CN106296680A - 一种基于区域的多特征融合高分辨率遥感影像分割方法 - Google Patents

一种基于区域的多特征融合高分辨率遥感影像分割方法 Download PDF

Info

Publication number
CN106296680A
CN106296680A CN201610643629.7A CN201610643629A CN106296680A CN 106296680 A CN106296680 A CN 106296680A CN 201610643629 A CN201610643629 A CN 201610643629A CN 106296680 A CN106296680 A CN 106296680A
Authority
CN
China
Prior art keywords
region
cut zone
merging
distance
remote sensing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610643629.7A
Other languages
English (en)
Other versions
CN106296680B (zh
Inventor
韩玲
刘大伟
宁晓红
刘志恒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201610643629.7A priority Critical patent/CN106296680B/zh
Publication of CN106296680A publication Critical patent/CN106296680A/zh
Application granted granted Critical
Publication of CN106296680B publication Critical patent/CN106296680B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/25Fusion techniques
    • G06F18/253Fusion techniques of extracted features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于区域的多特征融合高分辨率遥感影像分割方法,首先对对初始的高分辨影像进行初始分割,再计算初分割区域中任一邻域的纹理特征距离、光谱特征距离和形状特征距离,最后基于RAG和NNG进行区域合并;本发明综合采用光谱、纹理、形状等特征来构建合并规则,相对于单独采用某一种特征构建的规则更加符合对象的语义描述,从而使得分割精度更高;本发明联合采用RAG和NNG两种数据结构来维护区域的邻接关系,使得本算法可以获得更高的执行效率,相对于现有技术可以更加快速的得到分割结果。

Description

一种基于区域的多特征融合高分辨率遥感影像分割方法
技术领域
本发明属于图像处理技术领域,具体涉及一种基于区域的多特征融合高分辨率遥感影像分割方法。
背景技术
高空间分辨率遥感影像为遥感技术的发展带来机遇的同时,也为遥感数据的处理带来了新的挑战,影像中大量细节的出现和地物光谱特征的复杂化导致了传统像素级分类方法准确性的降低,基于此,面向对象分析(object based image analysis,OBIA)成为高分辨率遥感影像处理的新选择,而进行OBIA的基础是影像分割,通过影像分割技术获得同质区域即对象,然后以对象作为基元进行分析,可以充分利用对象的光谱、纹理、形状等特征,在理论和实践上都比传统的像素级算法更具优势。目前遥感影像分类方法可以分为基于像素的、基于边缘的和基于区域的三类方法,其中,基于区域的方法由于影像对象上下关系层次明确,易输出多尺度分割结果,而成为遥感影像分割的主流方法。
目前应用最为广泛的高分辨率影像分割算法为FNEA算法,它是面向对象分析软件eCognition中的核心算法,是一种区域生长类算法,从一个像素大小的对象开始,经过两两合并形成较大对象,通过判断异质性上限是否超过尺度参数作为合并终止条件,合并准则中采用对象的颜色和形状特征。
基于区域的影像分割方法主要包括以下几点不足:
1)特征利用不足。目前的算法往往注重影像光谱特征的利用,较少利用形状特征,而纹理特征的利用更为少见,从而使得分割过程中对象的语义描述不够准确,进而导致分割精度的降低。
2)算法效率较低。目前算法在进行分割时,数据结构的设计往往相对简单,因而导致算法性能不高,效率较低。
3)算法缺乏自适应性。目前算法的分割参数设置过多,设置时往往依赖于经验,导致算法的自动化程度较低,过度的参数依赖性与不确定性、处理目标的单一性,造成方法普适性较差。
发明内容
针对上述现有技术中存在的缺陷或不足,本发明的目的在于,提供一种基于区域的多特征融合高分辨率遥感影像分割方法,解决现有技术中存在的影像特征利用不足、算法效率较低及自适应性差的问题和缺陷。
为了实现上述任务,本发明采用如下技术方案予以实现:
一种基于区域的多特征融合遥感影像分割方法,具体包括以下步骤:
步骤一:对遥感影像进行主成分分析,得到基影像,对基影像进行NSCT变换后,提取基影像中每个点的纹理特征向量,然后对所有点的纹理特征向量进行模糊C均值聚类,获得聚类集合;
步骤二:对遥感影像进行初始分割,获得多个初分割区域;
步骤三:计算每个初分割区域的纹理均值,根据每个初分割区域的纹理均值和步骤一所得的聚类集合确定每个初分割区域所属的类;
步骤四:计算每两个相邻的初分割区域的纹理特征距离;
步骤五:利用步骤四得到的纹理特征距离,计算每两个相邻的初分割区域的相似性度量值;
步骤六:以步骤五得到的相似性度量值作为区域邻接图的权重,基于区域邻接图和最近邻图进行区域合并,直至满足合并终止条件。
本发明还有如下区别技术特征:
进一步的,步骤一的具体步骤包括:
步骤1.1:对遥感影像进行主成分分析,选取第一主成分作为NSCT变换的基影像I;
步骤1.2:设定基影像I进行NSCT变换的层数k(k为2~5),对基影像I进行NSCT变换后产生带通子图像I1,I2,...,Ik;子图像Im(1≤m≤k)的方向分解数为dm,其中,dm取值范围为2m-len,len通常为不大于2的非负整数,则Im(1≤m≤k)产生的方向子图像分别表示为 对于基影像,提取每个点的纹理特征向量,点(i,j)处的纹理特征向量定义为:
F i j = ( I 1 1 ( i , j ) , I 1 2 ( i , j ) , ... , I 1 2 d 1 ( i , j ) , I 2 1 ( i , j ) , I 2 2 ( i , j ) , ... , I 2 2 d 2 ( i , j ) , ... , I k 1 ( i , j ) , I k 2 ( i , j ) , ... , I k 2 d k ( i , j ) )
式中,表示方向子图像在点(i,j)处的系数值,(i,j)表示像素点的坐标位置;
步骤1.3:对所有点的纹理特征向量进行模糊C均值聚类,得到聚类集合CC={1,2,…,g},每一类聚类中心分别记为CC1,CC2,…,CCg,其中g表示纹理特征向量的聚类个数。
进一步的,步骤二采用分水岭变换对影像进行初始分割,得到初分割区域。
进一步的,步骤三的具体步骤包括:
对于任一初分割区域Rs,定义其纹理均值:
U s = 1 | R s | Σ ( i , j ) ∈ R s F i j
其中|Rs|表示区域Rs的面积,对于初分割区域中的任意两邻域Rs和Rt,其纹理均值距离为dtxt1=||Us-Ut||,其中Ut代表Rt的纹理均值;
根据纹理均值判断区域Rs所属的类:
C s = arg m i n w ∈ C C | | U s - CC w | |
其中,CCw表示某一聚类中心。
进一步的,步骤四的具体步骤包括:
计算每两个相邻的初分割区域Rs和Rt的纹理特征距离:
d t x t = d t x t 1 + | | CC s - CC t | | , C s ≠ C t d t x t 1 + min ( | | CC s - CC v | | ) / 3 , C s = C t - - - ( 5 )
其中Cs和Ct分别表示Rs和Rt所属聚类,CCs和CCt分别表示Rs和Rt所属聚类的聚类中心,CCv表示除CCs外的其它聚类中心。
进一步的,所述步骤五的公式为:
dsim=dtxt
进一步的,所述步骤五还包括:计算每两个相邻的初分割区域的光谱特征距离:
d s p e = Σ i = 1 n ( std i - a * std a i + b * std b i a + b )
其中i代表波段,a和b分别表示合并前两相邻区域的面积,分别表示合并前第i波段两区域的灰度标准差,stdi表示合并后第i波段新区域的灰度标准差;
利用纹理特征距离和光谱特征距离,计算每两个相邻的初分割区域的相似性度量值:
dsim=dspe*dtxt
进一步的,所述步骤五还包括:计算每两个相邻的初分割区域的形状特征距离:
d s h p = c m p - a * cmp 1 + b * cmp 2 a + b
式中,cmp1和cmp2分别表示合并前两相邻区域的紧致度,a和b分别表示合并前邻域的面积,cmp表示合并后新区域的紧致度,新区域紧致度的计算公式为:其中l和s分别表示合并后新区域的周长和面积;
利用纹理特征距离和形状特征距离,计算每两个相邻的初分割区域的相似性度量值:
dsim=dtxt*dshp
进一步的,所述步骤五还包括:计算每两个相邻的初分割区域的光谱特征距离和形状特征距离,其中,
每两个相邻的初分割区域的光谱特征距离:
d s p e = Σ i = 1 n ( std i - a * std a i + b * std b i a + b )
其中i代表波段,a和b分别表示合并前两相邻区域的面积,分别表示合并前第i波段两区域的灰度标准差,stdi表示合并后第i波段新区域的灰度标准差;
每两个相邻的初分割区域的形状特征距离:
d s h p = c m p - a * cmp 1 + b * cmp 2 a + b
式中,cmp1和cmp2分别表示合并前两相邻区域的紧致度,a和b分别表示合并前邻域的面积,cmp表示合并后新区域的紧致度,新区域紧致度的计算公式为:其中l和s分别表示合并后新区域的周长和面积;
利用纹理特征距离、光谱特征距离和形状特征距离,计算每两个相邻的初分割区域的相似性度量值:
d s i m = a b a + b * d s p e * d t x t * d s h p
式中,a和b分别表示合并前两相邻区域的面积。
进一步的,步骤七的具体步骤包括:
步骤7.1:以相似性度量值dsim初始化RAG和NNG,寻找NNG中的环,并按照权重大小存储到堆中;
步骤7.2:合并堆中权重最小的环,得到新生成区域;
步骤7.3:调用步骤三至步骤六,计算得到的新生成区域与其邻域的相似性度量值;
步骤7.4:更新RAG、NNG、NNG环,得到所有的相似性度量值在堆中的最新表示;
步骤7.5:判断区域个数是否等于设定的阈值,如果是,则终止合并,否则,继续进行步骤7.2,直到区域个数等于设定的阈值。
本发明与现有技术相比,具有以下优点:
(1)本发明综合采用光谱、纹理、形状等特征来构建合并规则,相对于单独采用某一种特征构建的规则更加符合对象的语义描述,从而使得分割精度更高。
(2)在影像分割过程中,本发明联合采用RAG和NNG两种数据结构来维护区域的邻接关系,使得本算法可以获得更高的执行效率,相对于现有技术可以更加快速的得到分割结果。
(3)本发明的算法可以处理多个目标,算法的分割参数设置较为均衡,具有较好的普适性和较高的自动化程度。
附图说明
图1是本发明的算法流程图。
图2是分割影像及影像RAG和NNG的示意图;其中图2(a)是分割影像示意图;图2(b)是影像的RAG示意图;图2(c)是影像的NNG示意图。
图3是本发明算法和FNEA的分割结果对比图;其中图3(a)是FNEA对I1的分割结果;图3(b)是本发明算法对I1的分割结果;图3(c)是I1的参考分割结果;图3(d)是FNEA对I2的分割结果;图3(e)是本发明算法对I2的分割结果;图3(f)是I2的参考分割结果。
以下结合附图和实施例对本发明的具体内容作进一步详细地解释和说明。
具体实施方式
为了使本发明的目的、技术方案及优势更加清楚,结合附图及实施例对本发明做进一步详细说明,本发明的一种基于区域的多特征融合高分辨率遥感影像分割方法,具体包括以下步骤:
步骤一:对高分辨遥感影像进行主成分分析,得到基影像,对基影像进行NSCT变换后,提取基影像中每个点的纹理特征向量,然后对所有点的纹理特征向量进行模糊C均值聚类,获得聚类集合;
步骤1.1:对高分辨率影像进行主成分分析,选取第一主成分作为NSCT变换的基影像I;
步骤1.2:设定基影像I进行NSCT变换的层数k(k为2~5),对基影像I进行NSCT变换后,产生的带通子图像分别为I1,I2,...,Ik,某一子图像Im(1≤m≤k)的方向分解数为dm,其中,dm取值范围为2m~len,len通常为不大于2的非负整数,则Im(1≤m≤k)产生的方向子图像分别表示为对于基影像,提取每个点的纹理特征向量,点(i,j)处的纹理特征向量定义为:
F i j = ( I 1 1 ( i , j ) , I 1 2 ( i , j ) , ... , I 1 2 d 1 ( i , j ) , I 2 1 ( i , j ) , I 2 2 ( i , j ) , ... , I 2 2 d 2 ( i , j ) , ... , I k 1 ( i , j ) , I k 2 ( i , j ) , ... , I k 2 d k ( i , j ) )
上述中,表示方向子图像在点(i,j)处的系数值,(i,j)表示像素点的坐标位置;
步骤1.3:得到影像的纹理聚类中心。对所有点的纹理特征向量进行模糊C均值聚类,得到聚类集合CC={1,2,…,g},每一类聚类中心分别记为CC1,CC2,…,CCg,其中g表示纹理特征向量的聚类个数,一般取值稍大于图像中的纹理类别数,根据图像中的纹理类别数来确定,例如图像中有5类纹理类别,g可以取6或者7。
步骤二:采用分水岭变换对初始的高分辨影像进行初始分割,获得低层次的初分割区域;
步骤三:判断任一初分割区域所属的类。计算每个初分割区域的纹理均值,根据每个初分割区域的纹理均值和步骤一所得的聚类集合判断任一初分割区域所属的类;
对于任一初分割区域Rs,定义其纹理均值:
U s = 1 | R s | Σ ( i , j ) ∈ R s F i j
其中|Rs|表示区域Rs的面积,对于初分割区域中的任意两邻域Rs和Rt,其纹理均值距离为dtxt1=||Us-Ut||,其中Ut代表Rt的纹理均值;
根据纹理均值判断区域Rs所属的类:
C s = arg m i n w ∈ C C | | U s - CC w | |
其中,CCw表示某一聚类中心。
步骤四:计算每两个相邻的初分割区域Rs和Rt的纹理特征距离:
d t x t = d t x t 1 + | | CC s - CC t | | , C s ≠ C t d t x t 1 + min ( | | CC s - CC v | | ) / 3 , C s = C t - - - ( 5 )
其中Cs和Ct分别表示Rs和Rt所属聚类,CCs和CCt分别表示Rs和Rt所属聚类的聚类中心,CCv表示除CCs外的其它聚类中心;
步骤五:得到邻域的综合相似性度量值。利用步骤四得到的纹理特征距离,计算每两个相邻的初分割区域的相似性度量值;
dsim=dtxt
进一步的,在获得纹理特征距离的基础上,步骤五还包括:计算每两个相邻的初分割区域的光谱特征距离:
d s p e = Σ i = 1 n ( std i - a * std a i + b * std b i a + b )
其中i代表波段,a和b分别表示合并前两相邻区域的面积,分别表示合并前第i波段两区域的灰度标准差,stdi表示合并后第i波段新区域的标准差;
利用纹理特征距离和光谱特征距离,计算每两个相邻的初分割区域的相似性度量值:
dsim=dspe*dtxt
进一步的,在获得纹理特征距离的基础上,所述步骤五还包括:计算每两个相邻的初分割区域的形状特征距离:
d s h p = c m p - a * cmp 1 + b * cmp 2 a + b
式中,cmp1和cmp2分别表示合并前两相邻区域的紧致度,a和b分别表示合并前邻域的面积,cmp表示合并后新区域的紧致度,新区域紧致度的计算公式为:其中l和s分别表示合并后新区域的周长和面积;
在获得纹理特征距离的基础上,利用纹理特征距离和形状特征距离,计算每两个相邻的初分割区域的相似性度量值:
dsim=dtxt*dshp
更进一步的,利用纹理特征距离、光谱特征距离和形状特征距离,计算每两个相邻的初分割区域的相似性度量值:
d s i m = a b a + b * d s p e * d t x t * d s h p
式中,a和b分别表示合并前两相邻区域的面积;
步骤六:区域合并。以步骤五得到的相似性度量值作为区域邻接图(regionadjacency graph,RAG)的权重,基于区域邻接图和最近邻图(nearest neighbor graph,NNG)进行区域合并,直至满足合并终止条件;
步骤7.1:以相似性度量值dsim初始化RAG和NNG,寻找NNG中的环,并按照权重大小存储到堆中;
步骤7.2:合并堆中权重最小的环,得到新生成区域;
步骤7.3:调用步骤三至步骤六,计算得到的新生成区域与其邻域的相似性度量值;
步骤7.4:更新RAG、NNG、NNG环,得到所有的相似性度量值在堆中的最新表示;
步骤7.5:判断区域个数是否等于设定的阈值,如果是,则终止合并,否则,继续进行步骤7.2,直到区域个数等于设定的阈值。
实验效果分析:
为了验证本发明的效果,通过实验比较了本发明算法与FNEA算法,采用两种算法分别对两幅高分二号影像I1和I2进行分割,实验时保证每个影像中两算法分割结果中区域个数相等,并从目视角度尽量与参考分割保持一致;分割结果如图3所示,经分析发现,两影像I1和I2中每个区域个数分别为191和137,其中,FNEA算法的尺度参数分别为Scale=85和70,形状和紧致度参数分别均为0.1和0.5;本发明算法实验时的NSCT变换层数为3,各层的方向数分别为2、4、8,对I1和I2进行实验时纹理聚类个数g分别为7和6。
通过对比参考分割图,如图3(c)、图3(f)所示,发现FNEA算法和本发明均可以得到较为准确的地物边缘,但是,从FNEA算法对I1的分割结果发现,如图3(a)所示的下方的建筑物,由于FNEA算法在合并准则中没有考虑纹理特征,因而在纹理特征明显区域出现了过分割;同时FNEA算法对I2的分割结果发现,如图3(d)中右上方的农田,对于光谱相近但是纹理存在差别的区域出现地物融合的现象,特别是当分割尺度较大时地物融合现象更加明显。
除定性的目视观察外,实验还通过分割参考影像对两种方法进行了定量评价,实验通过分割参考影像对两种方法进行了定量评价,评价指标为EN和ARI,两种指标均对过分割和欠分割敏感,EN是指参考分割影像中所有分割区域错分像素占比的平均值,值越小表示分割效果越好;ARI表示分割结果和参考分割的相关性,值越大表明相关性越高,分割结果越准确。对于影像I1,FNEA分割结果的EN值和ARI值分别为0.285、0.474,本方法的EN值和ARI值分别为0.221、0.523;对于影像I2,FNEA分割结果的EN值和ARI值分别为0.153、0.628,本方法的EN值和ARI值分别为0.137、0.639。通过上述定量评价可以发现本发明方法的评价指标要优于FNEA;此外还采用1幅大小为1255*1255的遥感影像进行了分割效率的实验,本发明算法和FNEA算法的分割耗时分别为13.4s和19.6s,因此,本发明分割效率更高。

Claims (10)

1.一种基于区域的多特征融合遥感影像分割方法,其特征在于,具体包括以下步骤:
步骤一:对遥感影像进行主成分分析,得到基影像,对基影像进行NSCT变换后,提取基影像中每个点的纹理特征向量,然后对所有点的纹理特征向量进行模糊C均值聚类,获得聚类集合;
步骤二:对遥感影像进行初始分割,获得多个初分割区域;
步骤三:计算每个初分割区域的纹理均值,根据每个初分割区域的纹理均值和步骤一所得的聚类集合确定每个初分割区域所属的类;
步骤四:计算每两个相邻的初分割区域的纹理特征距离;
步骤五:利用步骤四得到的纹理特征距离,计算每两个相邻的初分割区域的相似性度量值;
步骤六:以步骤五得到的相似性度量值作为区域邻接图的权重,基于区域邻接图和最近邻图进行区域合并,直至满足合并终止条件。
2.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,步骤一的具体步骤包括:
步骤1.1:对遥感影像进行主成分分析,选取第一主成分作为NSCT变换的基影像I;
步骤1.2:设定基影像I进行NSCT变换的层数k(k为2~5),对基影像I进行NSCT变换后产生带通子图像I1,I2,...,Ik;子图像Im(1≤m≤k)的方向分解数为dm,其中,dm取值范围为2m-len,len通常为不大于2的非负整数,则Im(1≤m≤k)产生的方向子图像分别表示为(1≤m≤k);对于基影像,提取每个点的纹理特征向量,点(i,j)处的纹理特征向量定义为:
F i j = ( I 1 1 ( i , j ) , I 1 2 ( i , j ) , ... , I 1 2 d 1 ( i , j ) , I 2 1 ( i , j ) , I 2 2 ( i , j ) , ... , I 2 2 d 2 ( i , j ) , ... , I k 1 ( i , j ) , I k 2 ( i , j ) , ... , I k 2 d k ( i , j ) )
式中,表示方向子图像在点(i,j)处的系数值,(i,j)表示像素点的坐标位置;
步骤1.3:对所有点的纹理特征向量进行模糊C均值聚类,得到聚类集合CC={1,2,…,g},每一类聚类中心分别记为CC1,CC2,…,CCg,其中g表示纹理特征向量的聚类个数。
3.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,步骤二的具体步骤包括:
采用分水岭变换对影像进行初始分割,得到初分割区域。
4.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,步骤三的具体步骤包括:
对于任一初分割区域Rs,定义其纹理均值:
U s = 1 | R s | Σ ( i , j ) ∈ R s F i j
其中|Rs|表示区域Rs的面积,对于初分割区域中的任意两邻域Rs和Rt,其纹理均值距离为dtxt1=||Us-Ut||,其中Ut代表Rt的纹理均值;
根据纹理均值判断区域Rs所属的类:
C s = arg m i n w ∈ C C | | U s - CC w | |
其中,CCw表示某一聚类中心。
5.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,步骤四的具体步骤包括:
计算每两个相邻的初分割区域Rs和Rt的纹理特征距离:
d t x t = d t x t 1 + | | CC s - CC t | | , C s ≠ C t d t x t 1 + m i n ( | | CC s - CC v | | ) / 3 , C s = C t - - - ( 5 )
其中Cs和Ct分别表示Rs和Rt所属聚类,CCs和CCt分别表示Rs和Rt所属聚类的聚类中心,CCv表示除CCs外的其它聚类中心。
6.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,所述步骤五的公式:
dsim=dtxt
7.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,所述步骤五包括:计算每两个相邻的初分割区域的光谱特征距离:
d s p e = Σ i = 1 n ( std i - a * std a i + b * std b i a + b )
其中i代表波段,a和b分别表示合并前两相邻区域的面积,分别表示合并前第i波段两区域的灰度标准差,stdi表示合并后第i波段新区域的灰度标准差;
利用纹理特征距离和光谱特征距离,计算每两个相邻的初分割区域的相似性度量值:
dsim=dspe*dtxt
8.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,所述步骤五包括:计算每两个相邻的初分割区域的形状特征距离:
d s h p = c m p - a * cmp 1 + b * cmp 2 a + b
式中,cmp1和cmp2分别表示合并前两相邻区域的紧致度,a和b分别表示合并前邻域的面积,cmp表示合并后新区域的紧致度,新区域紧致度的计算公式为:其中l和s分别表示合并后新区域的周长和面积;
利用纹理特征距离和形状特征距离,计算每两个相邻的初分割区域的相似性度量值:
dsim=dtxt*dshp
9.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,所述步骤五包括:计算每两个相邻的初分割区域的光谱特征距离和形状特征距离,其中,
每两个相邻的初分割区域的光谱特征距离:
d s p e = Σ i = 1 n ( std i - a * std a i + b * std b i a + b )
其中i代表波段,a和b分别表示合并前两相邻区域的面积,分别表示合并前第i波段两区域的灰度标准差,stdi表示合并后第i波段新区域的灰度标准差;
每两个相邻的初分割区域的形状特征距离:
d s h p = c m p - a * cmp 1 + b * cmp 2 a + b
式中,cmp1和cmp2分别表示合并前两相邻区域的紧致度,a和b分别表示合并前邻域的面积,cmp表示合并后新区域的紧致度,新区域紧致度的计算公式为:其中l和s分别表示合并后新区域的周长和面积;
利用纹理特征距离、光谱特征距离和形状特征距离,计算每两个相邻的初分割区域的相似性度量值:
d s i m = a b a + b * d s p e * d t x t * d s h p
式中,a和b分别表示合并前两相邻区域的面积。
10.如权利要求1所述的基于区域的多特征融合高分辨率遥感影像分割方法,其特征在于,步骤七的具体步骤包括:
步骤7.1:以相似性度量值dsim初始化RAG和NNG,寻找NNG中的环,并按照权重大小存储到堆中;
步骤7.2:合并堆中权重最小的环,得到新生成区域;
步骤7.3:调用步骤三至步骤六,计算得到的新生成区域与其邻域的相似性度量值;
步骤7.4:更新RAG、NNG、NNG环,得到所有的相似性度量值在堆中的最新表示;
步骤7.5:判断区域个数是否等于设定的阈值,如果是,则终止合并,否则,继续进行步骤7.2,直到区域个数等于设定的阈值。
CN201610643629.7A 2016-08-08 2016-08-08 一种基于区域的多特征融合高分辨率遥感影像分割方法 Active CN106296680B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610643629.7A CN106296680B (zh) 2016-08-08 2016-08-08 一种基于区域的多特征融合高分辨率遥感影像分割方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610643629.7A CN106296680B (zh) 2016-08-08 2016-08-08 一种基于区域的多特征融合高分辨率遥感影像分割方法

Publications (2)

Publication Number Publication Date
CN106296680A true CN106296680A (zh) 2017-01-04
CN106296680B CN106296680B (zh) 2017-09-01

Family

ID=57666837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610643629.7A Active CN106296680B (zh) 2016-08-08 2016-08-08 一种基于区域的多特征融合高分辨率遥感影像分割方法

Country Status (1)

Country Link
CN (1) CN106296680B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107644196A (zh) * 2017-06-27 2018-01-30 上海海洋大学 非下采样多尺度几何分析和pca的高光谱遥感图像融合方法
CN109389167A (zh) * 2018-09-29 2019-02-26 武汉中海庭数据技术有限公司 交通标志识别方法及系统
CN109871884A (zh) * 2019-01-25 2019-06-11 曲阜师范大学 一种融合多特征的支持向量机面向对象遥感影像分类方法
CN110084205A (zh) * 2019-04-30 2019-08-02 合肥工业大学 一种基于改进的面向对象高分辨率遥感影像分类方法
CN111611921A (zh) * 2020-05-21 2020-09-01 佛山市高明曦逻科技有限公司 一种基于遥感大数据的太阳能板识别系统
WO2022109945A1 (zh) * 2020-11-26 2022-06-02 深圳大学 基于尺度自适应滤波的高光谱和LiDAR联合分类方法
CN116965768A (zh) * 2023-07-07 2023-10-31 中山大学中山眼科中心 一种自动定量分析眼内前房炎症程度的系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101510310A (zh) * 2009-02-19 2009-08-19 上海交通大学 基于纹理聚类约束的高分辨率遥感图像分割方法
WO2011154543A1 (en) * 2010-06-11 2011-12-15 Oncomorph Analysis Ltd Texture characterisation
CN104751478A (zh) * 2015-04-20 2015-07-01 武汉大学 一种基于多特征融合的面向对象的建筑物变化检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101510310A (zh) * 2009-02-19 2009-08-19 上海交通大学 基于纹理聚类约束的高分辨率遥感图像分割方法
WO2011154543A1 (en) * 2010-06-11 2011-12-15 Oncomorph Analysis Ltd Texture characterisation
CN104751478A (zh) * 2015-04-20 2015-07-01 武汉大学 一种基于多特征融合的面向对象的建筑物变化检测方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107644196A (zh) * 2017-06-27 2018-01-30 上海海洋大学 非下采样多尺度几何分析和pca的高光谱遥感图像融合方法
CN109389167A (zh) * 2018-09-29 2019-02-26 武汉中海庭数据技术有限公司 交通标志识别方法及系统
CN109871884A (zh) * 2019-01-25 2019-06-11 曲阜师范大学 一种融合多特征的支持向量机面向对象遥感影像分类方法
CN110084205A (zh) * 2019-04-30 2019-08-02 合肥工业大学 一种基于改进的面向对象高分辨率遥感影像分类方法
CN111611921A (zh) * 2020-05-21 2020-09-01 佛山市高明曦逻科技有限公司 一种基于遥感大数据的太阳能板识别系统
CN111611921B (zh) * 2020-05-21 2021-05-14 苏州科知律信息科技有限公司 一种基于遥感大数据的太阳能板识别系统
WO2022109945A1 (zh) * 2020-11-26 2022-06-02 深圳大学 基于尺度自适应滤波的高光谱和LiDAR联合分类方法
CN116965768A (zh) * 2023-07-07 2023-10-31 中山大学中山眼科中心 一种自动定量分析眼内前房炎症程度的系统
CN116965768B (zh) * 2023-07-07 2024-01-19 中山大学中山眼科中心 一种自动定量分析眼内前房炎症程度的系统

Also Published As

Publication number Publication date
CN106296680B (zh) 2017-09-01

Similar Documents

Publication Publication Date Title
CN106296680B (zh) 一种基于区域的多特征融合高分辨率遥感影像分割方法
CN105957076B (zh) 一种基于聚类的点云分割方法及系统
CN104751478B (zh) 一种基于多特征融合的面向对象的建筑物变化检测方法
CN103971115B (zh) 一种基于NDVI和PanTex指数的新增建设用地图斑自动提取方法
CN106570468B (zh) 一种重建LiDAR原始点云建筑物轮廓线的方法
CN106846344A (zh) 一种基于边缘完备度的图像分割最优识别方法
CN104463164B (zh) 一种基于伞骨法与冠高比的树木冠层结构信息提取方法
CN105046705B (zh) 一种基于模糊理论的裂纹边缘检测方法
US9064151B2 (en) Device and method for detecting plantation rows
Zhu et al. Seed point selection method for triangle constrained image matching propagation
CN102938161B (zh) 一种基于Mean Shift的三维形状自动分割方法
CN105956542B (zh) 一种结构线束统计匹配的高分遥感影像道路提取方法
CN109712131A (zh) 肺结节特征的量化方法、装置、电子设备及存储介质
CN106441221B (zh) 基于AutoCAD二次开发实现测绘横断面处理的方法
CN102855490A (zh) 高分辨率遥感影像面向对象神经网络分类方法
CN102073867B (zh) 一种遥感图像分类方法及装置
CN105956544B (zh) 一种基于结构指数特征的遥感影像道路交叉口提取的方法
US20220114810A1 (en) Forest resource information generation structure and forest resource information generation method
CN106997591A (zh) 一种rgb‑d图像变尺度超体素分割方法
CN102081799B (zh) 基于邻域相似性及双窗口滤波的sar图像变化检测方法
CN102360503A (zh) 基于空间贴近度和像素相似性的sar图像变化检测方法
CN115422822A (zh) 隧道岩体参数预测方法及装置
CN106846325B (zh) 一种遥感影像最优分割结果确定的自动化方法
CN103400389B (zh) 一种高分辨率遥感图像分割方法
CN111046783A (zh) 一种改进分水岭算法的斜坡地质灾害边界提取方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170104

Assignee: Xi'an tianbang surveying and Mapping Technology Co.,Ltd.

Assignor: CHANG'AN University

Contract record no.: X2022980004777

Denomination of invention: A region based multi feature fusion high resolution remote sensing image segmentation method

Granted publication date: 20170901

License type: Common License

Record date: 20220425