CN109678504A - 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法 - Google Patents

一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法 Download PDF

Info

Publication number
CN109678504A
CN109678504A CN201910043909.8A CN201910043909A CN109678504A CN 109678504 A CN109678504 A CN 109678504A CN 201910043909 A CN201910043909 A CN 201910043909A CN 109678504 A CN109678504 A CN 109678504A
Authority
CN
China
Prior art keywords
refractory ceramics
preparation
yttrium tantalate
tao
tantalate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910043909.8A
Other languages
English (en)
Other versions
CN109678504B (zh
Inventor
冯晶
周云轩
种晓宇
吴鹏
宋鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Tianxuan Coating Technology Co ltd
Original Assignee
Kunming University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming University of Science and Technology filed Critical Kunming University of Science and Technology
Priority to CN201910043909.8A priority Critical patent/CN109678504B/zh
Publication of CN109678504A publication Critical patent/CN109678504A/zh
Application granted granted Critical
Publication of CN109678504B publication Critical patent/CN109678504B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Abstract

本发明公开一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法,属于高温陶瓷制备技术领域。本发明所述Mg2+离子掺杂钽酸钇高温陶瓷的结构式为Y1‑xMgxTaO(4‑x/2)(x为0~0.16);通过化学式Y1‑xMgxTaO(4‑x/2)计算可以按比例称量氧化物原料,将称量好的原料和无水乙醇一起放置在球磨罐中混合、密封后置于行星式球磨机上球磨,使其能够混合均匀,将混合后的粉末干燥、过筛后,置于模具内压实,然后在高温炉中进行烧结。本发明工艺简单,通过Mg2+离子掺杂钽酸钇,产品热导低,热膨胀系数较高,接近氧化钇稳定性氧化锆(7%‑8%YSZ)的热膨胀系数,并且制备成本低,适合批量生产,目的产品有望作为新型低热导,抗氧化,耐高温陶瓷材料。

Description

一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法
技术领域
本发明涉及一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法,属于高温陶瓷制备技术领域。
背景技术
从近些年对高温陶瓷材料的发展来看,可能适用于高温热障涂层的陶瓷材料主要有氧化钇/氧化铈稳定的氧化锆、氧化锆/氧化铝、稀土锆酸盐,稀土铝酸盐,稀土磷酸盐,多元氧化物稳定氧化锆,稀土焦绿石或萤石结构化合物,磷灰石结构稀土硅酸盐石榴石(YAG)结构,磁铅石结构,钙钛矿结构等材料,由于氧化钇稳定的氧化锆(YSZ)具备优良的综合性能,因此是目前广泛应用的陶瓷热障涂层。但是氧化钇稳定的氧化锆(YSZ)在温度超过1200℃,会存在一定的缺陷,首先是高温相稳定性,氧化钇稳定的氧化锆(YSZ)是以一种亚稳态四方相(t’)存在,在较高温度下(>1200 ℃时),会转变为四方相(t)和立方相(c)的混合物;其次,YSZ的烧结速率会随温度升高而加快,研究表明在YSZ涂层的制备过程中会产生微量的SiO2杂质,而SiO2杂质的存在将显著提高YSZ涂层高温下的烧结速率,导致气孔率减小,从而使热导率升高,最终将导致热障涂层陶瓷材料脱落失效,已经难以满足热能发动机前燃气进口温度不断提高的要求。因此,亟需寻求一种能够长期稳定工作于1200℃以上条件下的新型热障涂层陶瓷材料。
发明内容
本发明的目的在于提供一种二价镁离子掺杂钽酸钇高温陶瓷,主要用于热障涂层材料,有很好的热学及力学性能,其结构式为Y1-xMgxTaO(4-x/2)(x为 0~0.16)。
本发明的另一目的在于提供所述二价镁离子掺杂钽酸钇高温陶瓷的制备方法,具体包括以下步骤:
(1)按照Mg2+掺杂量的不同称取相应的氧化镁、氧化钽和稀土氧化钇,通过球磨的方法混合均匀;
(2)混匀之后的样品经过干燥、过筛,将过筛后的粉末置于模具内压实,然后在高温炉中进行烧结,得到Mg2+离子掺杂钽酸钇高温陶瓷。
优选的,本发明步骤(1)中球磨过程中球磨机的转速为400~500r/min,球磨时间为160~200min。
优选的,本发明步骤(2)中干燥过程的温度为70~80℃,时间为12~24小时;过筛过程中粉末过250~350目筛。
优选的,本发明步骤(2)中混合粉末压实时,保压压力为10~15MPa,保压时间为20~40min。
优选的,本发明步骤(2)中在高温炉中烧结温度为1650~1700 ℃,煅烧时间为10~12小时。
本发明所述氧化镁、氧化钽和稀土氧化钇的纯度≥ 99.99%。
本发明的有益效果是:
(1)本发明所述方法中粉末能够完全混合均匀,在烧结过程中完全反应,所制得的二价Mg2+离子掺杂钽酸钇高温陶瓷有很好的高温热稳定性,有望作为一种潜在的高温陶瓷材料。
(2)所制得的二价Mg2+离子掺杂钽酸钇高温陶瓷在高温下热导较低1.45~1.65 W/mk,在高温下热膨胀系数为((9~9.5)×10–6 K -1)。
附图说明
图1为实施例4制备的(Y0.84Mg0.16TaO3.92)高温陶瓷块体的扫描电镜图 (SEM图谱)。
图2为实施例4制备的(Y0.84Mg0.16TaO3.92)与氧化钇稳定性氧化锆 (7%-8%YSZ) 的热导率的图谱。
具体实施方式
下面结合具体实施方式对本发明进行详细说明,但本发明的保护范围并不限于所述内容。
实施例1
一种钽酸钇高温陶瓷材料(YTaO4)的制备方法,具体包括以下步骤:
称取氧化钇2.825g,氧化钽5.525g,在无水乙醇中混合,置于行星式球磨机中球磨(球磨机的转速为400 r/min,球磨时间为180min),将球磨好的混合物在74℃下干燥24小时后过300目筛,然后用模具压制成型(保压压力为10 MPa,保压时间为30 min),压制成型后,将其在1700℃下煅烧10小时,冷却至室温,即得到所需致密的钽酸钇高温陶瓷(YTaO4)高温陶瓷,反应方程式为Y2O3 + Ta2O5 = 2YTaO4
如表1所示,本实施例制备得到的钽酸钇高温陶瓷材料的体模量、杨氏模量和剪切模量的值分别为:130.7, 148.7,52.4Gpa;根据Clarke和Slack模型,以及公式求出Y1-xMgxTaO(4-x/2)(x为 0~0.16)陶瓷的极限热导率;从Clarke模型可以得出体模量对于热导有着重要的影响,其模量越低,热导越低,使得改陶瓷材料能应用在绝热材料方面的可能性;从Slack模型我们可以得知,德拜温度对于热导也是一个重要的参数,如果德拜温度越低,其热导也越低;可见这些热性能参数都是影响热导的重要因数;在力学方面,其纯样品的硬度大约为5.15Gpa。
实施例2
一种耐高温、抗氧化、抗磨损二价Mg2+离子掺杂钽酸钇高温陶瓷材料(Y0.96Mg0.04TaO3.98)的制备方法,具体包括以下步骤:
称取氧化镁0.04g,氧化钇2.712g,氧化钽5.525g,在无水乙醇中混合后,置于行星式球磨机中球磨(球磨机的转速为400 r/min,球磨时间为180min),将球磨好的混合物在74 ℃下干燥24小时后过300目筛,然后用模具压制成型(保压压力为10 MPa,保压时间为30min),压制成型后,将其在1700℃下煅烧10小时,冷却至室温,即得到所需致密的二价Mg2+离子掺杂钽酸钇高温陶瓷(Y0.96Mg0.04TaO3.98)高温陶瓷,反应方程式为0.04 MgO + 0.48 Y2O3 + 0.5 Ta2O5 = Y0.96Mg0.04TaO3.98
如表1所示,本实施例制备得到的Y0.96Mg0.04TaO3.98的体模量、杨氏模量和剪切模量的值分别为98.1,145.5,60.4Gpa;Y0.96Mg0.04TaO3.98相对于纯样品杨氏模量的值有所下降,并且德拜温度的值也有明显的下降;所以根据Clarke和Slack模型算出来的热导相对于纯样品的热导有所降低;其硬度相对于纯样有所下降,其维氏硬度值大约为:5.03Gpa。
实施例3
一种耐高温、抗氧化、抗磨损二价Mg2+离子掺杂钽酸钇高温陶瓷材料(Y0.92Mg0.08TaO3.96)的制备方法,具体包括以下步骤:
称取氧化镁0.08g,氧化钇2.599g,氧化钽5.525g,在无水乙醇中混合后,置于行星式球磨机中球磨(球磨机的转速为400 r/min,球磨时间为180min),将球磨好的混合物在74 ℃下干燥24小时后过300目筛,然后用模具压制成型(保压压力为10 MPa,保压时间为30min),压制成型后,将其在1700℃下煅烧10小时,冷却至室温,即得到所需致密的二价Mg2+离子掺杂钽酸钇高温陶瓷(Y0.92Mg0.08TaO3.96)高温陶瓷,反应方程式为0.08 MgO + 0.46 Y2O3 + 0.5 Ta2O5 = Y0.92Mg0.08TaO3.96
如表1所示,本实施例制备的Y0.92Mg0.08TaO3.96的体模量、杨氏模量和剪切模量的值分别为98.8,140.9,57.7Gpa;相对于纯样品和掺杂量为0.04g镁相比可以看出杨氏模量的值有所下降,并且德拜温度的值也有明显的下降;所以根据Clarke和Slack模型算出来的热导相对于纯样品的热导有所降低;其硬度相对于纯样有所下降,其维氏硬度值大约为:4.81Gpa。
实施例4
一种耐高温、抗氧化、抗磨损二价Mg2+离子掺杂钽酸钇高温陶瓷材料(Y0.88Mg0.12TaO3.94)的制备方法,具体包括以下步骤:
称取氧化镁0.12g,氧化钇2.486g,氧化钽5.525g,在无水乙醇中混合后,置于行星式球磨机中球磨(球磨机的转速为400 r/min,球磨时间为180min),将球磨好的混合物在74 ℃下干燥24小时后过300目筛,然后用模具压制成型(保压压力为15 MPa,保压时间为20min),压制成型后,将其在1700℃下煅烧10小时,冷却至室温,即得到所需致密的二价Mg2+离子掺杂钽酸钇高温陶瓷(Y0.88Mg0.12TaO3.94)高温陶瓷,反应方程式为0.12 MgO + 0.44 Y2O3 +0.5 Ta2O5 = Y0.88Mg0.12TaO3.94
如表1所示,本实施例制备的Y0.88Mg0.12TaO3.94的体模量、杨氏模量和剪切模量的值分别为118.6,123.2,46.4Gpa;相对于纯样品和掺杂量为0.08g镁相比可以看出杨氏模量的值有所下降,并且德拜温度的值也有明显的下降;所以根据Clarke和Slack模型算出来的热导相对于纯样品的热导有所降低;其硬度相对于纯样有所下降,其维氏硬度值大约为:4.94Gpa。
实施例5
一种耐高温、抗氧化、抗磨损二价Mg2+离子掺杂钽酸钇高温陶瓷材料(Y0.84Mg0.16TaO3.92)的制备方法,具体包括以下步骤:
称取氧化镁0.16g,氧化钇2.373g,氧化钽5.525g,在无水乙醇中混合后,置于行星式球磨机中球磨(球磨机的转速为400 r/min,球磨时间为180min),将球磨好的混合物在74 ℃下干燥24小时后过300目筛,然后用模具压制成型(保压压力为10 MPa,保压时间为30min),压制成型后,将其在1700℃下煅烧10小时,冷却至室温,即得到所需致密的二价Mg2+离子掺杂钽酸钇高温陶瓷(Y0.84Mg0.16TaO3.92)高温陶瓷,反应方程式为0.16 MgO + 0.42 Y2O3 + 0.5 Ta2O5 = Y0.84Mg0.16TaO3.92
如表1所示,本实施例制备的Y0.84Mg0.16TaO3.92的体模量、杨氏模量和剪切模量的值分别为86.1,94.9,36.1Gpa;相对于纯样品和掺杂量为0.12g镁相比可以看出杨氏模量的值有所下降,并且德拜温度的值也有明显的下降;所以根据Clarke和Slack模型算出来的热导相对于纯样品的热导有所降低;其硬度相对于纯样有所下降,其维氏硬度值大约为:4.86Gpa。
本实施例制备得到的二价Mg2+离子掺杂钽酸钇高温陶瓷(Y0.84Mg0.16TaO3.92)纯度高,形貌好,颗粒较细小,具有良好的性能,如图1所示的SEM图谱。如图2所示,本实验所制得的(Y0.84Mg0.16TaO3.92)与当前使用的7YSZ和8YSZ (2~3.5 W.m-1k-1)相比较,(Y0.84Mg0.16TaO3.92)在高温下有较低的热导率,根据高温热障涂层在使用情况下要具备的性能包括:熔点高、热导率低、热膨胀系数较高、耐高温氧化性较好、高温化学稳定性较好,与热生成氧化物氧化铝化学相容;(Y0.84Mg0.16TaO3.92)在高温下具备优良的热学性质以及力学性能;在力学方面,较低的硬度值(495 HV)可以有效地阻止残余应力和裂纹的传播,提高高温热障涂层的容韧性和断裂韧性,通过测试样品的模量可以对硬度值进行验证,并且(Y0.84Mg0.16TaO3.92)在高温下经试验测得热膨胀系数为约为9.5×10–6 K -1。因此二价Mg2+离子掺杂量为0.16g的钽酸钇高温陶瓷有很好的高温热稳定性,有望作为一种潜在的高温陶瓷材料。
表1:Y1-xMgxTaO(4-x/2)陶瓷的模量,硬度,德拜温度

Claims (6)

1.一种二价镁离子掺杂钽酸钇高温陶瓷,其特征在于:其结构式为Y1-xMgxTaO(4-x/2)(x为0~0.16)。
2.权利要求1所述二价镁离子掺杂钽酸钇高温陶瓷的制备方法,其特征在于,具体包括以下步骤:
(1)按照Mg2+掺杂量的不同称取相应的氧化镁、氧化钽和稀土氧化钇,通过球磨的方法混合均匀;
(2)混匀之后的样品经过干燥、过筛,将过筛后的粉末置于模具内压实,然后在高温炉中进行烧结,得到Mg2+离子掺杂钽酸钇高温陶瓷。
3.根据权利要求2所述二价镁离子掺杂钽酸钇高温陶瓷的制备方法,其特征在于:步骤(1)中球磨过程中球磨机的转速为400~500r/min,球磨时间为160~200min。
4.根据权利要求2所述二价镁离子掺杂钽酸钇高温陶瓷的制备方法,其特征在于:步骤(2)中干燥过程的温度为70~80℃,时间为12~24小时;过筛过程中粉末过250~350目筛。
5.根据权利要求2所述二价镁离子掺杂钽酸钇高温陶瓷的制备方法,其特征在于:步骤(2)中混合粉末压实时,保压压力为10~15MPa,保压时间为20~40min。
6.根据权利要求2所述二价镁离子掺杂钽酸钇高温陶瓷的制备方法,其特征在于:步骤(2)中在高温炉中烧结温度为1650~1700 ℃,煅烧时间为10~12小时。
CN201910043909.8A 2019-01-17 2019-01-17 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法 Active CN109678504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910043909.8A CN109678504B (zh) 2019-01-17 2019-01-17 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910043909.8A CN109678504B (zh) 2019-01-17 2019-01-17 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN109678504A true CN109678504A (zh) 2019-04-26
CN109678504B CN109678504B (zh) 2021-10-15

Family

ID=66193438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910043909.8A Active CN109678504B (zh) 2019-01-17 2019-01-17 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN109678504B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759733A (zh) * 2019-11-19 2020-02-07 湘潭大学 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1078971A1 (en) * 1999-08-27 2001-02-28 Osram Sylvania Inc. Mixed flux for yttrium tantalate x-ray phosphors
CN102826849A (zh) * 2012-09-12 2012-12-19 河南工程学院 二价金属离子掺杂La2Ce2O7热障涂层陶瓷材料及其制备方法
CN105696076A (zh) * 2016-02-16 2016-06-22 中科九曜科技有限公司 一种铬、铥、钬掺杂钽酸钇发光材料及其晶体生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1078971A1 (en) * 1999-08-27 2001-02-28 Osram Sylvania Inc. Mixed flux for yttrium tantalate x-ray phosphors
CN102826849A (zh) * 2012-09-12 2012-12-19 河南工程学院 二价金属离子掺杂La2Ce2O7热障涂层陶瓷材料及其制备方法
CN105696076A (zh) * 2016-02-16 2016-06-22 中科九曜科技有限公司 一种铬、铥、钬掺杂钽酸钇发光材料及其晶体生长方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
THONG LENG LIM ET AL.: "X-ray diffraction experiments, luminescence measurements and first-principles GGA + U calculations on YTaO4", 《COMPUTATIONAL MATERIALS SCIENCE》 *
丁守军等: "Nd:YTaO4的制备、结构与发光性能", 《人工晶体学报》 *
吴铭: "《钽、铌冶金工艺学》", 31 December 1986, 中国有色金属工业总公司职工教育教材编审办公室 *
杨锐等: "《稀土在高分子工业中的应用》", 31 July 2009, 中国轻工业出版社 *
谢颖: "《ABO3型钙钛矿的相变机理、表面稳定性和电子结构的理论研究》", 31 March 2015, 黑龙江大学出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110759733A (zh) * 2019-11-19 2020-02-07 湘潭大学 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法
CN110759733B (zh) * 2019-11-19 2022-05-31 湘潭大学 一种Y0.5Dy0.5Ta0.5Nb0.5O4钽系陶瓷材料及其制备方法

Also Published As

Publication number Publication date
CN109678504B (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
Stevenson et al. Effect of A-site cation nonstoichiometry on the properties of doped lanthanum gallate
EP0659705B1 (en) Sintered ceramic article formed mainly of alumina
CN110078504B (zh) 一种原位合成赝二元复相稀土铌酸盐陶瓷及其制备方法
US5863850A (en) Process of making zirconia based ceramic material
EP3892601A9 (en) Rare earth tantalate ceramic resisting corrosion of low melting point oxide and preparation method therefor
CN106278260A (zh) 一种双稀土离子钽酸盐高温陶瓷的制备方法
CN106167406B (zh) 钽酸钇高温陶瓷及其制备方法
CN110002870A (zh) 一种抗低熔点氧化物腐蚀的稀土钽酸盐陶瓷及其制备方法
CN109836155A (zh) 一种致密铁弹性双稀土钽酸盐固溶体高温陶瓷及其制备方法
CN114478005B (zh) 一种四方相热障涂层材料及其制备方法
JPH04357165A (ja) ジルコニア磁器およびこれを用いた電気化学的素子
Wu et al. Effect of Y2O3 additives on the wet abrasion resistance of an alumina-based grinding medium
CN109678504A (zh) 一种二价镁离子掺杂钽酸钇高温陶瓷及其制备方法
Buscaglia et al. Synthesis, sintering and expansion of Al0. 8Mg0. 6Ti1. 6O5: a low-thermal-expansion material resistant to thermal decomposition
JPH10194824A (ja) ジルコニア含有アルミナ焼結体
Xu et al. Mechanical properties of Nd2O3/Y2O3-coated zirconia ceramics
Tong et al. Densification and mechanical properties of YAG ceramics fabricated by air pressureless sintering
CZ20012699A3 (cs) Vysokopevnostní oxid zirkoničitý částečně stabilizovaný oxidem hořečnatým
Kimoto et al. Formation and Sintering of Yttria‐Doped Tetragonal Zirconia with 50 mol% Alumina Prepared by the Hydrazine Method
JPS63156063A (ja) 高温強度および熱水安定性に優れたジルコニア系セラミツクス
WO1988009778A1 (en) Method for producing ceramic composite materials containing silicon oxynitride and zirconium oxide
KR101925215B1 (ko) 다결정체 지르코니아 화합물 및 이의 제조 방법
JPH08217447A (ja) 単斜晶ジルコニアとその製造方法、およびそれを用いたジルコニア部材
Duran et al. Y (E)-doped tetragonal zirconia polycrystalline solid electrolyte: Part 2 Microstructure and mechanical properties
KR20090081506A (ko) 파이로클로어 결정 구조의 저열전도성 세라믹 소재 및 그제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230717

Address after: 710000 building B5, No. 175, Biyuan Second Road, Xiliu street, high tech Zone, Xi'an, Shaanxi Province

Patentee after: Shaanxi Tianxuan Coating Technology Co.,Ltd.

Address before: 650093 No. 253, Xuefu Road, Wuhua District, Yunnan, Kunming

Patentee before: Kunming University of Science and Technology