中。在66∶34体积%SDC∶LNO混合物的情况下,通过测量来自XRD图案的晶格参数,可以估算掺入二氧化铈晶格中的La的量,为Sm0.2La0.23Ce0.57O2-δ。由La2O3在二氧化铈晶格中的吸附,LNO被La2O3耗尽,导致其分解并形成NiO。
样品4包括77∶23体积%LDC30∶LNO、66∶34体积%LDC30∶LNO和100∶0体积%LDC30∶LNO的LDC30-LNO组合物(每个在1300℃下退火5小时后)。样品4的初始组成包括LDC30为La0.30Ce0.70O2和LNO为La2NiO4。样品4的XRD图案提供在图2的图表中,显示了作为单相二氧化铈引入的轻掺杂二氧化铈的峰(更具体地,(111)和(200))被分裂。这是不理想的,因为它表明La2O3从LNO相显著扩散到LDC晶格中,这意味着LNO相被分解。
然而,当LDC(掺杂镧的二氧化铈)的掺杂剂浓度等于或高于40体积%且低于二氧化铈的溶解度极限(约50摩尔%)时,掺杂的二氧化铈的峰不会分裂,因为它可以在下面40mol%(下面的样品5和6)和48mol%(下面的样品7)的情况下看到。掺杂剂浓度越接近溶解度极限,结果越令人满意,因为XRD图案表明复合材料在热力学上更稳定。
样品5包括77∶23体积%LDC40∶LNO、66∶34体积%LDC40∶LNO和100∶0体积%LDC40∶LNO的LDC40-LNO组合物(每个在1300℃下退火5小时后)。样品5的初始组成包括LDC40为La0.40Ce0.60O2和LNO为La2NiO4。样品5的XRD图案提供在图3的图表中,显示没有分裂峰。
样品6类似于样品5,不同之处在于它包括77∶23体积%LDC40∶LNO、66∶34体积%LDC40∶LNO和56∶44体积%LDC40∶LNO和46∶54vol%LDC40∶LNO的LDC40-LNO组合物。与样品5类似,样品6的初始组合物包括为La0.40Ce0.60O2的LDC40和为La2NiO4的LNO。样品6的XRD图案在图4的图中提供,并且以足以显示没有表明LNO的任何分解或NiO的形成的额外峰的标度测量。
样品7包括77∶23体积%LDC48∶LNO、66∶34体积%LDC48∶LNO和100∶0体积%LDC48∶LNO的LDC48-LNO组合物(每个在1300℃下退火5小时后)。样品7的初始组成包括LDC48为La0.48Ce0.52O2和LNO为La2NiO4。XRD图案提供在图5的图表中。
下面的样品8、9和10显示了在重掺杂的二氧化铈相存在下NNO和LSNO相的稳定性。
样品8包括60∶40vol%NDC43∶NNO和80∶20vol%NDC43∶NNO的NDC43-NNO组合物(每个在1300℃下退火5小时后)。样品8的初始组成包括NDC43为Nd0.43Ce0.57O2和NNO为Nd2NiO4。X射线衍射结果提供在图6的图表中。使用具有重掺杂的二氧化铈相的复合材料,即使在低NNO体积分数中也显示出NNO的稳定性。
样品9包括50∶50vol%LDC40∶LSNO、60∶40vol%LDC40∶LSNO、70∶30vol%LDC40∶LSNO和80∶20vol%LDC40∶LSNO的LDC40-LSNO组合物(每个在1300℃下退火5小时后)。样品9的初始组成包括LDC40为La0.40Ce0.60O2和LSNO为La1.8Sr0.2NiO4。X射线衍射图案提供在图7的图表中。使用具有重掺杂的二氧化铈相的复合材料,即使在低LSNO,体积分数中也显示出LSNO的稳定性。
样品10包括50∶50vol%LDC48∶NNO、60∶40vol%LDC48∶NNO和80∶20vol%LDC48∶NNO的LDC48-NNO组合物(每个在1300℃下退火5小时后)。样品10的初始组成包括LDC48为La0.48Ce0.52O2和NNO为La2NiO4。X射线衍射图案提供在图8的图表中,使用具有不同稀土掺杂剂的重掺杂二氧化铈相的复合物,即使在低NNO体积分数中也显示出NNO的稳定性。
对于样品3至10中的每一个,表3中列出的密度是基于单相材料的XRD图谱计算的,并且用于计算不同混合物的体积%。
表3
实施例3:SOFC纽扣电池
使用Ni-YSZ阳极、YSZ电解质、SDC阻挡层和LNO-LDC40阴极功能层制备固体氧化物燃料电池。LNO-LDC40阴极功能层的厚度为约20至30μm。阴极功能层的孔隙率约为15%。另外,在YSZ电解质和功能层之间放置基本致密的SDC阻挡层,以避免在电解质和阴极功能层之间形成任何绝缘相。所述SDC阻挡层的厚度为约3μm和其孔隙度为约3%。图8中提供了多层燃料电池的SEM图像,在图9的图中提供了表现出高性能的SOFC纽扣电池的性能特征。
注意,以上在一般描述或示例中描述的所有活动并非都是必需的,可能不需要一部分特定活动,并且除了所描述的那些之外还可以执行一个或多个其它活动。更进一步,所列活动的顺序不一定是它们的执行顺序。
上面已经针对特定实施方式描述了益处、其它优点和问题的解决方案。然而,益处、优点、问题的解决方案以及可能导致任何益处、优点或解决方案发生或变得更加明显的任何特征不应被解释为任何或所有权利要求的关键、必需或必要特征。
这里描述的实施方式的说明和图示旨在提供对各种实施方式的结构的一般理解。说明书和图示不旨在用作使用本文描述的结构或方法的设备和系统的所有元件和特征的详尽和全面的描述。也可在单个实施方式中组合地提供单独的实施方式,并且相反地,为了简洁起见,在单个实施方式的上下文中描述的各种特征也可单独地提供或以任何子组合形式提供。另外,对范围中所述值的引用包括所述范围内的每一个值。只有在阅读本说明书之后,许多其它实施方式对于技术人员才是可显而易见的。可以使用其它实施方式并从本公开中得出其它实施方式,使得可以进行结构替换、逻辑替换或其它改变而不脱离本公开的范围。因此,本公开应被视为说明性的而非限制性的。

Claims (15)

1.一种电极,包括:
包含Ln2MO4相的功能层,其中Ln是至少一种任选掺杂有金属的镧系元素,M是至少一种3d过渡金属;
所述功能层还包含二氧化铈相,该二氧化铈相包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x大于0.2,y在0至0.2的范围内,x+y大于0.4且不大于二氧化铈的溶解度极限。
2.一种电极,包括:
包含Ln2MO4相的功能层,其中Ln是至少一种任选掺杂有金属的镧系元素,M是至少一种3d过渡金属;
所述功能层还包含二氧化铈相,该二氧化铈相包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少0.2,y在0至0.2的范围内,x+y至少0.4且不大于二氧化铈的溶解度极限,
其中基于功能层的总体积——没有任何孔隙率,所述二氧化铈相存在于所述功能层中的量至少40体积%。
3.一种形成电极的方法,包括:
提供Ln2MO4材料,其中Ln是至少一种任选掺杂金属的镧系元素,M是至少一种3d过渡金属;
提供包含具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈的二氧化铈材料,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x是至少0.2,y在0至0.2的范围内,x+y至少0.4且不大于二氧化铈的溶解度极限;
混合Ln2MO4材料和二氧化铈材料,形成混合物;和
在至少1000℃且高于操作温度的温度下烧结混合物,以形成具有Ln2MO4相和二氧化铈相的氧电极的功能层。
4.前述权利要求中任一项所述的电极或方法,其中Ln2MO4相的镧系元素掺杂有碱土金属。
5.前述权利要求中任一项所述的电极或方法,其中Ln2MO4相的3d过渡金属包括Ni、Cu、Co、Fe、Mn或其任何组合中的至少一种。
6.前述权利要求中任一项所述的电极或方法,其中x+y为至少0.41,或至少0.42,或至少0.43,或至少0.44,或至少0.45,或至少0.46,或在至少0.47。
7.前述权利要求中任一项所述的电极或方法,其中x+y至多为0.5。
8.前述权利要求中任一项所述的电极或方法,其中在功能层中可检测到小于5vol%的3d过渡金属氧化物。
9.前述权利要求中任一项所述的电极或方法,其中基于功能层的总体积减去孔隙率,二氧化铈相存在于功能层中的量至少40体积%,或至少45体积%,或至少50体积%,或至少55体积%,或至少60体积%,或至少65体积%,或至少70体积%,或至少75体积%。
10.一种电化学装置,包括前述权利要求中任一项所述的电极。
11.权利要求10所述的电化学装置,其中所述装置包括电解质层,并且所述电解质层包含二氧化铈、氧化锆、镓酸镧或其组合中的至少一种。
12.权利要求11所述的电化学装置,其中电解质层包括具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x至少为0.05,y在0至0.1的范围内,和x+y大于0且小于0.25。
13.权利要求11所述的电化学装置,其中所述电解质层包含稳定的氧化锆,并且所述装置还包括设置在所述功能层和所述电解质层之间的阻挡层。
14.权利要求13所述的电化学装置,其中阻挡层包括具有通式Ce(1-x-y)AxByO2的掺杂二氧化铈,其中A是至少一种稀土掺杂剂,B是至少一种碱土掺杂剂,x是至少0.05,y在0至0.2的范围内,x+y大于0.05且不大于二氧化铈的溶解度极限。
15.一种传感器装置,包括权利要求1至9中任一项所述的电极。
CN201780042762.XA 2016-05-25 2017-05-25 包含重掺杂二氧化铈的电极 Active CN109690847B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662341470P 2016-05-25 2016-05-25
US62/341470 2016-05-25
PCT/US2017/034534 WO2017205660A1 (en) 2016-05-25 2017-05-25 Electrode comprising heavily-doped ceria

Publications (2)

Publication Number Publication Date
CN109690847A true CN109690847A (zh) 2019-04-26
CN109690847B CN109690847B (zh) 2021-09-17

Family

ID=60411616

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780042762.XA Active CN109690847B (zh) 2016-05-25 2017-05-25 包含重掺杂二氧化铈的电极

Country Status (6)

Country Link
US (1) US10622628B2 (zh)
EP (1) EP3465807A4 (zh)
JP (1) JP6740528B2 (zh)
KR (2) KR102185472B1 (zh)
CN (1) CN109690847B (zh)
WO (1) WO2017205660A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3686966A1 (en) 2019-01-23 2020-07-29 Karlsruher Institut für Technologie An electrochemical energy storage device and a method for producing an anode active material for the electrochemical energy storage device
GB201909636D0 (en) * 2019-07-04 2019-08-21 Scg Chemicals Co Ltd High emissivity cerium oxide coating
CN114045520B (zh) * 2021-12-15 2023-05-26 中国科学院大连化学物理研究所 一种用于固体氧化物电解制氢的氧电极及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257943A (ja) * 2007-04-03 2008-10-23 Mie Univ 固体酸化物形燃料電池用電極及び該電極を有する固体酸化物形燃料電池
CN101383417A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和钛酸锶的电极
JP2011096645A (ja) * 2009-09-30 2011-05-12 Dainippon Printing Co Ltd 単室型固体酸化物形燃料電池
US20120064433A1 (en) * 2010-09-14 2012-03-15 Samsung Electro-Mechanics Co., Ltd. Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
CN102738492A (zh) * 2011-03-31 2012-10-17 三星电子株式会社 固体氧化物燃料电池用材料、含该材料的阴极及燃料电池
WO2015106769A1 (en) * 2014-01-14 2015-07-23 Elcogen As A method of producing sofc cathode diffusion barrier layer and a sofc

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070009784A1 (en) 2005-06-29 2007-01-11 Pal Uday B Materials system for intermediate-temperature SOFC based on doped lanthanum-gallate electrolyte
JP2010232135A (ja) 2009-03-30 2010-10-14 Mitsubishi Materials Corp 耐久性のある燃料極およびこの燃料極を組み込んだ固体酸化物形燃料電池
KR101881479B1 (ko) 2010-08-17 2018-07-25 블룸 에너지 코퍼레이션 고체 산화물 연료 전지를 제조하는 방법
GB201019156D0 (en) 2010-11-12 2010-12-29 Ulive Entpr Ltd Mixed metal oxide
KR20120123639A (ko) * 2011-04-19 2012-11-09 삼성전자주식회사 연료전지용 양극 소재, 이를 포함하는 연료전지용 양극 및 고체산화물 연료전지
US10446855B2 (en) 2013-03-15 2019-10-15 Lg Fuel Cell Systems Inc. Fuel cell system including multilayer interconnect
JP6121764B2 (ja) 2013-03-22 2017-04-26 日本碍子株式会社 固体酸化物型燃料電池に用いられる空気極
JP6100050B2 (ja) 2013-03-25 2017-03-22 日本碍子株式会社 燃料電池用空気極
JP2015076129A (ja) 2013-10-04 2015-04-20 日産自動車株式会社 燃料電池用空気極材料、燃料電池用空気極及び固体酸化物形燃料電池
JP2015185321A (ja) 2014-03-24 2015-10-22 アイシン精機株式会社 固体酸化物形燃料電池用空気極及び固体酸化物形燃料電池セル
JP6315581B2 (ja) 2014-08-22 2018-04-25 国立大学法人 熊本大学 固体酸化物形燃料電池用カソード及びその製造方法、並びに当該カソードを備える固体酸化物形燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257943A (ja) * 2007-04-03 2008-10-23 Mie Univ 固体酸化物形燃料電池用電極及び該電極を有する固体酸化物形燃料電池
CN101383417A (zh) * 2007-08-31 2009-03-11 丹麦技术大学 基于二氧化铈和钛酸锶的电极
JP2011096645A (ja) * 2009-09-30 2011-05-12 Dainippon Printing Co Ltd 単室型固体酸化物形燃料電池
US20120064433A1 (en) * 2010-09-14 2012-03-15 Samsung Electro-Mechanics Co., Ltd. Material for solid oxide fuel cell, cathode including the material, and solid oxide fuel cell including the material
CN102738492A (zh) * 2011-03-31 2012-10-17 三星电子株式会社 固体氧化物燃料电池用材料、含该材料的阴极及燃料电池
WO2015106769A1 (en) * 2014-01-14 2015-07-23 Elcogen As A method of producing sofc cathode diffusion barrier layer and a sofc

Also Published As

Publication number Publication date
WO2017205660A1 (en) 2017-11-30
KR20200133819A (ko) 2020-11-30
JP2019523820A (ja) 2019-08-29
JP6740528B2 (ja) 2020-08-19
KR20190035617A (ko) 2019-04-03
EP3465807A1 (en) 2019-04-10
KR102185472B1 (ko) 2020-12-03
EP3465807A4 (en) 2019-12-04
US20170346088A1 (en) 2017-11-30
KR102248541B1 (ko) 2021-05-07
US10622628B2 (en) 2020-04-14
CN109690847B (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
Gao et al. A perspective on low-temperature solid oxide fuel cells
Badwal et al. Oxygen-ion conducting electrolyte materials for solid oxide fuel cells
Hui et al. Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells
Khan et al. Effects of applied current density and thermal cycling on the degradation of a solid oxide fuel cell cathode
Zhang et al. Interface reactions in the NiO–SDC–LSGM system
Kuroda et al. Characterization of novel GdBa0. 5Sr0. 5Co2− xFexO5+ δ perovskites for application in IT-SOFC cells
Molero-Sanchez et al. High performance La0. 3Ca0. 7Cr0. 3Fe0. 7O3− δ air electrode for reversible solid oxide fuel cell applications
Li et al. Stable and easily sintered BaCe0. 5Zr0. 3Y0. 2O3− δ electrolytes using ZnO and Na2CO3 additives for protonic oxide fuel cells
Niemczyk et al. Assessment of layered La2-x (Sr, Ba) xCuO4-δ oxides as potential cathode materials for SOFCs
Wan et al. Oxygen reduction at the three-phase boundary of PrBaCo2O5+ δ-Sm0. 2Ce0. 8O1. 9 composite
Chen et al. Effect of interaction between A-site deficient LST and ScSZ on electrochemical performance of SOFC
Choi et al. Development of solid oxide cells by co-sintering of GDC diffusion barriers with LSCF air electrode
Li et al. Investigation of Nd2Ni0. 9M0. 1O4+ δ (M= Ni, Co, Cu, Fe, and Mn) cathodes for intermediate-temperature solid oxide fuel cell
Ren et al. Toward stabilizing Co3O4 nanoparticles as an oxygen reduction reaction catalyst for intermediate-temperature SOFCs
CN109690847A (zh) 包含重掺杂二氧化铈的电极
KR101808387B1 (ko) 저온 소결용 세리아 전해질 및 이를 이용한 고체산화물연료전지
Sahini et al. Perspective and control of cation interdiffusion and interface reactions in solid oxide fuel cells (SOFCs)
Jung et al. Role of the gadolinia-doped ceria interlayer in high-performance intermediate-temperature solid oxide fuel cells
Kuritsyna et al. Oxygen exchange, thermochemical expansion and cathodic behavior of perovskite-like Sr0. 7Ce0. 3MnO3-δ
Liu et al. Electrolyte materials for solid oxide fuel cells (SOFCs)
Kim et al. Electrochemical properties of Ln (Sr, Ca) 3 (Fe, Co) 3O10+ Gd0. 2Ce0. 8O1. 9 composite cathodes for solid oxide fuel cells
Miruszewski et al. Fabrication, structural and electrical properties of Sr (V, Nb) O3-δ perovskite materials
Simner et al. La (Sr) FeO3 SOFC cathodes with marginal copper doping
KR101748553B1 (ko) 고체산화물 전해질, 이를 포함하는 고체산화물 연료전지 및 이의 제조방법
Egger et al. Pr‐and Co‐substitution in rare earth nickelates: Application as SOEC air electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant