CN109671787B - 一种无硒化过程非真空法制备的铜铟镓硒吸收层 - Google Patents

一种无硒化过程非真空法制备的铜铟镓硒吸收层 Download PDF

Info

Publication number
CN109671787B
CN109671787B CN201910013617.XA CN201910013617A CN109671787B CN 109671787 B CN109671787 B CN 109671787B CN 201910013617 A CN201910013617 A CN 201910013617A CN 109671787 B CN109671787 B CN 109671787B
Authority
CN
China
Prior art keywords
source
indium gallium
copper indium
preparing
cigs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910013617.XA
Other languages
English (en)
Other versions
CN109671787A (zh
Inventor
李丽波
翟墨
杜金田
谢明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin University of Science and Technology
Original Assignee
Harbin University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin University of Science and Technology filed Critical Harbin University of Science and Technology
Priority to CN201910013617.XA priority Critical patent/CN109671787B/zh
Publication of CN109671787A publication Critical patent/CN109671787A/zh
Application granted granted Critical
Publication of CN109671787B publication Critical patent/CN109671787B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

本发明涉及一种无硒化过程非真空法制备的铜铟镓硒吸收层,其特征在于,所述工艺步骤包括:制备铜铟镓硒胶体、铜铟镓硒前驱体薄膜的制备、退火热处理三个步骤。选用氯化铜、硫酸铟、氯化镓、二氧化硒作为Cu源、In源、Ga源、Se源,按照(Cu:In:Ga:Se=1:1.4:0.6:4)的摩尔比配置,选用乙醇作为溶剂同时加入三乙醇胺作为络合剂与粘结剂,在一定温度下搅拌溶解至白色粘稠状液体,取出后挥发陈化,适量的溶解在乙醇中再刮涂或滴涂在衬底上,经一定温度热处理后得到铜铟镓硒吸收层。本发明的铜铟镓硒吸收层,生产工艺简单,环保,无需任何再投料硒化工艺,即可得到平整,结构完善,禁带宽度为1.39 eV的铜铟镓硒薄膜。

Description

一种无硒化过程非真空法制备的铜铟镓硒吸收层
技术领域
本发明涉及光电材料新能源领域,具体涉及一种无硒化过程非真空法制备的铜铟镓硒吸收层。
背景技术
能源是人类文明存在和发展的重要物质基础。伴随着社会经济的高速发展、环境污染问题的日益严重以及对能源需求的持续增大,以煤、石油和天然气等化石能源为代表的传统能源已经不能够满足社会经济发展的需求。因此,世界各国都将开发新能源以及可循环持续发展的能源作为解决能源与环境问题的重要途径。而光伏发电将太阳能直接转化为电能,为解决日益增长的全球能源需求,提供了实用且可持续的解决方案。
铜铟镓硒薄膜太阳能电池作为第二代太阳能电池,以不具毒性,直接带隙材料,能带宽度在1.0-1.7 eV范围内可调,光吸收效率高,不存在光致衰退等优点,成为了目前最有可能实现低成本高效率制备薄膜光伏的设备之一。
根据太阳能电池工作原理,吸收层材料的质量直接影响着电池的光电转换效率,因此,铜铟镓硒薄膜的制备至关重要。目前铜铟镓硒薄膜按制备工艺主要分为两类:真空法与非真空法。真空方法主流工艺如多源共蒸发法和溅射后硒化法,其中共蒸发法所制备的铜铟镓硒薄膜太阳能电池转换效率最高,但是其需要昂贵的真空设备,不利于太阳能电池成本的降低和大面积产业化。非真空方法主要有电沉积法、喷涂热解法以及液相法等方法,相对来说,非真空制备方法设备简单易于实现,更利于低成本大规模生产。
非真空的液相法为制备高质量的铜铟镓硒薄膜材料提供了新的思路,液相法制备的铜铟镓硒薄膜材料,具有质量高,化学计量比可控,颗粒小,设备要求低等优点。但在液相法制备当中以肼、油胺为代表,存在一定的毒性,同时在后再添加硒源的后硒化过程存在一定的复杂工艺以及危险性,因此,需寻找一个制备工艺简单,环保,无毒的的制备工艺。
发明内容
本发明针对现有的技术不足,提供一种无硒化过程非真空法制备的铜铟镓硒吸收层。
为实现上述目的,本发明的一种无硒化过程非真空法制备的铜铟镓硒吸收层,工艺步骤包括:
一、铜铟镓硒胶体的制备:取氯化铜、硫酸铟、氯化镓、二氧化硒作为Cu源、In源、Ga源、Se源,按照(Cu:In:Ga:Se=1:1.4:0.6:4)的摩尔比配置溶解在乙醇溶剂中,加入三乙醇胺作为络合剂与粘结剂在一定温度下(40-70℃)水浴搅拌至白色溶液,室温下挥发陈化至白色胶状,待用;
二、铜铟镓硒前驱体薄膜的制备:得到胶体取适量溶解在乙醇中,通过刮涂法或滴涂法涂覆在衬底上,通过初步热处理(90-150℃)去除溶剂与杂质,得到前驱体薄膜,待用;
三、退火热处理:得到的前驱体薄膜经管式炉在氮气条件,一定的升温条件下(5-10℃/min)升至一定的温度(400-500℃)后保温一定时间(30-150min)后自然冷却至室温,得到铜铟镓硒薄膜吸收层。
本发明包含以下有益效果在于:制备过程简单,反应温和,成本低,无需真空工艺,无需再添加硒源的任何硒化工艺,得到铜铟镓硒吸收层薄膜结构稳定,表面平整,禁带宽度1.39eV,适合于实际对吸收层的需求。
附图说明
图1是本发明一种无硒化过程非真空法制备的铜铟镓硒吸收层的流程图。
图2是本发明制备得到的铜铟镓硒吸收层薄膜的外观图。
图3是是本发明制备得到的铜铟镓硒吸收层的X射线衍射图。
图4是本发明制备得到的铜铟镓硒吸收层薄膜的紫外可见吸收光谱图。
具体实施方式
下面结合最佳的实施方式对本发明做进一步说明,但本发明的保护范围并不仅限有以下实施例。
具体实施方式一,本发明的一种无硒化过程非真空法制备的铜铟镓硒吸收层是按照以下的步骤进行的:
一、铜铟镓硒胶体的制备:取氯化铜、硫酸铟、氯化镓、二氧化硒作为Cu源、In源、Ga源、Se源,按照(Cu:In:Ga:Se=1:1.4:0.6:4)的摩尔比配置溶解在乙醇溶剂中,加入三乙醇胺作为络合剂与粘结剂在一定温度下(40-70℃)水浴搅拌至白色溶液,室温下挥发陈化至白色胶状,待用;
二、铜铟镓硒前驱体薄膜的制备:得到胶体取适量溶解在乙醇中,通过刮涂法或滴涂法涂覆在衬底上,通过初步热处理(90-150℃)去除溶剂与杂质,得到前驱体薄膜,待用;
三、退火热处理:得到的前驱体薄膜经管式炉在氮气条件,一定的升温条件下(5-10℃/min)升至一定的温度(400-500℃)后保温一定时间(30-150min)后自然冷却至室温,得到铜铟镓硒薄膜吸收层。
具体实施方式二:本实施方式与具体实施方式一不同点在于:步骤二中所述的衬底为掺氟二氧化锡导电玻璃、铜片、钢片。
具体实施方式三:本实施方式与具体实施方式一或二不同点在于:步骤二中所述的铜铟镓硒前驱体薄膜的制备中涂膜的胶体厚度为25-95μm。
具体实施方式四:本实施方式与具体实施方式一至三之一不同点在于:步骤三中所述的退火热处理过程中无需再添加硒源的任何硒化工艺,直接在一定温度热处理即可。
具体实施例
本实施例的一种无硒化过程非真空法制备的铜铟镓硒吸收层,是按照以下步骤进行的:
一、铜铟镓硒胶体的制备:取氯化铜、硫酸铟、氯化镓、二氧化硒作为Cu源、In源、Ga源、Se源,按照(Cu:In:Ga:Se=1:1.4:0.6:4)的摩尔比配置溶解在乙醇溶剂中,加入三乙醇胺作为络合剂与粘结剂在一定温度下(40-70℃)水浴搅拌至白色溶液,室温下挥发陈化至白色胶状,待用;
二、铜铟镓硒前驱体薄膜的制备:得到胶体取适量溶解在乙醇中,通过刮涂法或滴涂法涂覆在衬底上,通过初步热处理(90-150℃)去除溶剂与杂质,得到前驱体薄膜,待用;
三、退火热处理:得到的前驱体薄膜经管式炉在氮气条件,一定的升温条件下(5-10℃/min)升至一定的温度(400-500℃)后保温一定时间(30-150min)后自然冷却至室温,得到铜铟镓硒薄膜吸收层。
本实施例中铜铟镓硒吸收层的制备流程图如图1所示,制备流程简单、制备条件简捷方便、节能环保提供了一种实用的铜铟镓硒吸收层。
本实施例中铜铟镓硒吸收层的紫外可见吸收光谱图如图3所示,由紫外可见光谱图分析得到铜铟镓硒吸收层薄膜的禁带宽度为1.39 eV。
本实施例中铜铟镓硒吸收层的X射线衍射图如图4所示,相比于铜铟镓硒标准卡片,X射线衍射的出峰位置以及峰大小,峰面积都一致,证实了铜铟镓硒晶体的存在。
本实施例中制得的铜铟镓硒吸收层,无需再添加硒源的任何硒化工艺,经退火之后即可得到结构稳定,表面平整的薄膜,禁带宽度可达1.39eV适合于实际铜铟镓硒太阳能电池对吸收层的需求。

Claims (3)

1.一种无硒化过程非真空法制备铜铟镓硒吸收层的方法,其特征在于一种无硒化过程非真空法制备的铜铟镓硒吸收层的方法步骤是按以下进行的:
一、铜铟镓硒胶体的制备:取氯化铜、硫酸铟、氯化镓、二氧化硒作为Cu源、In源、Ga源、Se源,按照Cu:In:Ga:Se=1:1.4:0.6:4的摩尔比配置溶解在乙醇溶剂中,加入三乙醇胺作为络合剂与粘结剂在40-70℃温度下水浴搅拌至白色溶液,室温下挥发陈化至白色胶状,待用;
二、铜铟镓硒前驱体薄膜的制备:得到胶体取适量溶解在乙醇中,通过刮涂法或滴涂法涂覆在衬底上,通过在90-150℃下初步热处理去除溶剂与杂质,得到前驱体薄膜,待用;
三、退火热处理:得到的前驱体薄膜经管式炉在氮气条件,以5-10℃/min升温条件下升至400-500℃温度后保温30-150min后自然冷却至室温,得到铜铟镓硒薄膜吸收层;所述的退火热处理过程中无需再添加硒源的任何硒化工艺,直接在一定温度热处理即可。
2.根据权利要求1所述的一种无硒化过程非真空法制备铜铟镓硒吸收层的方法,其特征在于:所述衬底为掺氟二氧化锡导电玻璃、铜片或钢片。
3.根据权利要求1所述的一种无硒化过程非真空法制备铜铟镓硒吸收层的方法,其特征在于:所述的铜铟镓硒前驱体薄膜的制备中涂膜的溶胶厚度为25-95μm。
CN201910013617.XA 2019-01-08 2019-01-08 一种无硒化过程非真空法制备的铜铟镓硒吸收层 Active CN109671787B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910013617.XA CN109671787B (zh) 2019-01-08 2019-01-08 一种无硒化过程非真空法制备的铜铟镓硒吸收层

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910013617.XA CN109671787B (zh) 2019-01-08 2019-01-08 一种无硒化过程非真空法制备的铜铟镓硒吸收层

Publications (2)

Publication Number Publication Date
CN109671787A CN109671787A (zh) 2019-04-23
CN109671787B true CN109671787B (zh) 2020-08-21

Family

ID=66150598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910013617.XA Active CN109671787B (zh) 2019-01-08 2019-01-08 一种无硒化过程非真空法制备的铜铟镓硒吸收层

Country Status (1)

Country Link
CN (1) CN109671787B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110379872A (zh) * 2019-05-31 2019-10-25 北京铂阳顶荣光伏科技有限公司 铜铟镓硒太阳能电池吸收层的制备方法及太阳能电池
CN111489958B (zh) * 2020-04-21 2023-08-11 哈尔滨理工大学 一种低温油墨法制备的铜铟镓硒吸收层

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789470A (zh) * 2010-02-12 2010-07-28 昆山正富机械工业有限公司 非真空制作铜铟镓硒吸收层的方法
US20120006687A1 (en) * 2010-07-06 2012-01-12 Chi-Woo Lee Method of forming cigs thin film
CN101958369B (zh) * 2010-07-27 2011-12-28 上海太阳能电池研究与发展中心 一种铜铟镓硒薄膜材料的制备方法
CN103280486A (zh) * 2013-05-06 2013-09-04 深圳市亚太兴实业有限公司 一种铜铟镓硒薄膜的制备方法
CN106591914B (zh) * 2016-12-30 2019-01-18 哈尔滨理工大学 一种电沉积法制备的铜铟硒硫薄膜太阳能电池吸收层

Also Published As

Publication number Publication date
CN109671787A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
Chaudhuri et al. Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution
CN101958369B (zh) 一种铜铟镓硒薄膜材料的制备方法
Tombak et al. Solar cells fabricated by spray pyrolysis deposited Cu2CdSnS4 thin films
CN105932114A (zh) 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN104795456B (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
Yussuf et al. Photovoltaic efficiencies of microwave and Cu2ZnSnS4 (CZTS) superstrate solar cells
CN109671787B (zh) 一种无硒化过程非真空法制备的铜铟镓硒吸收层
CN107195697A (zh) 一种铜钡(锶/钙)锡硫(硒)薄膜的制备方法
Chung et al. Hydrazine solution-processed CuIn (Se, S) 2 thin film solar cells: Secondary phases and grain structure
Li et al. A facile arrested precipitation method for synthesis of pure wurtzite Cu2ZnSnS4 nanocrystals using thiourea as a sulfur source
CN109817735B (zh) 溶液法制备高效铜铟硒和铜铟镓硒薄膜太阳能电池
CN103318851B (zh) 铜铟镓硫硒太阳能电池、薄膜吸收层及其制备方法
Salam et al. The effect of processing conditions on the structural morphology and physical properties of ZnO and CdS thin films produced via sol–gel synthesis and chemical bath deposition techniques
CN103602982A (zh) 铜铟镓硫硒薄膜太阳电池光吸收层的非真空制备方法
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
Al‐Hadeethi et al. Role of triethanolamine in forming Cu2ZnSnS4 nanoparticles during solvothermal processing for solar cell applications
CN105489672A (zh) 一种氯化物体系两步法制备铜铟硒光电薄膜的方法
CN105552166A (zh) 一种硝酸盐体系两步法制备铜铟硒光电薄膜的方法
Yu et al. Synthesis of Cu 2 ZnSnS 4 film by air-stable molecular-precursor ink for constructing thin film solar cells
WO2012174551A2 (en) Inorganic solution and solution process for electronic and electro-optic devices
Guo et al. A generalized and robust method for efficient thin film photovoltaic devices from multinary sulfide nanocrystal inks
Patel et al. Recent Developments in Cu2 (CZTS) Preparation, Optimization and its Application in Solar Cell Development and Photocatalytic Applications
CN111489958B (zh) 一种低温油墨法制备的铜铟镓硒吸收层
Hameed et al. Cu (In, Ga) Se2 an absorber layer of photovoltaic devices
CN109830571B (zh) 一种电沉积铜后退火制备铜锡硫太阳能电池薄膜材料的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant