CN109665833A - 一种多铁复合材料及制备柔性多铁复合材料的方法 - Google Patents

一种多铁复合材料及制备柔性多铁复合材料的方法 Download PDF

Info

Publication number
CN109665833A
CN109665833A CN201811514742.0A CN201811514742A CN109665833A CN 109665833 A CN109665833 A CN 109665833A CN 201811514742 A CN201811514742 A CN 201811514742A CN 109665833 A CN109665833 A CN 109665833A
Authority
CN
China
Prior art keywords
feo
composite materials
lay
iron composite
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811514742.0A
Other languages
English (en)
Inventor
白晓军
曹崇德
汪姚岑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201811514742.0A priority Critical patent/CN109665833A/zh
Publication of CN109665833A publication Critical patent/CN109665833A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2675Other ferrites containing rare earth metals, e.g. rare earth ferrite garnets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • C04B14/363Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B26/00Compositions of mortars, concrete or artificial stone, containing only organic binders, e.g. polymer or resin concrete
    • C04B26/02Macromolecular compounds
    • C04B26/04Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明涉及一种多铁复合材料及制备柔性多铁复合材料的方法,利用固相烧结法,将两种单相氧化物粉末La0.5Y0.5FeO3和LaY2Fe5O12,按照9:1的摩尔比混合,进行复合得到的多铁复合材料为:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1。利用黏合剂来制备柔性材料。利用稀土La元素进行掺杂,提高了柔性多铁复合材料的磁性,降低了烧结温度。通过测试柔性多铁复合材料的物理性质,发现柔性材料同时具有铁电性和铁磁性。

Description

一种多铁复合材料及制备柔性多铁复合材料的方法
技术领域
本发明属于多铁复合材料及制备方法,涉及一种多铁复合材料及制备柔性多铁复合材料的方法。
背景技术
多铁材料(Multiferroic materials)是指材料中包含两种及两种以上铁的基本性能,这些铁的基本性能包括铁电性(反铁电性),铁磁性(反铁磁性、亚铁磁性)和铁弹性,是一种集电与磁性能于一身的多功能材料,尤其是既有铁电性又有铁磁性的磁电复合材料,可以通过磁场控制电极化或者通过电场控制磁极化,具有极其广阔的应用前景。多铁材料包括单相多铁彩料和复合多铁材料。其中,单相多铁材料是一种本身就具有磁电效应的多铁材料,且由于铁电和铁磁的相互排斥,自然界中存在的单相多铁材料相对较少。但是自然界中存在的单相多铁材料的居里温度或者奈尔温度大多都低于室温。对于具有实际应用价值的多铁材料,要求其居里温度和奈尔温度都必须高于室温,因此天然的多铁材料的应用不是很广泛。与单相多铁材料不同,多铁复合材料可以通过选取铁磁和铁电转变温度都高于室温的材料,将两相复合,有可能会产生磁电耦合,从而提高磁电系数。制备多铁复合材料的方法有水热法,溶胶凝胶法、原位复合法、固相烧结法等,而固相烧结法由于其操作方便,工艺简单、污染小等一系列的优点成为制备多铁复合材料的一种常用方法。制备多铁薄膜的方法主要由物理沉积和化学沉积法,例如磁控溅射、脉冲激光沉积法、真空蒸镀法等,
发明内容
要解决的技术问题
为了避免现有技术的不足之处,本发明提出一种多铁复合材料及制备柔性多铁复合材料的方法,利用固相烧结法,将两种单相材料进行复合,利用黏合剂来制备柔性材料。利用稀土La元素进行掺杂,提高了柔性多铁复合材料的磁性,降低了烧结温度。通过测试柔性多铁复合材料的物理性质,发现柔性材料同时具有铁电性和铁磁性。
技术方案
一种多铁复合材料,其特征在于利用固相烧结法,将两种单相氧化物粉末La0.5Y0.5FeO3和LaY2Fe5O12,按照9:1的摩尔比混合,进行复合得到的多铁复合材料为:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1
一种所述多铁复合材料的制备方法,其特征在于步骤如下:
步骤1、:将三氧化二镧La2O3、三氧化二钇Y2O3、三氧化二铁Fe2O3分别在900-1000℃,650-700℃,400-500℃预烧12h,以除去原材料中的水分和杂质;
按照1:1:2的摩尔比配料三氧化二镧La2O3:三氧化二钇Y2O3:三氧化二铁Fe2O3,得到混合的氧化物原料;
步骤2:将氧化物原料放入玛瑙罐中,按照粉末、乙醇、玛瑙珠为1:1.5:6的比例,在球磨机上进行球磨,时间为12-24h;
步骤3:将装有氧化物的玛瑙罐放入干燥箱中,在75℃下进行烘干;
步骤4:取出氧化物再次研磨后放在三氧化二铝坩埚中,空气中第一次煅烧2h-6h;研磨后在空气中再次煅烧2h-6h,得到单相La0.5Y0.5FeO3氧化物粉末;
重复步骤1~步骤4,重复时在步骤1改变三氧化二镧La2O3:三氧化二钇Y2O3:三氧化二铁Fe2O3为1:2:5的摩尔比,在步骤4得到LaY2Fe5O12氧化物粉末;
步骤6、(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1柔性多铁复合材料的制备:将得到的单相La0.5Y0.5FeO3和LaY2Fe5O12氧化物粉末,按照9:1的摩尔比混合La0.5Y0.5FeO3和LaY2Fe5O12粉末,然后研磨和压片,在1200-1450℃烧结2h-6h,得到多铁复合材料(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1
所述步骤1时配料时,三氧化二镧La2O3待预烧完成后的30分钟之内完成。
一种将所制备的多铁复合材料(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1制备柔性材料的方法,其特征在于:将取粘合剂和的多铁复合材料粉末以1ml:50mg的比例混合放入容器中,在超声边搅拌下粉末与粘合剂混合均匀且分散于容器底部,在空气中自然干燥,得到柔性材料;所述粘合剂是:以1g聚乙烯醇与20ml超纯水的比例混合,在适当的温度下搅拌得到粘合剂。
有益效果
本发明提出的一种多铁复合材料及制备柔性多铁复合材料的方法,利用固相烧结法,将两种单相材料进行复合,利用黏合剂来制备柔性材料。利用稀土La元素进行掺杂,提高了柔性多铁复合材料的磁性,降低了烧结温度。通过测试柔性多铁复合材料的物理性质,发现柔性材料同时具有铁电性和铁磁性。
附图说明
图1:制备的柔性多铁复合材料
图2:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1柔性多铁复合材料的XRD谱
图3:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1柔性多铁复合材料的室温铁磁性
图4:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1柔性多铁复合材料的室温铁电性
具体实施方式
现结合实施例、附图对本发明作进一步描述:
本发明中所用到的原材料如下表所示:
采用固相烧结法来制备(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1柔性多铁复合材料:
实施例1步骤如下:
1、La0.5Y0.5FeO3氧化物粉末及块体材料的制备:
(1)分别取出适量的三氧化二镧(La2O3)、三氧化二钇(Y2O3)、三氧化二铁(Fe2O3),并将它们分别在900℃,650℃,400℃预烧12h,以除去原材料中的水分和杂质。待预烧完成之后,在30分钟之内快速的称量三氧化二镧(La2O3),这主要是因为三氧化二镧很容易吸水从而影响它的纯度和质量。然后按照1:1:2的摩尔比,根据称好的三氧化二镧(La2O3)来称量三氧化二钇(Y2O3)和三氧化二铁(Fe2O3);
(2)将第一步中称量好的氧化物原料混合起来放入玛瑙罐中,按照粉末、乙醇、玛瑙珠1:1.5:6的比例,加入适量的乙醇,再放入大小不一的玛瑙珠。将玛瑙罐放在球磨机上进行球磨,时间为12h,期间要定时查看球磨情况以便氧化物粉末能更充分的研磨;
(3)球磨结束后,再将装有氧化物的玛瑙罐放入干燥箱中,在75℃下进行烘干,目的是使乙醇全部挥发。
(4)手工研磨,直至颗粒足够细;
(5)将混合均匀的氧化物放在三氧化二铝坩埚中,在900℃下,空气中第一次煅烧2h,完成之后,手工研磨至颗粒足够精细,再在1100℃下,空气中第二次煅烧,同样为2h.两次煅烧是为了除去水分以及残留的乙醇等一些杂质;这样就制得了单相La0.5Y0.5FeO3氧化物粉末;
2、LaY2Fe5O12氧化物粉末的制备:制备过程和La0.5Y0.5FeO3相似。不同的是第一步中,三氧化二镧(La2O3)、三氧化二钇(Y2O3)、三氧化二铁(Fe2O3)按照1:2:5的摩尔比称量对应的氧化物原料;其余的制备过程与制备La0.5Y0.5FeO3的步骤相同,得到LaY2Fe5O12氧化物粉末;
实施例2步骤如下:
1、La0.5Y0.5FeO3氧化物粉末及块体材料的制备:
(1)分别取出适量的三氧化二镧(La2O3)、三氧化二钇(Y2O3)、三氧化二铁(Fe2O3),并将它们分别在1000℃,700℃,500℃预烧12h,以除去原材料中的水分和杂质。待预烧完成之后,在30分钟之内快速的称量三氧化二镧(La2O3),这主要是因为三氧化二镧很容易吸水从而影响它的纯度和质量。然后按照1:1:2的摩尔比,根据称好的三氧化二镧(La2O3)来称量三氧化二钇(Y2O3)和三氧化二铁(Fe2O3);
(2)将第一步中称量好的氧化物原料混合起来放入玛瑙罐中,按照粉末、乙醇、玛瑙珠1:1.5:6的比例,加入适量的乙醇,再放入大小不一的玛瑙珠。将玛瑙罐放在球磨机上进行球磨,时间为15h,期间要定时查看球磨情况以便氧化物粉末能更充分的研磨;
(3)球磨结束后,再将装有氧化物的玛瑙罐放入干燥箱中,在75℃下进行烘干,目的是使乙醇全部挥发。
(4)研磨直至颗粒足够细;
(5)将混合均匀的氧化物放在三氧化二铝坩埚中,在900℃下,空气中第一次煅烧2h,完成之后,手工研磨至颗粒足够精细,再在1100℃下,空气中第二次煅烧,同样为6h.两次煅烧是为了除去水分以及残留的乙醇等一些杂质;这样就制得了单相La0.5Y0.5FeO3氧化物粉末;
2、LaY2Fe5O12氧化物粉末的制备:制备过程和La0.5Y0.5FeO3相似。不同的是第一步中,三氧化二镧(La2O3)、三氧化二钇(Y2O3)、三氧化二铁(Fe2O3)按照1:2:5的摩尔比称量对应的氧化物原料;其余的制备过程与制备La0.5Y0.5FeO3的步骤相同,得到LaY2Fe5O12氧化物粉末;
实施例3步骤如下:
1、La0.5Y0.5FeO3氧化物粉末及块体材料的制备:
(1)分别取出适量的三氧化二镧(La2O3)、三氧化二钇(Y2O3)、三氧化二铁(Fe2O3),并将它们分别在950℃,700℃,450℃预烧12h,以除去原材料中的水分和杂质。待预烧完成之后,在30分钟之内快速的称量三氧化二镧(La2O3),这主要是因为三氧化二镧很容易吸水从而影响它的纯度和质量。然后按照1:1:2的摩尔比,根据称好的三氧化二镧(La2O3)来称量三氧化二钇(Y2O3)和三氧化二铁(Fe2O3);
(2)将第一步中称量好的氧化物原料混合起来放入玛瑙罐中,按照粉末、乙醇、玛瑙珠1:1.5:6的比例,加入适量的乙醇,再放入大小不一的玛瑙珠。将玛瑙罐放在球磨机上进行球磨,时间为12h,期间要定时查看球磨情况以便氧化物粉末能更充分的研磨;
(3)球磨结束后,再将装有氧化物的玛瑙罐放入干燥箱中,在75℃下进行烘干,目的是使乙醇全部挥发。
(4)手工研磨,直至颗粒足够细;
(5)将混合均匀的氧化物放在三氧化二铝坩埚中,在900℃下,空气中第一次煅烧2h,完成之后,手工研磨至颗粒足够精细,再在1100℃下,空气中第二次煅烧,同样为2h.两次煅烧是为了除去水分以及残留的乙醇等一些杂质;这样就制得了单相La0.5Y0.5FeO3氧化物粉末;
2、LaY2Fe5O12氧化物粉末的制备:制备过程和La0.5Y0.5FeO3相似。不同的是第一步中,三氧化二镧(La2O3)、三氧化二钇(Y2O3)、三氧化二铁(Fe2O3)按照1:2:5的摩尔比称量对应的氧化物原料;其余的制备过程与制备La0.5Y0.5FeO3的步骤相同,得到LaY2Fe5O12氧化物粉末;
将实施例1、实施例2和实施例3得到的两种单相La0.5Y0.5FeO3和LaY2Fe5O12氧化物粉末,制备多铁复合材料
将得到的单相La0.5Y0.5FeO3和LaY2Fe5O12氧化物粉末,按照9:1的摩尔比称取适量的La0.5Y0.5FeO3和LaY2Fe5O12粉末,然后研磨,使它们混合均匀,随后压片,在1250℃下烧结2h.最终得到多铁复合材料。
利用实施例1、实施例2和实施例3得到的两种单相La0.5Y0.5FeO3和LaY2Fe5O12氧化物粉末,制备的多铁复合材料,继续制备柔性材料的方法主要是利用粘合剂和多铁复合材料粉末来制备,具体如下:
(1)粘合剂的配制
a)以1g聚乙烯醇与20ml超纯水的比例混合一起放入烧杯中;
b)将烧杯放在磁力搅拌器中搅拌,温度为90℃,得到粘合剂。
(2)柔性材料的制备
a)取2ml粘合剂和100mg的多铁复合材料粉末放入小烧杯中;
b)边超声边搅拌,直至粉末和粘合剂混合均匀且颗粒均匀的分散在烧杯底部;
c)将烧杯放在平整的桌子上,在空气中自然干燥,即可得到柔性材料。
在选择烧结温度过程中,采用如下步骤:
将煅烧完成后的氧化物粉末,再次研磨至精细,取出一部分压片,压力为10MPa,得到直径大约为12mm的圆柱形块材,高度大约为2mm,视情况而定;
将得到的薄片分别在1200℃~1450℃选择多个温度下烧结2h,以确定合适的烧结温度。
这样我们就分别得到了单相的La0.5Y0.5FeO3和LaY2Fe5O12氧化物粉末,对各种烧结温度下制备的单相材料进行结构表征,确定单相材料的最优烧结温度。

Claims (4)

1.一种多铁复合材料,其特征在于利用固相烧结法,将两种单相氧化物粉末La0.5Y0.5FeO3和LaY2Fe5O12,按照9:1的摩尔比混合,进行复合得到的多铁复合材料为:(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1
2.一种权利要求1所述多铁复合材料的制备方法,其特征在于步骤如下:
步骤1、:将三氧化二镧La2O3、三氧化二钇Y2O3、三氧化二铁Fe2O3分别在900-1000℃,650-700℃,400-500℃预烧12h,以除去原材料中的水分和杂质;
按照1:1:2的摩尔比配料三氧化二镧La2O3:三氧化二钇Y2O3:三氧化二铁Fe2O3,得到混合的氧化物原料;
步骤2:将氧化物原料放入玛瑙罐中,按照粉末、乙醇、玛瑙珠为1:1.5:6的比例,在球磨机上进行球磨,时间为12-24h;
步骤3:将装有氧化物的玛瑙罐放入干燥箱中,在75℃下进行烘干;
步骤4:取出氧化物再次研磨后放在三氧化二铝坩埚中,空气中第一次煅烧2h-6h;研磨后在空气中再次煅烧2h-6h,得到单相La0.5Y0.5FeO3氧化物粉末;
重复步骤1~步骤4,重复时在步骤1改变三氧化二镧La2O3:三氧化二钇Y2O3:三氧化二铁Fe2O3为1:2:5的摩尔比,在步骤4得到LaY2Fe5O12氧化物粉末;
步骤6、(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1柔性多铁复合材料的制备:将得到的单相La0.5Y0.5FeO3和LaY2Fe5O12氧化物粉末,按照9:1的摩尔比混合La0.5Y0.5FeO3和LaY2Fe5O12粉末,然后研磨和压片,在1200-1450℃烧结2h-6h,得到多铁复合材料(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1
3.根据权利要求2所述的方法,其特征在于:所述步骤1时配料时,三氧化二镧La2O3待预烧完成后的30分钟之内完成。
4.一种将权利要求2所制备的多铁复合材料(La0.5Y0.5FeO3)0.9(LaY2Fe5O12)0.1制备柔性材料的方法,其特征在于:将取粘合剂和的多铁复合材料粉末以1ml:50mg的比例混合放入容器中,在超声边搅拌下粉末与粘合剂混合均匀且分散于容器底部,在空气中自然干燥,得到柔性材料;所述粘合剂比例为:以1g聚乙烯醇与20ml超纯水的比例混合,搅拌得到粘合剂。
CN201811514742.0A 2018-12-12 2018-12-12 一种多铁复合材料及制备柔性多铁复合材料的方法 Pending CN109665833A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811514742.0A CN109665833A (zh) 2018-12-12 2018-12-12 一种多铁复合材料及制备柔性多铁复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811514742.0A CN109665833A (zh) 2018-12-12 2018-12-12 一种多铁复合材料及制备柔性多铁复合材料的方法

Publications (1)

Publication Number Publication Date
CN109665833A true CN109665833A (zh) 2019-04-23

Family

ID=66143739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811514742.0A Pending CN109665833A (zh) 2018-12-12 2018-12-12 一种多铁复合材料及制备柔性多铁复合材料的方法

Country Status (1)

Country Link
CN (1) CN109665833A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988861A (zh) * 2022-06-09 2022-09-02 江西理工大学 六角稀土铁氧化物单相多铁性材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009905A1 (en) * 2003-07-28 2005-02-03 Research Institute Of Industrial Science & Technology Magnetoelectric layered-perovskite materials and electronic devices comprising the perovskites materials
CN101037338A (zh) * 2007-04-25 2007-09-19 上海大学 强磁场作用下制备铁酸铋镧-钛酸铅固溶体陶瓷的方法
CN104557008A (zh) * 2015-01-14 2015-04-29 陕西科技大学 Ba(Fe0.5Nb0.5)O3/Bi0.2Y2.8Fe5O12 层状磁电复合材料及其制备方法
CN104944952A (zh) * 2015-06-05 2015-09-30 桂林电子科技大学 一种具有高储能密度的Rex/3(Ba0.06Bi0.47Na0.47)1-xTi1-xRxO3无铅反铁电陶瓷及其制备方法
CN105601264A (zh) * 2015-12-30 2016-05-25 哈尔滨工业大学 一种高致密化多铁性(1-y)BiFeO3-yBi1-xRxFeO3复合陶瓷的制备方法
CN105967673A (zh) * 2016-05-09 2016-09-28 武汉理工大学 单相多铁性铁酸铅镧陶瓷材料及其制备方法
KR101681386B1 (ko) * 2014-11-27 2016-11-30 울산대학교 산학협력단 무연 압전 세라믹 조성물 및 이의 제조방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005009905A1 (en) * 2003-07-28 2005-02-03 Research Institute Of Industrial Science & Technology Magnetoelectric layered-perovskite materials and electronic devices comprising the perovskites materials
CN101037338A (zh) * 2007-04-25 2007-09-19 上海大学 强磁场作用下制备铁酸铋镧-钛酸铅固溶体陶瓷的方法
KR101681386B1 (ko) * 2014-11-27 2016-11-30 울산대학교 산학협력단 무연 압전 세라믹 조성물 및 이의 제조방법
CN104557008A (zh) * 2015-01-14 2015-04-29 陕西科技大学 Ba(Fe0.5Nb0.5)O3/Bi0.2Y2.8Fe5O12 层状磁电复合材料及其制备方法
CN104944952A (zh) * 2015-06-05 2015-09-30 桂林电子科技大学 一种具有高储能密度的Rex/3(Ba0.06Bi0.47Na0.47)1-xTi1-xRxO3无铅反铁电陶瓷及其制备方法
CN105601264A (zh) * 2015-12-30 2016-05-25 哈尔滨工业大学 一种高致密化多铁性(1-y)BiFeO3-yBi1-xRxFeO3复合陶瓷的制备方法
CN105967673A (zh) * 2016-05-09 2016-09-28 武汉理工大学 单相多铁性铁酸铅镧陶瓷材料及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
A.A. CRISTÓBAL ET AL.: "Hyperfine and magnetic properties of a YxLa1-xFeO3 series (0≤x≦1)", 《MATERIALS RESEARCH BULLETIN》 *
A.A.CRISTÓBA ET AL.: "Mechanochemically assisted synthesis of yttrium–lanthanum orthoferrite: Structural and magnetic characterization", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
FANG WANG ET AL.: "Simultaneously improved magnetization and polarization of flexible film of BiFeO3-LaY2Fe5O12 composites", 《INTEGRATED FERROELECTRICS》 *
HONGJIE ZHAO ET AL.: "Microstructure and densification mechanism of low temperature sintering Bi-Substituted yttrium iron garnet", 《J ELECTROCERAM》 *
YING LIN ET AL.: "La0.1Bi0.9FeO3–BiY2Fe5O12 composites withsimultaneouslyimproved magnetization andpolarization", 《CERAMICS INTERNATIONAL》 *
ZHONGJUN CHENG ET AL.: "Effect of lanthanum ions on magnetic properties of Y3Fe5O12 nanoparticles", 《JOURNAL OF NANOPARTICAL RESEARCH》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988861A (zh) * 2022-06-09 2022-09-02 江西理工大学 六角稀土铁氧化物单相多铁性材料及其制备方法和应用

Similar Documents

Publication Publication Date Title
CN108140463A (zh) 铁氧体磁性材料和铁氧体烧结磁体
Huang et al. Microstructure and magnetic properties of Ca-substituted M-type SrLaCo hexagonal ferrites
CN105601264B (zh) 一种高致密化多铁性(1‑y)BiFeO3‑yBi1‑xRxFeO3复合陶瓷的制备方法
CN106187168A (zh) 一种低损耗高储能密度钛酸铋钠基陶瓷的制备方法
CN103880408B (zh) 一种高性能高致密化移相器用锂铁氧体材料及其制备方法
CN102757232A (zh) 铌镁酸铅-钛酸铅陶瓷的制备方法
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
CN105016728A (zh) 一种稀土掺杂非充满型钨青铜发光铁电材料及其制备方法
He et al. Synthesis, structure, magnetic and photoelectric properties of Ln 3 M 0.5 M′ Se 7 (Ln= La, Ce, Sm; M= Fe, Mn; M′= Si, Ge) and La 3 MnGaSe 7
CN109665833A (zh) 一种多铁复合材料及制备柔性多铁复合材料的方法
CN109516796A (zh) 一种多铁性固溶体陶瓷及其制备方法
CN103771847B (zh) 一种La0.1Bi0.9FeO3/BiY2Fe5O12磁电复合粉体及其制备方法
JP7347296B2 (ja) フェライト焼結磁石および回転電気機械
CN104788100B (zh) 一种锑离子取代铌离子以制备高品质因数的铌酸钕陶瓷
CN104649673A (zh) 一种镧离子取代钕离子以改善微波介电特性的铌酸钕陶瓷
CN104211124A (zh) 一种La1-xCaxMnO3纳米粉体的低温合成方法
CN110092658B (zh) 一种铋系陶瓷的制备方法
CN106747392A (zh) 一种Ho/Co复合掺杂Ni‑Zn铁氧体陶瓷的制备方法
CN104402426B (zh) 一种铁酸铋-钛酸铅-铌锌酸铅(bf-pt-pzn)三元体系高温压电陶瓷
CN103193476B (zh) 一种制备纯相BiFeO3陶瓷的湿化学方法
JP2021052097A (ja) フェライト焼結磁石
JP3506174B2 (ja) フェライト磁石及びその粉末の製造方法
CN110550945A (zh) 一种LuAG:Ce透明陶瓷的制备方法及LuAG:Ce透明陶瓷
CN105367049B (zh) 一种永磁铁氧体及其制备方法与应用
CN107010953A (zh) 一种单相多铁陶瓷材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190619

Address after: 518000 No. 45 Nanjiu Road, Gaoxin, Nanshan District, Shenzhen City, Guangdong Province

Applicant after: SHENZHEN INSTITUTE, NORTHWESTERN POLYTECHNICAL UNIVERSITY

Applicant after: Northwestern Polytechnical University

Address before: 710072 No. 127 Youyi West Road, Shaanxi, Xi'an

Applicant before: Northwestern Polytechnical University

TA01 Transfer of patent application right
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190423

WD01 Invention patent application deemed withdrawn after publication