CN109671575B - 一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法 - Google Patents

一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法 Download PDF

Info

Publication number
CN109671575B
CN109671575B CN201811330783.4A CN201811330783A CN109671575B CN 109671575 B CN109671575 B CN 109671575B CN 201811330783 A CN201811330783 A CN 201811330783A CN 109671575 B CN109671575 B CN 109671575B
Authority
CN
China
Prior art keywords
carbon sponge
sponge
cobalt
composite material
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811330783.4A
Other languages
English (en)
Other versions
CN109671575A (zh
Inventor
黄云鹏
崔芬
华明清
赵岩
李华明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201811330783.4A priority Critical patent/CN109671575B/zh
Publication of CN109671575A publication Critical patent/CN109671575A/zh
Application granted granted Critical
Publication of CN109671575B publication Critical patent/CN109671575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • B01J35/33
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/523Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明属于功能化多孔纳米材料领域,具体涉及一种氧化钴锰纳米花‑碳海绵柔性复合材料的制备方法;具体步骤为:取商用三聚氰胺海绵,然后用蒸馏水和无水乙醇清洗,干燥,然后在氮气或氩气氛围下,通过程升温煅烧三聚氰胺海绵,冷却后得到碳海绵;配制含有锰盐和钴盐的混合溶液,将碳海绵浸入混合溶液中,进行水热反应,反应结束后取出碳海绵,用蒸馏水清洗并烘干,得到锰钴氢氧化物前驱体‑碳海绵复合材料;进一步在氩气气氛下进行退火反应,得到氧化钴锰纳米花‑碳海绵柔性复合材料;本发明以柔性、多孔、自支撑的碳海绵为生长模板,成功解决了纳米材料易团聚的难题;并且得到的复合材料具有大量暴露的活性位点、丰富的孔隙和良好的导电性能。

Description

一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法
技术领域
本发明属于功能化多孔纳米材料领域,具体涉及一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法。
背景技术
近年来,随着化石能源储量的日益降低和环境问题的不断突出,人们对绿色可再生能源的需求急剧增加。近二十年,人们不断开发和利用太阳能、风能和潮汐能等清洁能源且已取得可见成效。然而,这些能源具有间歇不连续等特点,因此还需要开发高效、经济的能源存储与转换装置将清洁能源进行存储和转化。其中,超级电容器、燃料电池、锂离子电池被认为是目前最具发展前景的三种电化学能源存储与转换系统。而为了促进这类新能源技术的产业化,寻找绿色、低成本的非贵金属基电极材料是研究者们重点关注的方向。
最近,一类新型的储能材料——过渡金属氧化物因为他们在能源存储与转换应用中表现出的超凡潜力,如优异的电化学活性、低成本、环境友好等优点,而成为全世界研究者关注的焦点。同时,由不同过渡金属元素组成的双金属氧化物能通过两种金属的不同氧化态之间的氧化还原反应以及金属元素之间的协同作用而获得更为理想的比电容。在众多双金属氧化物材料中,一种新型的氧化钴锰(MnCo2O4)因为它良好的导电性和丰富的氧化还原价态而具有相对其单金属氧化物更高的赝电容性能和催化活性。尽管过渡金属氧化物具有诸多优势,但其低电导率、低比表面积和充放电过程中较大的体积膨胀等缺点都限制了它的应用。
进而,通过合理构建低维单元组装结构框架能有效提高活性材料的可接触表面积、电荷离子扩散传输速率和结构韧性,从而获得优越均衡的电容性能。此外,将这类双金属氧化物直接生长在柔性基底表面能避免传统电极制作过程中绝缘粘结剂的使用,不仅能最大限度提高活性电极的表面利用率,而且能有效降低电子传输阻抗,从而获得最佳比容和倍率性能。
碳海绵因具有三维网络结构、导电性好、价廉质轻、耐腐蚀、机械强度高等优点非常适合用于柔性电极基底材料。进一步的在碳海绵多孔骨架上构筑具有电化学活性的纳米材料多级结构,可望制备出具有优异电化学性能和力学性能的碳海绵复合材料,这类复合多孔材料在能源存储领域具有广泛的应用价值。
发明内容
针对现有技术的不足,本发明旨在解决上述问题之一;本发明提供一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法。本发明利用高温煅烧法制备的碳海绵为导电、自支撑模板,通过溶剂热法及退火法合成氧化钴锰纳米花-碳海绵柔性复合材料。
为了实现以上目的,本发明的具体步骤如下:
(1)取商用三聚氰胺海绵,然后用蒸馏水和无水乙醇清洗,干燥后备用;
(2)在氮气或氩气氛围下,通过程序升温煅烧步骤(1)得到的三聚氰胺海绵,进行碳化处理,冷却后得到碳海绵;
(3)配制一定浓度的锰盐和钴盐的混合溶液;将步骤(2)中得到的碳海绵浸入混合溶液中,进行水热反应,反应结束后取出碳海绵,用蒸馏水清洗并烘干,得到锰钴氢氧化物前驱体-碳海绵复合材料;在氩气气氛下进行退火反应,得到氧化钴锰纳米花-碳海绵柔性复合材料。
优选的,步骤(1)中所述三聚氰胺海绵的尺寸为5cm×2cm×0.5cm。
优选的,步骤(2)中所述程序升温煅烧的具体参数为:升温速率2~5℃/min,温度700~900℃,时间0.5~3h。
优选的,步骤(3)中所述的锰盐为乙酸锰(Mn(CH2COOH)2),所述的钴盐为乙酸钴(Co(CH2COOH)2),所述混合溶液的溶剂为乙二醇。
优选的,步骤(3)中所述混合溶液中铁盐摩尔浓度为10~60mM。
优选的,步骤(3)中所述混合溶液中钴盐的摩尔浓度20~120mM。
优选的,步骤(3)中所述水热反应的温度为140~200℃,反应时间为6~12h。
优选的,步骤(3)中所述所述退火处理的参数为:升温速率为1~5℃/min,温度为350~450℃,时间为1~3h。
本发明的有益效果:
(1)本发明制备过程简单,易于操作,安全环保,所用的试剂均不会对人体和环境造成不良影响。
(2)本发明设计思路巧妙,以柔性、多孔、自支撑的碳海绵为生长模板,成功解决了纳米材料易团聚的难题;并且本发明选择碳海绵基底还可以增强复合材料的导电性。
(3)本发明所制备的氧化钴锰纳米花-碳海绵柔性复合材料具有大量暴露的活性位点、丰富的孔隙和良好的导电性能,可作为电化学催化剂、超级电容器电极材料以及锂离子电池等新能源器件的电极材料。
附图说明
图1是实施例1制备的煅烧后碳海绵骨架的电镜图。
图2是实施例1制备的氧化钴锰-碳海绵柔性复合材料的电镜图;其中A为10μm的电镜图片;B为1μm的电镜图片。
图3是实施例2制备的氧化钴锰-碳海绵柔性复合材料的电镜图;其中A和B分别为不同位置拍摄的电镜图片。
具体实施方式
下面结合具体实例,进一步阐述本发明,应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。但是本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换;而一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围内。
实施例1:
(1)将商用三聚氰胺海绵分割成5cm×2cm×0.5cm的长条状,并用蒸馏水和无水乙醇清洗干净,随后干燥过夜;
(2)将干净的三聚氰胺海绵置于程序控温管式炉中,在氮气气氛下,以5℃/min的升温速率从25℃升温至500℃,并保持0.5h,自然冷却后得到碳海绵;
(3)以乙二醇为溶剂,加入乙酸锰和乙酸钴,得到混合溶液;其中混合溶液中乙酸锰浓度为10mM,乙酸钴浓度为20mM;加入碳海绵,转移至聚四氟乙烯内衬的反应釜中,在140℃条件下反应6h,经清洗、烘干,得到锰钴氧化物前驱体-碳海绵复合材料,放入管式炉中,在氩气气氛中,以1℃/min的升温速率升至350℃,并保持1h,最终得到低载量的氧化钴锰纳米花-碳海绵柔性复合材料。
实施例2:
(1)将商用三聚氰胺海绵分割成5cm×2cm×0.5cm的长条状,并用蒸馏水和无水乙醇清洗干净,随后干燥过夜;
(2)将干净的三聚氰胺海绵置于程序控温管式炉中,在氮气气氛下,以3℃/min的升温速率从25℃升温至800℃,并保持1.5h,自然冷却后得到碳海绵;
(3)以乙二醇为溶剂,加入乙酸锰和乙酸钴,得到混合溶液;其中混合溶液中乙酸锰浓度为40mM,乙酸钴浓度为60mM;加入碳海绵,转移至聚四氟乙烯内衬的反应釜中,在170℃条件下反应8h,经清洗、烘干,得到锰钴氧化物前驱体-碳海绵复合材料,放入管式炉中,在氩气气氛中,以3℃/min的升温速率升至400℃,并保持2h,最终得到中等载量的氧化钴锰纳米花-碳海绵柔性复合材料。
将得到的中等载量的氧化钴锰纳米花-碳海绵柔性复合材料直接作为超级电容器正极材料,以乙炔黑涂覆的泡沫镍作为负极材料,以5M浓度的KOH作为电解液,组装非对称超级电容器器件,并评估器件的电容性能。
实施例3:
(1)将商用三聚氰胺海绵分割成5cm×2cm×0.5cm的长条状,并用蒸馏水和无水乙醇清洗干净,随后干燥过夜;
(2)将干净的三聚氰胺海绵置于程序控温管式炉中,在氮气气氛下,以5℃/min的升温速率从25℃升温至900℃,并保持3h,自然冷却后得到碳海绵;
(3)以乙二醇为溶剂,加入乙酸锰和乙酸钴,得到混合溶液;其中混合溶液中乙酸锰浓度为60mM,乙酸钴浓度为120mM;加入碳海绵,转移至聚四氟乙烯内衬的反应釜中,在200℃条件下反应12h,经清洗、烘干,得到锰钴氧化物前驱体-碳海绵复合材料,放入管式炉中,在氩气气氛中,以5℃/min的升温速率升至450℃,并保持3h,最终得到高载量的氧化钴锰纳米花-碳海绵柔性复合材料。
使用场发射扫描电子显微镜(FESEM)来表征本发明所获得的氧化钴锰纳米花-碳海绵柔性复合材料的形貌,其结果如下;
图1是实施例1制备的煅烧后碳海绵骨架的电镜图;通过图1可以看出高温煅烧后的海绵,依然保持着原有的三维网络型骨架。
图2是实施例1制备的氧化钴锰-碳海绵柔性复合材料的电镜图;通过图2可以看出水热反应中锰盐的浓度为10mM时,氧化钴锰在碳海绵骨架上呈现出规整的花状形貌,并均匀分布在碳海绵三维骨架上。
图3是实施例2制备的氧化钴锰-碳海绵柔性复合材料的电镜图;通过图3可以看出随着水热反应中锰盐和钴盐的浓度逐渐增大时,氧化钴锰在碳海绵上的生长呈现出逐渐密集的趋势;当锰盐浓度为40mM时,氧化钴锰会出现团聚形态,但依旧保持着花状。
本发明所制备的氧化钴锰纳米花-碳海绵柔性复合材料具有大量暴露的活性位点、丰富的孔隙和良好的导电性能,可作为电化学催化剂、超级电容器电极材料以及锂离子电池等新能源器件的电极材料。

Claims (1)

1.一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法,其特征在于具体步骤如下:
(1)将商用三聚氰胺海绵分割成5 cm×2 cm×0.5 cm 的长条状,并用蒸馏水和无水乙醇清洗干净,随后干燥过夜;
(2)将干净的三聚氰胺海绵置于程序控温管式炉中,在氮气气氛下,以5℃/min 的升温速率从 25℃升温至 500℃,并保持 0.5 h,自然冷却后得到碳海绵;
(3)以乙二醇为溶剂,加入乙酸锰和乙酸钴,得到混合溶液;其中混合溶液中乙酸锰浓度为10 mM,乙酸钴浓度为20 mM;加入碳海绵,转移至聚四氟乙烯内衬的反应釜中,在140℃条件下反应6 h,经清洗、烘干,得到锰钴氧化物前驱体-碳海绵复合材料,放入管式炉中,在氩气气氛中,以1℃/min 的升温速率升至350℃,并保持1h,最终得到低载量的氧化钴锰纳米花-碳海绵柔性复合材料。
CN201811330783.4A 2018-11-09 2018-11-09 一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法 Active CN109671575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811330783.4A CN109671575B (zh) 2018-11-09 2018-11-09 一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811330783.4A CN109671575B (zh) 2018-11-09 2018-11-09 一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN109671575A CN109671575A (zh) 2019-04-23
CN109671575B true CN109671575B (zh) 2021-05-25

Family

ID=66142033

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811330783.4A Active CN109671575B (zh) 2018-11-09 2018-11-09 一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN109671575B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110600278B (zh) * 2019-08-22 2022-03-22 江苏大学 一种松果状MnO2球/泡沫碳复合材料及其制备方法
CN110885069A (zh) * 2019-10-21 2020-03-17 山东科技大学 一种三维大孔超轻氮化碳材料及其制备方法
CN110957147B (zh) * 2019-12-05 2021-11-09 山东科技大学 柔性电极材料及其制备方法和应用、超级电容器
CN111261431B (zh) * 2020-02-28 2022-07-19 上海应用技术大学 用于超级电容器的纳米四氧化三钴/氮掺杂三维多孔碳骨架复合材料的制备方法
CN114715882B (zh) * 2022-03-15 2023-08-18 北京理工大学 一种多绒毛状碳管材料及其制备方法
CN115430430A (zh) * 2022-07-18 2022-12-06 西安交通大学 一种MnCo2O4纳米球负载三聚氰胺碳泡沫复合材料的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102874792A (zh) * 2012-10-23 2013-01-16 江西师范大学 一种新型碳海绵的制备方法
CN105244191A (zh) * 2015-10-27 2016-01-13 渤海大学 一种钴酸锰多孔纳米片/泡沫镍复合电极材料的制备方法
CN105386015A (zh) * 2015-11-11 2016-03-09 江苏大学 一种基于钴酸锰分级结构纳米花薄膜的制备方法
CN105502518B (zh) * 2015-12-30 2017-04-05 河北工程大学 一种花状钴酸锰及其制备方法

Also Published As

Publication number Publication date
CN109671575A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
CN109671575B (zh) 一种氧化钴锰纳米花-碳海绵柔性复合材料的制备方法
CN103441259B (zh) 一种高倍率水系碱金属电化学电池正极材料及其制备方法
CN112928255B (zh) 一种锂硫电池复合正极材料及其制备方法与应用
CN108172815B (zh) 一种微球状钒酸锌及其制备方法与应用
CN103594253A (zh) 一种多孔NiCo2O4/MnO2核壳纳米线阵列超级电容器电极材料的制备方法
CN107768620A (zh) 一种具有异质结结构的碳纳米纤维、二硫化锡、二氧化锡和硫复合材料的制备方法及应用
CN104701036A (zh) 基于分级花状NiCo2O4超级电容器电极材料的研究
CN109637826B (zh) 一种四氧化三钴-氧化镍/石墨烯泡沫复合电极材料的制备方法及其应用
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
CN111785977A (zh) 一种铁钴合金/氮共掺杂碳气凝胶电极材料的制备方法
CN109821549A (zh) 一种钒掺杂羟基氧化铁电催化剂的制备方法
CN106299344B (zh) 一种钠离子电池钛酸镍负极材料及其制备方法
CN110165185A (zh) 一种锂硫电池正极材料的制备方法和应用
CN109295475B (zh) 一种硒掺杂硒化钒复合材料的制备方法
CN111193038A (zh) 一种镍钴铁氢氧化物包覆的钴酸镍柔性电极材料及制备与应用
CN113277484B (zh) 高性能碱性锌电池阴极材料及其制备方法
CN113363510A (zh) 氢气氧化与还原双功能催化电极及制备方法
CN114628696B (zh) 一种多孔碳载钴基双功能氧催化剂的制备方法
CN108962617B (zh) 一种自组装四氧化三钴分级微球的制备方法及其应用
CN106683896A (zh) 一种核壳结构钼酸镍/二氧化锰复合材料的制备方法及其应用
CN111039332B (zh) 一种多功能双层纳米线层状复合材料的制备方法及其应用
CN101716504B (zh) 导电聚合物修饰的碳载锰基复合物催化剂的制备方法
CN113299873A (zh) 一种水系锌离子电池复合正极材料的制备方法
CN106450235B (zh) 一种自组装纳米片状多孔结构四氧化三钴-氧化锌复合材料的制备方法及其应用
CN114300276B (zh) 一种Ni-Fe-S@NiCo2O4@NF复合材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant