CN109688561B - 一种三维立体指纹分布室内定位方法及结构 - Google Patents

一种三维立体指纹分布室内定位方法及结构 Download PDF

Info

Publication number
CN109688561B
CN109688561B CN201811628125.3A CN201811628125A CN109688561B CN 109688561 B CN109688561 B CN 109688561B CN 201811628125 A CN201811628125 A CN 201811628125A CN 109688561 B CN109688561 B CN 109688561B
Authority
CN
China
Prior art keywords
positioning
space
fingerprint
primary
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811628125.3A
Other languages
English (en)
Other versions
CN109688561A (zh
Inventor
李石荣
符茂胜
何富贵
郁书好
李军杰
另大兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
West Anhui University
Original Assignee
West Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Anhui University filed Critical West Anhui University
Priority to CN201811628125.3A priority Critical patent/CN109688561B/zh
Publication of CN109688561A publication Critical patent/CN109688561A/zh
Application granted granted Critical
Publication of CN109688561B publication Critical patent/CN109688561B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/33Services specially adapted for particular environments, situations or purposes for indoor environments, e.g. buildings
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/006Locating users or terminals or network equipment for network management purposes, e.g. mobility management with additional information processing, e.g. for direction or speed determination

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Graphics (AREA)
  • Geometry (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Collating Specific Patterns (AREA)

Abstract

本发明公开了一种三维立体指纹分布室内定位结构,是对传统三维立体网格分布结构进行重构后,所得到新的三维立体网格分布结构,包括一次定位指纹点和校正定位指纹点。本发明方法为:通过构建一次定位指纹数据库、校正定位指纹数据库、二次定位指纹数据库,并根据一次定位指纹数据库和校正定位指纹数据库判断一次定位空间的准确性,得到准确一次定位空间,再根据二次定位指纹数据库在准确一次定位空间内确定二次定位空间,最后,根据二次定位空间内各定位指纹点对定位点的贡献度确定该定位点位置。本发明在确保定位精度的同时,减小约75%的指纹点,降低离线数据采集工作量,提高定位数据处理效率,本发明还通过引入校正定位指纹点,提高定位精度。

Description

一种三维立体指纹分布室内定位方法及结构
技术领域
本发明涉及基于指纹法的室内定位技术领域,尤其是一种三维立体指纹分布室内定位方法及结构。
背景技术
随着计算机技术和网络技术的不断发展,基于位置服务的需求得到了越来越多的研究和应用。由于大型商场、展馆等大面积建筑物空间内的GPS信号受到遮挡,导致GPS系统无法较好的满足于室内环境,因此,基于WLAN、蓝牙、ZigBee等室内定位技术得到了广泛的研究和应用。其中,基于接收信号强度(RSS,Received Signal Strength)的指纹定位方法由于其定位设备成本较低和定位精度较高从而广泛应用于室内定位。
在特殊情况下,当二维平面定位效果不能满足需求时,则需要对其三维的位置进行定位,然而,传统的基于RSS的指纹室内定位法在进行三维定位时,存在以下问题:
一、由于指纹分布通常采用网格分布结构导致离线工作量无法降低,并且指纹点潜在的价值信息利用率较低;
二、由于网格分布法通常将定位空间划分为多个定位子网格空间,若定位点位于两个相邻的定位子网格空间的边界处的附近时,则定位点在定位过程中由于信号强度RSS的时变性导致容易选错定位子网格空间,从而导致定位精度无法提高。
因此,如何提高定位精度和如何降低离线数据采集工作量是目前基于RSS的指纹室内定位法进行三维定位时需要解决的难题。
发明内容
为了克服上述现有技术中的缺陷,本发明提供一种三维立体指纹分布室内定位方法,在确保定位精度的同时,减小约75%的指纹点,降低离线数据采集工作量,提高定位数据处理效率,本发明还通过引入校正定位指纹点,提高定位精度。
为实现上述目的,本发明采用以下技术方案,包括:
一种三维立体指纹分布室内定位方法,包括以下步骤:
S1,对传统三维立体网格分布结构进行重构,得到新的三维立体网格分布结构;
所述传统三维立体网格分布结构是指:在目标定位空间中进行空间网格划分,将目标定位空间划分为多个正方体网格空间;将每个正方体网格空间的顶点作为所述传统三维立体网格分布结构中的定位指纹点;
所述重构的具体方式为:将所述传统三维立体网格分布结构中的上下左右前后互为相邻的八个正方体网格空间组合为一个新的正方体网格空间,将该新的正方体网格空间作为所述新的三维立体网格分布结构中的正方体定位空间,将所述正方体定位空间的八个顶点作为所述新的三维立体网格分布结构中的一次定位指纹点,将此八个正方体网格空间的一个公共顶点作为所述新的三维立体网格分布结构中的校正定位指纹点,所述校正定位指纹点位于所述正方体定位空间的正中心;
所述新的三维立体网格分布结构包括:一次定位指纹点和校正定位指纹点;
所述新的三维立体网格分布结构是指:所述一次定位指纹点将所述新的三维立体网格分布结构划分为多个正方体定位空间;所述校正定位指纹点将其对应的正方体定位空间划分为若干个四面体定位空间;所述四面体定位空间由该正方体定位空间中的校正定位指纹点,以及该正方体定位空间中任意三个一次定位指纹点构成;
所述新的三维立体网格分布结构中相邻的两个正方体定位空间存在重合的定位指纹点即存在公共顶点,但没有重合的空间;
S2,在所述新的三维立体网格分布结构中一次定位指纹点和校正定位指纹点上分别采集指纹点的信号强度信息和位置信息;
S3,根据一次定位指纹点上的信号强度信息和位置信息构建一次定位指纹数据库Rf;根据校正定位指纹点上的信号强度信息和位置信息构建校正定位指纹数据库Rc
S4,采集定位点的信号强度信息RSSx,将所述定位点的信号强度信息RSSx与一次定位指纹数据库Rf中的各指纹点的信号强度信息进行对比即进行一次定位处理,在多个正方体定位空间中选取出距离该定位点最近的正方体定位空间作为一次定位空间;所述定位点为待确定位置的点;
S5,将所述定位点的信号强度信息RSSx与校正定位指纹数据库Rc中的各指纹点的信号强度信息进行对比,在多个校正定位指纹点中选取出距离该定位点最近的校正定位指纹点作为最佳校正定位指纹点,且该最佳校正定位指纹点所位于的正方体定位空间即为校正定位空间;
S6,计算该最佳校正定位指纹点与所述一次定位空间内的校正定位指纹点之间的距离d,对所选取的一次定位空间和校正定位空间的位置关系进行判断,若校正定位空间与一次定位空间重合时,即d=0时,则所采集的定位点的信号强度信息RSSx可靠,该一次定位空间可靠,即一次定位空间为准确一次定位空间,且该准确一次定位空间为六面体空间即正方体空间,包括八个一次定位指纹点和一个校正定位指纹点即该最佳校正定位指纹点;
若校正定位空间与一次定位空间不重合,且0<d≤θ时,则所采集的定位点的信号强度信息RSSx可靠,但该一次定位空间不可靠,即该一次定位空间不是准确一次定位空间,利用该两个校正定位指纹点即该最佳校正定位指纹点与该一次定位空间内的校正定位指纹点之间的位置关系重新构建出准确一次定位空间;
若校正定位空间与一次定位空间不重合,且d>θ时,则所采集的定位点的信号强度RSSx不可靠,重新采集定位点的信号强度信息RSSx,即重新执行步骤S4~S6;
其中,θ表示距离阈值,所述距离阈值
Figure BDA0001928415730000031
l表示所述正方体定位空间的边长;
S7,在所述准确一次定位空间中确定所述定位点的位置。
步骤S6中,所述0<d≤θ时,其中,
若d=l时,则校正定位空间与一次定位空间之间有四个公共一次定位指纹点,由该两个校正定位指纹点,以及该四个公共一次定位指纹点作为顶点构成一个八面体空间,将该八面体空间作为准确一次定位空间;所述准确一次定位空间包括两个校正定位指纹点和四个一次定位指纹点。
步骤S6中,所述0<d≤θ时,其中,
Figure BDA0001928415730000041
时,则校正定位空间与一次定位空间之间有两个公共一次定位指纹点,由该两个校正定位指纹点,该两个公共一次定位指纹点,以及与该两个校正定位指纹点之间的中心位置相距最近的两个校正定位指纹点作为顶点构成一个八面体空间,将该八面体空间作为准确一次定位空间;所述准确一次定位空间包括四个校正定位指纹点和两个一次定位指纹点。
步骤S6中,所述0<d≤θ时,其中,
Figure BDA0001928415730000042
时,则校正定位空间与一次定位空间之间仅有一个公共一次定位指纹点,由与该一个公共一次定位指纹点相距最近的八个校正定位指纹点作为顶点构成一个正方体空间即六面体空间,将该正方体空间作为准确一次定位空间;所述准确一次定位空间包括八个校正定位指纹点和一个一次定位指纹点,且该一个一次定位指纹点位于所述准确一次定位空间的正中心位置。
步骤S3中,还根据一次定位指纹点的信号强度信息和位置信息,以及根据校正指纹定位点的信号强度信息和位置信息构建二次定位指纹数据库
Figure BDA0001928415730000044
步骤S7中,通过二次定位处理在准确一次定位空间内确定该定位点的位置;所述二次定位处理是利用二次定位指纹数据库
Figure BDA0001928415730000045
将该定位点的信号强度信息RSSx与准确一次定位空间中所包含的各指纹点的信号强度信息进行对比,在准确一次定位空间中选择四个点作为二次定位空间的顶点,得到二次定位空间;所述二次定位空间为四面体空间;
根据所述二次定位空间即四面体空间上的四个顶点确定该定位点的位置I,具体方式如下所示:
分别计算该四面体空间上的四个顶点对定位点的贡献度即权值,分别得到该四面体空间上的四个顶点对定位点的贡献度依次为
Figure BDA0001928415730000043
Figure BDA0001928415730000051
且该四面体空间上的四个顶点的位置分别为
Figure BDA0001928415730000052
Figure BDA0001928415730000053
该定位点的位置
Figure BDA0001928415730000054
所述位置均为三维坐标。
若准确一次定位空间是根据d=0的情况所得到,则在该准确一次定位空间中选取出距离该定位点较近的三个一次定位指纹点;所述二次定位空间由该准确一次定位空间中的一个校正定位指纹点,以及距离所述定位点较近的该三个一次定位指纹点构成。
若准确一次定位空间是根据d=l的情况所构建,则在该准确一次定位空间中的两个校正定位指纹点中选取出距离该定位点最近的一个校正定位指纹点,在该准确一次定位空间中的四个一次定位指纹点中选取出距离该定位点较近的三个一次定位指纹点;所述二次定位空间由距离所述定位点最近的该一个校正定位指纹点,以及距离所述定位点较近的该三个一次定位指纹点构成。
若准确一次定位空间是根据
Figure BDA0001928415730000055
的情况所构建,则在该准确一次定位空间中的两个一次定位指纹点中选取出距离该定位点最近的一个一次定位指纹点,在该准确一次定位空间中的四个校正定位指纹点中选取出距离该定位点较近的三个校正定位指纹点;所述二次定位空间由距离所述定位点最近的该一个一次定位指纹点,以及距离所述定位点较近的该三个校正定位指纹点构成。
若准确一次定位空间是根据
Figure BDA0001928415730000056
的情况所得到,则在该准确一次定位空间的六个面中选取出距离该定位点最近的一个面,且在该最近的一个面上选取出距离该定位点较近的三个校正定位指纹点;所述二次定位空间由该准确一次定位空间中的一个一次定位指纹点,以及位于该同一个面上的距离所述定位点较近的该三个一次定位指纹点构成。
本发明还提供了一种三维立体指纹分布室内定位结构,所述三维立体指纹分布室内定位结构包括:一次定位指纹点和校正定位指纹点;其中,
将所述传统三维立体网格分布结构中的上下左右前后互为相邻的八个正方体网格空间组合为一个新的正方体网格空间,将该新的正方体网格空间作为所述三维立体指纹分布室内定位结构中的正方体定位空间,将所述正方体定位空间的顶点作为所述三维立体指纹分布室内定位结构中的一次定位指纹点,将此八个正方体网格空间的公共顶点作为所述三维立体指纹分布室内定位结构中的校正定位指纹点,即所述校正定位指纹点位于所述正方体定位空间的正中心;所述传统三维立体网格分布结构是指:在目标定位空间中进行空间网格划分,将目标定位空间划分为多个正方体网格空间;将每个正方体网格空间的顶点作为所述传统三维立体网格分布结构中的定位指纹点;
所述新的三维立体网格分布结构是指:所述一次定位指纹点将所述新的三维立体网格分布结构划分为多个正方体定位空间;所述校正定位指纹点将其对应的正方体定位空间划分为若干个四面体定位空间;所述四面体定位空间由该正方体定位空间中的校正定位指纹点,以及该正方体定位空间中任意三个一次定位指纹点构成;
所述三维立体指纹分布室内定位结构中相邻的两个正方体定位空间之间存在重合的定位指纹点即存在公共顶点,且不存在重合的空间。
本发明的优点在于:
本发明通过对传统网格分布指纹点重新选取、排布和分类,利用四面体定位空间定替代传统正方体定位空间,在确保定位精度的条件下,可减小约75%的指纹点和离线数据采集工作量,指纹数据样本的减少,提高了定位数据处理效率;同时,本发明在减小工作量的条件下,还通过引入校正点的方法提高了定位精度,适用于基于指纹法的室内定位技术,可有效减少由于定位空间边缘的定位点的信号时变性从而带来的定位误差较大的情况。
附图说明
图1为本发明的一种三维立体指纹分布室内定位方法的方法流程图。
图2(a)为传统三维立体网格分布结构的示意图。
图2(b)为新的三维立体网格分布结构的示意图。
图3为本发明的一种三维立体指纹分布室内定位结构的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
由图1所示,一种三维立体指纹分布室内定位方法,包括以下步骤:
S1,对传统三维立体网格分布结构进行重构,得到新的三维立体网格分布结构,所述新的三维立体网格分布结构即为本发明的三维立体指纹分布室内定位结构。
由图2(a)所示,所述传统三维立体网格分布结构是指:在目标定位空间中进行空间网格划分,将目标定位空间划分为多个正方体网格空间;将每个正方体网格空间的顶点作为所述传统三维立体网格分布结构中的定位指纹点。
由图2(a)和图2(b)所示,所述重构的具体方式为:将所述传统三维立体网格分布结构中的上下左右前后互为相邻的八个正方体网格空间组合为一个新的正方体网格空间,将该新的正方体网格空间作为所述新的三维立体网格分布结构中的正方体定位空间,将所述正方体定位空间的顶点作为所述新的三维立体网格分布结构中的一次定位指纹点,将此八个正方体网格空间的公共顶点作为所述新的三维立体网格分布结构中的校正定位指纹点,所述校正定位指纹点位于所述正方体定位空间的正中心。
由图3所示,所述新的三维立体网格分布结构包括:一次定位指纹点和校正定位指纹点;其中,白色的点为一次定位指纹点,黑色的点为校正定位指纹点。
所述新的三维立体网格分布结构是指:所述一次定位指纹点将所述新的三维立体网格分布结构划分为多个正方体定位空间;所述校正定位指纹点将其对应的正方体定位空间划分为若干个四面体定位空间;所述四面体定位空间由该正方体定位空间中的校正定位指纹点,以及该正方体定位空间中任意三个一次定位指纹点构成。
所述新的三维立体网格分布结构中相邻的两个正方体定位空间存在重合的定位指纹点即存在公共顶点,但没有重合的空间。
为了便于描述整个技术方案,本实施例中,以目标定位空间为正方体为例,且所述新的三维立体网格分布结构中共包括N个一次定位指纹点和M个校正定位指纹点;将所述目标定位空间划分为M个正方体定位空间;但是,本发明并不局限于目标定位空间为正方体的情况。
S2,在所述新的三维立体网格分布结构中一次定位指纹点和校正定位指纹点上分别采集指纹点的信号强度信息和位置信息。其中,
将N个一次定位指纹点的信号强度信息构成集合RSSf,且集合
Figure BDA0001928415730000081
将N个一次定位指纹点的位置信息构成集合Lf,且集合
Figure BDA0001928415730000082
其中,集合RSSf中的每个元素均表示该元素对应的一次定位指纹点的信号强度信息;集合Lf中的每个元素均表示该元素对应的一次定位指纹点的位置信息即三维位置坐标;f表示一次定位指纹点;集合RSSf中每个元素的下标数字均表示该元素的序号即表示该元素对应的一次定位指纹点的序号。
将M个校正定位指纹点的信号强度信息构成集合RSSc,且集合
Figure BDA0001928415730000083
将M个校正定位指纹点的位置信息构成集合Lc,且集合
Figure BDA0001928415730000084
其中,集合RSSc中的每个元素均表示该元素对应的校正定位指纹点的信号强度信息;集合Lc中的每个元素均表示该元素对应的校正定位指纹点的位置信息即三维位置坐标;c表示校正定位指纹点;集合RSSc中每个元素的下标数字均表示该元素的序号即表示该元素对应的校正定位指纹点的序号。
S3,根据一次定位指纹点上的信号强度信息和位置信息构建一次定位指纹数据库Rf。具体方式如下所示:
将每个正方体定位空间上的八个顶点即八个一次定位指纹点的信号强度信息的集合作为一次定位指纹数据库Rf中的子集,得到一次定位指纹数据库
Figure BDA0001928415730000085
Figure BDA0001928415730000086
其中,i表示第i个正方体定位空间;Z表示该目标定位空间共划分为Z个正方体定位空间;本实施例中,Z=M,即
Figure BDA0001928415730000091
其中,
Figure BDA0001928415730000092
是由第i个正方体定位空间上的八个顶点即八个一次定位指纹点的信号强度信息所构成集合,表示一次定位指纹数据库Rf中的第i个子集;且一次定位指纹数据库Rf中的每个子集
Figure BDA0001928415730000093
均包含有八个一次定位指纹点的信号强度信息。
S4,将由M个校正定位指纹点的信号强度信息所构成的集合RSSc作为校正定位指纹数据库Rc,即
Figure BDA0001928415730000094
S5,根据一次定位指纹数据库
Figure BDA0001928415730000095
和校正定位指纹数据库
Figure BDA0001928415730000096
构建二次定位指纹数据库
Figure BDA0001928415730000097
具体方式如下所示:
将每个正方体定位空间上的八个顶点即八个一次定位指纹点的信号强度信息,以及该正方体定位空间中的校正定位指纹点的信号强度信息的集合作为二次定位指纹数据库
Figure BDA00019284157300000919
的子集,得到
Figure BDA0001928415730000098
Figure BDA0001928415730000099
Figure BDA00019284157300000910
Figure BDA00019284157300000911
其中,
Figure BDA00019284157300000912
是由第i个正方体定位空间上的八个顶点即八个一次定位指纹点的信号强度信息,以及第i个正方体定位空间中的校正定位指纹点的信号强度信息构成的集合,表示二次定位指纹数据库
Figure BDA00019284157300000913
的第i个子集;且二次定位指纹数据库
Figure BDA00019284157300000914
中的每个子集
Figure BDA00019284157300000915
均包含有八个一个定位指纹点和一个校正定位指纹点的信号强度信息。
S6,采集定位点即待确定位置的点的信号强度信息RSSx,将该定位点的信号强度信息RSSx依次与一次定位指纹数据库Rf中的每个子集进行对比即进行一次定位处理,在多个正方体定位空间中即在多个子集中选取出距离该定位点最近的正方体定位空间作为一次定位空间。具体方式如下所示:
分别计算该定位点与子集
Figure BDA00019284157300000916
中的八个一次定位指纹点之间的距离,分别得到八个距离差,对该八个距离差的绝对值取平均值,将该平均值作为该定位点与该子集
Figure BDA00019284157300000917
之间的距离,即该定位点与该子集
Figure BDA00019284157300000918
所对应的正方体定位空间之间的距离;
依次类推,分别得到该定位点与每个正方体定位空间之间的距离,选取距离最小的正方体定位空间作为一次定位空间。
S7,将该定位点的信号强度信息RSSx与校正定位指纹数据库Rc中进行对比,分别计算该定位点与校正定位指纹数据库Rc中的每个校正定位指纹点之间的距离值,选取距离的绝对值为最小的校正定位指纹点作为最佳校正定位指纹点,且该最佳校正定位指纹点所位于的正方体定位空间即为校正定位空间。
S8,设定距离阈值θ;所述距离阈值
Figure BDA0001928415730000101
l表示所述正方体定位空间的边长。
S9,计算该最佳校正定位指纹点与所述一次定位空间内的校正定位指纹点之间的距离d,对所选取的一次定位空间和校正定位空间的位置关系进行判断。其中,
若校正定位空间与一次定位空间重合时,即d=0时,则所采集的定位点的信号强度信息RSSx可靠,且该一次定位空间可靠,即该一次定位空间为准确一次定位空间,且该准确一次定位空间为六面体空间,包括八个一次定位指纹点和一个校正定位指纹点即该最佳校正定位指纹点。
若校正定位空间与一次定位空间不重合,且d>θ时,则所采集的定位点的信号强度RSSx不可靠,重新采集定位点的信号强度信息RSSx,即重新执行步骤S6~S9。
若校正定位空间与一次定位空间不重合,且0<d≤θ时,则所采集的定位点的信号强度信息RSSx可靠,但该一次定位空间不可靠,即该一次定位空间不是准确一次定位空间,利用该两个校正定位指纹点即该最佳校正定位指纹点与该一次定位空间内的校正定位指纹点之间的位置关系重新构建出准确一次定位空间;
所述0<d≤θ中,若d=l时,则校正定位空间与一次定位空间之间有四个公共一次定位指纹点,由该两个校正定位指纹点,以及该四个公共一次定位指纹点作为顶点构成一个八面体空间,将该八面体空间作为准确一次定位空间;所述准确一次定位空间包括两个校正定位指纹点和四个一次定位指纹点;
所述0<d≤θ中,若
Figure BDA0001928415730000102
时,则校正定位空间与一次定位空间之间有两个公共一次定位指纹点,由该两个校正定位指纹点,该两个公共一次定位指纹点,以及与该两个校正定位指纹点之间的中心位置相距最近的两个校正定位指纹点作为顶点构成一个八面体空间,将该八面体空间作为准确一次定位空间;所述准确一次定位空间包括四个校正定位指纹点和两个一次定位指纹点;
所述0<d≤θ中,若
Figure BDA0001928415730000111
时,则校正定位空间与一次定位空间之间仅有一个公共一次定位指纹点,由与该一个公共一次定位指纹点相距最近的八个校正定位指纹点作为顶点构成一个正方体空间即六面体空间,将该正方体空间作为准确一次定位空间;所述准确一次定位空间包括八个校正定位指纹点和一个一次定位指纹点,且该一个一次定位指纹点位于所述准确一次定位空间的正中心位置。
S10,利用所述二次定位指纹数据库
Figure BDA0001928415730000112
将该定位点的信号强度信息RSSx与准确一次定位空间中所包含的各指纹点的信号强度信息进行对比即进行二次定位,在准确一次定位空间中选择四个点作为二次定位空间的顶点构成二次定位空间,所述二次定位空间为四面体空间。其中,
若准确一次定位空间是根据d=0的情况所得到,则在该准确一次定位空间的选取出距离该定位点较近的三个一次定位指纹点;所述二次定位空间由该准确一次定位空间中的一个校正定位指纹点,以及位于该同一个面上的距离所述定位点较近的该三个一次定位指纹点构成;
若准确一次定位空间是根据d=l的情况所构建,则在该准确一次定位空间中的两个校正定位指纹点中选取出距离该定位点最近的一个校正定位指纹点,在该准确一次定位空间中的四个一次定位指纹点中选取出距离该定位点较近的三个一次定位指纹点;所述二次定位空间由距离所述定位点最近的该一个校正定位指纹点,以及距离所述定位点较近的该三个一次定位指纹点构成;
若准确一次定位空间是根据
Figure BDA0001928415730000113
的情况所构建,则在该准确一次定位空间中的两个一次定位指纹点中选取出距离该定位点最近的一个一次定位指纹点,在该准确一次定位空间中的四个校正定位指纹点中选取出距离该定位点较近的三个校正定位指纹点;所述二次定位空间由距离所述定位点最近的该一个一次定位指纹点,以及距离所述定位点较近的该三个校正定位指纹点构成;
若准确一次定位空间是根据
Figure BDA0001928415730000121
的情况所得到,则在该准确一次定位空间的六个面中选取出距离该定位点最近的一个面,且在该最近的一个面上选取出距离该定位点较近的三个校正定位指纹点;所述二次定位空间由该准确一次定位空间中的一个一次定位指纹点,以及位于该同一个面上的距离所述定位点较近的该三个一次定位指纹点构成。
S11,在所述二次定位空间上即四面体空间上利用质心法确定该定位点的位置。具体方式如下所示:
根据该四面体空间上的四个顶点确定该定位点的位置I,分别计算该四面体空间上的四个顶点对定位点的贡献度即权值,分别得到该四面体空间上的四个顶点对定位点的贡献度依次为
Figure BDA0001928415730000122
且该四面体空间上的四个顶点的位置分别为
Figure BDA0001928415730000123
该定位点的位置
Figure BDA0001928415730000124
所述位置均为三维坐标。
本发明所提出的新的三维立体网格分布结构与传统的三维立体网格分布结构不同,本发明通过对传统的正方体网格空间进行重组,将传统三维立体网格分布结构中的上下左右前后互为相邻的八个正方体网格空间组合为一个新的正方体网格空间,将该新的正方体网格空间作为所述新的三维立体网格分布结构中的正方体定位空间,并对该正方体定位空间进行划分,可将该正方体定位空间分解成若干个四面体定位空间,当定位空间体积较大时,定位指纹点个数可降低75%左右,具体由下表1所示:
Figure BDA0001928415730000125
表1
本发明的一种三维立体指纹分布室内定位结构及方法,该方法通过对传统网格分布指纹点重新选取、排布和分类,利用四面体定位空间定替代传统正方体定位空间,在保证定位精度的条件下,可降低指纹点和数据采集工作量;同时,将部分定位指纹点作为定位校正点,用于校正和二次定位,提高定位精度。
具体的,本发明在确保定位精度的条件下,可减小约75%的指纹点和离线数据采集工作量,指纹数据样本的减少,提高了定位数据处理效率;同时,本发明在减小工作量的条件下,还通过引入校正点的方法提高了定位精度,适用于基于指纹法的室内定位技术,可有效减少由于定位空间边缘的定位点的信号时变性从而带来的定位误差较大的情况。
以上仅为本发明创造的较佳实施例而已,并不用以限制本发明创造,凡在本发明创造的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明创造的保护范围之内。

Claims (9)

1.一种三维立体指纹分布室内定位方法,其特征在于,包括以下步骤:
S1,对传统三维立体网格分布结构进行重构,得到新的三维立体网格分布结构;
所述传统三维立体网格分布结构是指:在目标定位空间中进行空间网格划分,将目标定位空间划分为多个正方体网格空间;将每个正方体网格空间的顶点作为所述传统三维立体网格分布结构中的定位指纹点;
所述重构的具体方式为:将所述传统三维立体网格分布结构中的上下左右前后互为相邻的八个正方体网格空间组合为一个新的正方体网格空间,将该新的正方体网格空间作为所述新的三维立体网格分布结构中的正方体定位空间,将所述正方体定位空间的八个顶点作为所述新的三维立体网格分布结构中的一次定位指纹点,将此八个正方体网格空间的一个公共顶点作为所述新的三维立体网格分布结构中的校正定位指纹点,所述校正定位指纹点位于所述正方体定位空间的正中心;
所述新的三维立体网格分布结构包括:一次定位指纹点和校正定位指纹点;
所述新的三维立体网格分布结构是指:所述一次定位指纹点将所述新的三维立体网格分布结构划分为多个正方体定位空间;所述校正定位指纹点将其对应的正方体定位空间划分为若干个四面体定位空间;所述四面体定位空间由该正方体定位空间中的校正定位指纹点,以及该正方体定位空间中任意三个一次定位指纹点构成;
所述新的三维立体网格分布结构中相邻的两个正方体定位空间存在重合的定位指纹点即存在公共顶点,但没有重合的空间;
S2,在所述新的三维立体网格分布结构中一次定位指纹点和校正定位指纹点上分别采集指纹点的信号强度信息和位置信息;
S3,根据一次定位指纹点上的信号强度信息和位置信息构建一次定位指纹数据库Rf;根据校正定位指纹点上的信号强度信息和位置信息构建校正定位指纹数据库Rc
S4,采集定位点的信号强度信息RSSx,将所述定位点的信号强度信息RSSx与一次定位指纹数据库Rf中的各指纹点的信号强度信息进行对比即进行一次定位处理,在多个正方体定位空间中选取出距离该定位点最近的正方体定位空间作为一次定位空间;所述定位点为待确定位置的点;
S5,将所述定位点的信号强度信息RSSx与校正定位指纹数据库Rc中的各指纹点的信号强度信息进行对比,在多个校正定位指纹点中选取出距离该定位点最近的校正定位指纹点作为最佳校正定位指纹点,且该最佳校正定位指纹点所位于的正方体定位空间即为校正定位空间;
S6,计算该最佳校正定位指纹点与所述一次定位空间内的校正定位指纹点之间的距离d,对所选取的一次定位空间和校正定位空间的位置关系进行判断,
若校正定位空间与一次定位空间重合时,即d=0时,则所采集的定位点的信号强度信息RSSx可靠,该一次定位空间可靠,即一次定位空间为准确一次定位空间,且该准确一次定位空间为六面体空间即正方体空间,包括八个一次定位指纹点和一个校正定位指纹点即该最佳校正定位指纹点;
若校正定位空间与一次定位空间不重合,且0<d≤θ时,则所采集的定位点的信号强度信息RSSx可靠,但该一次定位空间不可靠,即该一次定位空间不是准确一次定位空间,利用两个校正定位指纹点即该最佳校正定位指纹点与该一次定位空间内的校正定位指纹点之间的位置关系重新构建出准确一次定位空间;
若校正定位空间与一次定位空间不重合,且d>θ时,则所采集的定位点的信号强度RSSx不可靠,重新采集定位点的信号强度信息RSSx,即重新执行步骤S4~S6;
其中,θ表示距离阈值,所述距离阈值
Figure FDA0002520894470000021
l表示所述正方体定位空间的边长;
S7,在所述准确一次定位空间中确定所述定位点的位置。
2.根据权利要求1所述的一种三维立体指纹分布室内定位方法,其特征在于,步骤S6中,所述0<d≤θ时,其中,
若d=l时,则校正定位空间与一次定位空间之间有四个公共一次定位指纹点,由该两个校正定位指纹点即该最佳校正定位指纹点与该一次定位空间内的校正定位指纹点,以及该四个公共一次定位指纹点作为顶点构成一个八面体空间,将该八面体空间作为准确一次定位空间;所述准确一次定位空间包括两个校正定位指纹点和四个一次定位指纹点。
3.根据权利要求1所述的一种三维立体指纹分布室内定位方法,其特征在于,步骤S6中,所述0<d≤θ时,其中,
Figure FDA0002520894470000031
时,则校正定位空间与一次定位空间之间有两个公共一次定位指纹点,由该两个校正定位指纹点即该最佳校正定位指纹点与该一次定位空间内的校正定位指纹点,该两个公共一次定位指纹点,以及与该两个校正定位指纹点之间的中心位置相距最近的两个校正定位指纹点作为顶点构成一个八面体空间,将该八面体空间作为准确一次定位空间;所述准确一次定位空间包括四个校正定位指纹点和两个一次定位指纹点。
4.根据权利要求1所述的一种三维立体指纹分布室内定位方法,其特征在于,步骤S6中,所述0<d≤θ时,其中,
Figure FDA0002520894470000032
时,则校正定位空间与一次定位空间之间仅有一个公共一次定位指纹点,由与该一个公共一次定位指纹点相距最近的八个校正定位指纹点作为顶点构成一个正方体空间即六面体空间,将该正方体空间作为准确一次定位空间;所述准确一次定位空间包括八个校正定位指纹点和一个一次定位指纹点,且该一个一次定位指纹点位于所述准确一次定位空间的正中心位置。
5.根据权利要求2或3或4所述的一种三维立体指纹分布室内定位方法,其特征在于,步骤S3中,还根据一次定位指纹点的信号强度信息和位置信息,以及根据校正指纹定位点的信号强度信息和位置信息构建二次定位指纹数据库
Figure FDA0002520894470000033
步骤S7中,通过二次定位处理在准确一次定位空间内确定该定位点的位置;所述二次定位处理是利用二次定位指纹数据库
Figure FDA0002520894470000034
将该定位点的信号强度信息RSSx与准确一次定位空间中所包含的各指纹点的信号强度信息进行对比,在准确一次定位空间中选择四个点作为二次定位空间的顶点,得到二次定位空间;所述二次定位空间为四面体空间;
根据所述二次定位空间即四面体空间上的四个顶点确定该定位点的位置I,具体方式如下所示:
分别计算该四面体空间上的四个顶点对定位点的贡献度即权值,分别得到该四面体空间上的四个顶点对定位点的贡献度依次为W1 tetrahedron
Figure FDA0002520894470000041
Figure FDA0002520894470000042
且该四面体空间上的四个顶点的位置分别为
Figure FDA0002520894470000043
Figure FDA0002520894470000044
该定位点的位置
Figure FDA0002520894470000045
所述位置均为三维坐标。
6.根据权利要求5所述的一种三维立体指纹分布室内定位方法,其特征在于,若准确一次定位空间是根据d=0的情况所得到,则在该准确一次定位空间中选取出距离该定位点较近的三个一次定位指纹点;所述二次定位空间由该准确一次定位空间中的一个校正定位指纹点,以及距离所述定位点较近的该三个一次定位指纹点构成。
7.根据权利要求5所述的一种三维立体指纹分布室内定位方法,其特征在于,若准确一次定位空间是根据d=l的情况所构建,则在该准确一次定位空间中的两个校正定位指纹点中选取出距离该定位点最近的一个校正定位指纹点,在该准确一次定位空间中的四个一次定位指纹点中选取出距离该定位点较近的三个一次定位指纹点;所述二次定位空间由距离所述定位点最近的该一个校正定位指纹点,以及距离所述定位点较近的该三个一次定位指纹点构成。
8.根据权利要求5所述的一种三维立体指纹分布室内定位方法,其特征在于,若准确一次定位空间是根据
Figure FDA0002520894470000046
的情况所构建,则在该准确一次定位空间中的两个一次定位指纹点中选取出距离该定位点最近的一个一次定位指纹点,在该准确一次定位空间中的四个校正定位指纹点中选取出距离该定位点较近的三个校正定位指纹点;所述二次定位空间由距离所述定位点最近的该一个一次定位指纹点,以及距离所述定位点较近的该三个校正定位指纹点构成。
9.根据权利要求5所述的一种三维立体指纹分布室内定位方法,其特征在于,若准确一次定位空间是根据
Figure FDA0002520894470000051
的情况所得到,则在该准确一次定位空间的六个面中选取出距离该定位点最近的一个面,且在该最近的一个面上选取出距离该定位点较近的三个校正定位指纹点;所述二次定位空间由该准确一次定位空间中的一个一次定位指纹点,以及位于该最近的一个面上的距离所述定位点较近的该三个一次定位指纹点构成。
CN201811628125.3A 2018-12-28 2018-12-28 一种三维立体指纹分布室内定位方法及结构 Active CN109688561B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811628125.3A CN109688561B (zh) 2018-12-28 2018-12-28 一种三维立体指纹分布室内定位方法及结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811628125.3A CN109688561B (zh) 2018-12-28 2018-12-28 一种三维立体指纹分布室内定位方法及结构

Publications (2)

Publication Number Publication Date
CN109688561A CN109688561A (zh) 2019-04-26
CN109688561B true CN109688561B (zh) 2020-07-24

Family

ID=66190132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811628125.3A Active CN109688561B (zh) 2018-12-28 2018-12-28 一种三维立体指纹分布室内定位方法及结构

Country Status (1)

Country Link
CN (1) CN109688561B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316385A (en) * 1980-06-18 1982-02-23 General Electric Company Fingerprinting crystals
CN104363654A (zh) * 2014-11-04 2015-02-18 浙江师范大学 基于Tunneling method的无线传感器网络三维节点定位方法
CN105813194A (zh) * 2016-05-06 2016-07-27 西安电子科技大学昆山创新研究院 基于指纹数据库二次校正的室内定位方法
CN107678051A (zh) * 2016-08-01 2018-02-09 华为技术服务有限公司 一种定位的方法及相关设备
CN108225332A (zh) * 2018-01-10 2018-06-29 内蒙古大学 基于监督的室内定位指纹地图降维方法
CN108490473A (zh) * 2018-02-10 2018-09-04 深圳大学 一种融合gnss和uwb的无人机增强定位方法与系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4316385A (en) * 1980-06-18 1982-02-23 General Electric Company Fingerprinting crystals
CN104363654A (zh) * 2014-11-04 2015-02-18 浙江师范大学 基于Tunneling method的无线传感器网络三维节点定位方法
CN105813194A (zh) * 2016-05-06 2016-07-27 西安电子科技大学昆山创新研究院 基于指纹数据库二次校正的室内定位方法
CN107678051A (zh) * 2016-08-01 2018-02-09 华为技术服务有限公司 一种定位的方法及相关设备
CN108225332A (zh) * 2018-01-10 2018-06-29 内蒙古大学 基于监督的室内定位指纹地图降维方法
CN108490473A (zh) * 2018-02-10 2018-09-04 深圳大学 一种融合gnss和uwb的无人机增强定位方法与系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Research on location fingerprint towards three-dimensional indoor positioning system;Shan Liu;《IEEE》;20161124;584-588 *

Also Published As

Publication number Publication date
CN109688561A (zh) 2019-04-26

Similar Documents

Publication Publication Date Title
Berman et al. Air-light estimation using haze-lines
CN103703490B (zh) 用于产生三维特征数据的设备以及用于产生三维特征数据的方法
CN105741279B (zh) 基于粗糙集的快速抑制模糊聚类的图像分割方法
CN104392426B (zh) 一种自适应的无标志点三维点云自动拼接方法
CN107679441A (zh) 基于多时相遥感影像阴影提取城市建筑物高度的方法
CN108010116A (zh) 点云特征点检测方法和点云特征提取方法
CN109444812B (zh) 一种引入动态阈值的rssi室内定位方法
CN104869641B (zh) 基于AP优化的Wi‑Fi室内定位方法
Kim et al. Semiautomatic reconstruction of building height and footprints from single satellite images
CN103226584B (zh) 形状描述符的构建方法及基于该描述符的图像检索方法
CN109961470B (zh) 一种基于激光点云的活立木叶属性精准估测方法
CN105374037A (zh) 一种边角检测的棋盘格角点自动筛选方法
CN108280852A (zh) 一种基于激光点云数据的门窗点云形状检测方法及系统
CN106204540A (zh) 视觉检测方法
CN109493384A (zh) 相机位姿估计方法、系统、设备及存储介质
CN106296680A (zh) 一种基于区域的多特征融合高分辨率遥感影像分割方法
CN105787081A (zh) 一种基于辐射源空间位置的辐射平台关联方法
CN108388901B (zh) 基于空间-语义通道的协同显著目标检测方法
CN111429447A (zh) 病灶区域检测方法、装置、设备及存储介质
CN114332291A (zh) 一种倾斜摄影模型建筑物外轮廓规则提取方法
CN104318566B (zh) 可返回多个高程值的新型多视影像铅垂线轨迹匹配方法
CN109523554A (zh) 一种基于木构件的古建筑点云自动分割方法
CN109688561B (zh) 一种三维立体指纹分布室内定位方法及结构
CN105488798B (zh) 基于点集对比的sar图像相似性度量方法
CN104463896B (zh) 基于核相似区分布特性的图像角点检测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant