CN109633592A - 运动观测站误差下外辐射源雷达时差与频差协同定位方法 - Google Patents

运动观测站误差下外辐射源雷达时差与频差协同定位方法 Download PDF

Info

Publication number
CN109633592A
CN109633592A CN201910048341.9A CN201910048341A CN109633592A CN 109633592 A CN109633592 A CN 109633592A CN 201910048341 A CN201910048341 A CN 201910048341A CN 109633592 A CN109633592 A CN 109633592A
Authority
CN
China
Prior art keywords
target
error
distance
observation station
velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910048341.9A
Other languages
English (en)
Other versions
CN109633592B (zh
Inventor
左燕
周夏磊
陈志峰
郭宝峰
谷雨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201910048341.9A priority Critical patent/CN109633592B/zh
Publication of CN109633592A publication Critical patent/CN109633592A/zh
Application granted granted Critical
Publication of CN109633592B publication Critical patent/CN109633592B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了运动观测站误差下外辐射源雷达时差与频差协同定位方法。本发明针对运动观测站位置和速度存在误差的情况下的外辐射源定位问题,根据获得的TDOA和FDOA量测,引入距离和距离变化率作为中间变量将强非线性方程伪线性化,建立目标位置和速度的估计模型。根据量测误差方差、观测站位置和速度误差设计优化权重,采用迭代加权最小二乘法进行估计。并利用中间变量与目标位置和速度之间的关联性构造关联最小二乘估计模型,改进上述目标位置估计结果。本发明引入中间变量,合理将非线性量测模型转化为伪线性,在保证估计性能的前提下降低外辐射源定位的复杂度;降低观测站误差对目标定位性能的影响。

Description

运动观测站误差下外辐射源雷达时差与频差协同定位方法
技术领域
本发明属于雷达数据处理领域,具体涉及一种运动观测站误差下外辐射源雷达TDOA/FDOA协同定位方法。
背景技术
外辐射源雷达不主动发射信号,依靠第三方辐射源(如电视广播信号、电视信号、手机信号、卫星导航信号等)探测目标,具有隐蔽性好、探测低空与超低空目标、低成本、抗干扰能力强等特点。外辐射源雷达接收站(观测站)接收发射源直达波信号和经目标散射的回波信号,通过信号处理得到目标到达角度(DOA)、到达时差(TDOA)和到达频差(FDOA)的量测信息。外辐射源雷达系统作为一种双/多基地结构的传感器组网系统,通过对量测值进行数据融合处理,实现目标无源定位。对于运动目标,通常联合TDOA和FDOA获得目标的位置和速度估计。
目前,现有联合TDOA/FDOA的定位算法主要针对目标辐射源定位系统,基于外辐射源的TDOA/FDOA定位算法研究较少。赵勇胜等针对单站外辐射源提出一种基于极大似然估计的TDOA/FDOA联合定位算法,上述外辐射源TDOA/FDOA定位问题未考虑观测站位置和速度存在误差的情况,而实际问题中观测站常常被安装在卫星、飞机、舰艇或地面车辆等运动平台上,尽管可由定位平台上的导航系统获得接收机位置,但是仍不可避免的含有随机误差。忽视误差的影响会导致目标定位估计性能严重下降,甚至产生虚假目标。因此,外辐射源TDOA/FDOA联合定位和误差校正是外辐射源雷达系统数据处理的一项关键技术。
发明内容
本发明考虑观测站位置和速度误差的影响,针对多发单收外辐射源雷达网TDOA/FDOA定位问题,提出了一种基于两步迭代加权最小二乘估计算法,通过估计运动目标状态(位置和速度),实现观测站位置误差的校正和运动目标精确定位。
本发明方法的具体步骤是:
步骤1.外辐射源雷达观测站(观测站)接收来自目标散射第三方辐射源发射的信号,得到目标TDOA和FDOA的量测信息;
步骤2.忽略量测噪声和观测站位置以及速度误差的影响,对TDOA量测信息,构造辅助变量RP,将TDOA非线性量测方程转化为伪线性估计方程;
步骤3.忽略量测噪声、观测站位置误差和观测站速度误差的影响,对TDOA伪线性方程对时间求导,构造辅助变量RP获得FDOA的伪线性估计方程;
步骤4.联立TDOA和FDOA伪线性估计方程,选择运动目标状态为估计向量X,构造线性估计方程Z=HX;
步骤5.考虑量测误差和观测站位置误差对系数矩阵H和Z的影响,构造线性方程ε1=Z1-H1X1=A1n+B1ΔSr
步骤6.根据观测站位置和速度误差、TDOA和FDOA量测误差设计权重W1,采用加权最小二乘估计算法得到目标位置XWLS=(H1 TW1H1)-1H1 TW1Z1
步骤7.在上述估计结果的基础上,考虑待求变量之间的关联性,采用关联最小二乘估计算法对步骤6的估计值进行改进。
本发明的有益效果:
1.考虑观测站位置和速度误差对目标定位性能的影响,根据观测站位置和速度误差以及TDOA和FDOA量测噪声设计优化指标权重,从而降低误差对目标定位性能的影响,提高目标定位精度。
2.通过引入中间变量,合理将多基外辐射源雷达强非线性量测模型转化为伪线性估计方程,在保证估计性能的前提下降低外辐射源定位的复杂度。
3.考虑辅助变量与待求变量之间的关联性,设计关联最小二乘算法,进一步减小估计误差。
具体实施方式:
运动观测站误差下外辐射源雷达时差与频差协同定位方法,该方法包括以下步骤:
步骤1:在多发单收外辐射源雷达网中,包括M个外辐射源和一个观测站。观测站的真实位置位于原点,真实速度为观测站实际位置为Sr=[x0,y0]T,实际速度为ΔSr为观测站的位置误差向量,为观测站的速度噪声向量,并假设为独立的高斯零均值白噪声,其协方差分别为E[ΔSrΔSr T]=QS第m个发射源的坐标向量为P个目标,第p个目标的坐标向量为速度向量为则TDOA和FDOA量测为
式中,分别为TDOA和FDOA的真实值, c为信号的传播速度c=3×108m/s,fm为外辐射源m的频率,||·||为欧几里得距离;为目标到观测站位置距离,目标到到观测站位置距离变化率 为目标到发射源位置距离,为目标到发射源位置距离变化率;为外辐射源到观测站位置距离,为外辐射源到观测站位置距离变化率;分别为TDOA和FDOA的量测误差,服从高斯分布。
由于外辐射源的位置和频率先验已知,因此TDOA和FDOA转化为距离和差um,p和距离和差变化率ρm,p
式中,分别为距离和差真实值、距离和差变化率真实值,
为距离和差量测噪声,服从均值为零,方差为Qu的高斯分布;为距离和差变化率量测噪声,服从均值为零,方差为Qρ的高斯分布。
步骤2:在双基距量测模型中引入中间变量Rp,忽略量测噪声和ΔSr的影响,将上述非线性方程(3)转化为伪线性方程,形式如下
其中,
步骤3:将式(5)等式两边同时对时间求导,得
其中,
步骤4:将目标位置目标速度辅助变量Rp作为待求变量,联立式(5)和(6),构造线性估计方程
Z=HX (7)
式中,
采用最小二乘估计值获得目标的估计值
步骤5:考虑距离和差量测误差和距离和差变化率以及观测站位置误差ΔSr和速度误差对H和Z的影响,将距离和差量测伪线性方程式(5)和距离和差变化率量测伪线性方程(6)中H和Z噪声分量提取出来,构造目标位置伪线性估计方程。将带入式(5),展开可得
其中,
带入式(6),展开可得
其中,
联立式(9)与式(10)写成矩阵形式:
ε1=Z1-H1X1=A1n+B1ΔS (11)
式中:
B11=diag(b11(1,1),…,b11(M,P)),
B12=diag(b12(1,1),…,b12(M,P)),
步骤6:根据距离和差量测误差和距离和差变化率以及观测站位置误差ΔSr和速度误差设计权重,采用加权最小二乘估计算法得到目标位置的估计值。
步骤6.1:初始化。令迭代次数k=0,将式(8)获得的最小二乘估计值作为目标初始估计值
步骤6.2:由估计值计算系数矩阵H1,Z1,A1和B1。根据观测站位置和速度误差、距离和差以及距离和差变化率量测噪声设计优化指标权重W1,则为量测噪声协方差矩阵,为观测站位置和速度误差的协方差矩阵。
步骤6.3:令k=k+1,采用加权最小二乘估计获得目标的位置估计值目标速度估计值以及中间变量
步骤6.4:判断 其中η1,η2,η3,η4为阈值;若满足条件算法迭代停止,得到目标的位置加权最小二乘估计值否则,转步骤6.2。
步骤7:考虑辅助变量与目标位置和速度关联性,设计关联最小二乘算法对步骤6的估计值XWLS进行改进,具体如下:
步骤7.1:构建关联最小二乘估计模型
ε2=Z2-H2X2=A2ΔX1+B2ΔS (12)
其中,
ΔX1=[ΔX1(1)T…ΔX1(P)T]T,A2=blkdiag(a2(1),…,a2(P))
步骤7.2:根据观测站位置误差和速度误差,以及目标状态X1的估计误差协方差设计权重W2=E[ε2ε2 T]=(A2cov(X1)A2 T+B2QβB2 T)-1,cov(X1)=(H1 TW1H1)T为目标状态X1的估计误差协方差。
步骤7.3:采用加权最小二乘法估计得到
步骤7.4:X2中变量包含目标位置与观测站位置之差的平方项以及目标速度与观测站速度之差的平方项,要求获得目标的位置需要对X2开根号,目标的位置具体公式如下:
其中,Π=diag{sgn(X1(3p-2)-x0)sgn(X1(3p-1)-y0)},sgn(·)为符号函数;
目标的速度公式为
获得目标的位置估计值和目标速度的估计值

Claims (1)

1.运动观测站误差下外辐射源雷达时差与频差协同定位方法,其特征在于该方法包括以下步骤:
步骤1:在多发单收外辐射源雷达网中,包括M个外辐射源和一个观测站;观测站的真实位置位于原点,真实速度为观测站实际位置为Sr=[x0,y0]T,实际速度为ΔSr为观测站的位置误差向量,为观测站的速度噪声向量,并假设为独立的高斯零均值白噪声,其协方差分别为E[ΔSrΔSr T]=QS第m个发射源的坐标向量为P个目标,第p个目标的坐标向量为速度向量为则TDOA和FDOA量测为
式中,分别为TDOA和FDOA的真实值, c为信号的传播速度c=3×108m/s,fm为外辐射源m的频率,||·||为欧几里得距离;为目标到观测站位置距离,目标到到观测站位置距离变化率 为目标到发射源位置距离,为目标到发射源位置距离变化率;为外辐射源到观测站位置距离,为外辐射源到观测站位置距离变化率;分别为TDOA和FDOA的量测误差,服从高斯分布;
由于外辐射源的位置和频率先验已知,因此TDOA和FDOA转化为距离和差um,p和距离和差变化率ρm,p
式中,分别为距离和差真实值、距离和差变化率真实值,
为距离和差量测噪声,服从均值为零,方差为Qu的高斯分布;
为距离和差变化率量测噪声,服从均值为零,方差为Qρ的高斯分布;
步骤2:在双基距量测模型中引入中间变量Rp,忽略量测噪声和ΔSr的影响,将上述非线性方程(3)转化为伪线性方程,形式如下
其中,
步骤3:将式(5)等式两边同时对时间求导,得
其中,
步骤4:将目标位置目标速度辅助变量Rp作为待求变量,联立式(5)和(6),构造线性估计方程
Z=HX (7)
式中,
采用最小二乘估计值获得目标的估计值
步骤5:考虑距离和差量测误差和距离和差变化率以及观测站位置误差ΔSr和速度误差对H和Z的影响,将距离和差量测伪线性方程式(5)和距离和差变化率量测伪线性方程(6)中H和Z噪声分量提取出来,构造目标位置伪线性估计方程;将带入式(5),展开可得
其中,
带入式(6),展开可得
其中,
联立式(9)与式(10)写成矩阵形式:
ε1=Z1-H1X1=A1n+B1ΔS (11)
式中:
B11=diag(b11(1,1),…,b11(M,P)),
B12=diag(b12(1,1),…,b12(M,P)),
步骤6:根据距离和差量测误差和距离和差变化率以及观测站位置误差ΔSr和速度误差设计权重,采用加权最小二乘估计算法得到目标位置的估计值;
步骤6.1:初始化;令迭代次数k=0,将式(8)获得的最小二乘估计值作为目标初始估计值
步骤6.2:由估计值计算系数矩阵H1,Z1,A1和B1;根据观测站位置和速度误差、距离和差以及距离和差变化率量测噪声设计优化指标权重W1,则 为量测噪声协方差矩阵,为观测站位置和速度误差的协方差矩阵;
步骤6.3:令k=k+1,采用加权最小二乘估计获得目标的位置估计值目标速度估计值以及中间变量
步骤6.4:判断 其中η1,η2,η3,η4为阈值;若满足条件算法迭代停止,得到目标的位置加权最小二乘估计值否则,转步骤6.2;
步骤7:考虑辅助变量与目标位置和速度关联性,设计关联最小二乘算法对步骤6的估计值XWLS进行改进,具体如下:
步骤7.1:构建关联最小二乘估计模型
ε2=Z2-H2X2=A2ΔX1+B2ΔS (12)
其中,X2=[X2(1)T … X2(P)T]T
ΔX1=[ΔX1(1)T … ΔX1(P)T]T,A2=blkdiag(a2(1),…,a2(P))
步骤7.2:根据观测站位置误差和速度误差,以及目标状态X1的估计误差协方差设计权重W2=E[ε2ε2 T]=(A2cov(X1)A2 T+B2QβB2 T)-1为目标状态X1的估计误差协方差;
步骤7.3:采用加权最小二乘法估计得到
步骤7.4:X2中变量包含目标位置与观测站位置之差的平方项以及目标速度与观测站速度之差的平方项,要求获得目标的位置需要对X2开根号,目标的位置具体公式如下:
其中,Π=diag{sgn(X1(3p-2)-x0)sgn(X1(3p-1)-y0)},sgn(·)为符号函数;
目标的速度公式为
获得目标的位置估计值和目标速度的估计值
CN201910048341.9A 2019-01-18 2019-01-18 运动观测站误差下外辐射源雷达时差与频差协同定位方法 Active CN109633592B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910048341.9A CN109633592B (zh) 2019-01-18 2019-01-18 运动观测站误差下外辐射源雷达时差与频差协同定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910048341.9A CN109633592B (zh) 2019-01-18 2019-01-18 运动观测站误差下外辐射源雷达时差与频差协同定位方法

Publications (2)

Publication Number Publication Date
CN109633592A true CN109633592A (zh) 2019-04-16
CN109633592B CN109633592B (zh) 2020-11-17

Family

ID=66061306

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910048341.9A Active CN109633592B (zh) 2019-01-18 2019-01-18 运动观测站误差下外辐射源雷达时差与频差协同定位方法

Country Status (1)

Country Link
CN (1) CN109633592B (zh)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174643A (zh) * 2019-05-16 2019-08-27 电子科技大学 一种无需噪声功率信息的基于到达时间差的定位方法
CN110389327A (zh) * 2019-07-29 2019-10-29 杭州电子科技大学 接收站位置误差下多站多外辐射源雷达双基距定位方法
CN110389326A (zh) * 2019-07-29 2019-10-29 杭州电子科技大学 一种接收站误差下多站多外辐射源雷达运动目标定位方法
CN111046591A (zh) * 2019-12-31 2020-04-21 哈尔滨工程大学 传感器幅相误差与目标到达角度的联合估计方法
CN111277950A (zh) * 2020-01-19 2020-06-12 中国科学院上海微系统与信息技术研究所 一种基于到达时差和到达频差的定位方法、装置及设备
CN111551896A (zh) * 2020-04-25 2020-08-18 中国人民解放军战略支援部队信息工程大学 抑制传感器位置速度先验误差的加权多维标度toa和foa多源协同定位方法
CN111948620A (zh) * 2020-06-30 2020-11-17 西安电子科技大学 一种基于多类型外辐射源的目标被动协同探测方法及系统
CN112068099A (zh) * 2020-07-31 2020-12-11 西安电子科技大学 基于误差补偿的多辐射源快速定位测速方法和装置
CN112114296A (zh) * 2020-09-18 2020-12-22 王玉冰 用于无人机协同tdoa/fdoa复合定位的参数估计方法及系统
CN112526449A (zh) * 2020-11-27 2021-03-19 中国人民解放军海军工程大学 一种利用运动目标对接收站位置信息进行校准的方法
CN113484854A (zh) * 2021-07-21 2021-10-08 电子科技大学 一种外辐射源位置未知的目标定位方法
CN114501298A (zh) * 2020-11-11 2022-05-13 中移物联网有限公司 一种定位方法、装置及电子设备
CN117110984A (zh) * 2023-07-25 2023-11-24 中国人民解放军战略支援部队信息工程大学 一种收发两端传感器存在时频同步误差条件下的TOAs/FOAs闭式协同定位方法

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174643A (zh) * 2019-05-16 2019-08-27 电子科技大学 一种无需噪声功率信息的基于到达时间差的定位方法
CN110389327A (zh) * 2019-07-29 2019-10-29 杭州电子科技大学 接收站位置误差下多站多外辐射源雷达双基距定位方法
CN110389326A (zh) * 2019-07-29 2019-10-29 杭州电子科技大学 一种接收站误差下多站多外辐射源雷达运动目标定位方法
CN111046591A (zh) * 2019-12-31 2020-04-21 哈尔滨工程大学 传感器幅相误差与目标到达角度的联合估计方法
CN111277950A (zh) * 2020-01-19 2020-06-12 中国科学院上海微系统与信息技术研究所 一种基于到达时差和到达频差的定位方法、装置及设备
CN111277950B (zh) * 2020-01-19 2021-02-26 中国科学院上海微系统与信息技术研究所 一种基于到达时差和到达频差的定位方法、装置及设备
CN111551896A (zh) * 2020-04-25 2020-08-18 中国人民解放军战略支援部队信息工程大学 抑制传感器位置速度先验误差的加权多维标度toa和foa多源协同定位方法
CN111948620A (zh) * 2020-06-30 2020-11-17 西安电子科技大学 一种基于多类型外辐射源的目标被动协同探测方法及系统
CN111948620B (zh) * 2020-06-30 2024-01-16 西安电子科技大学 一种基于多类型外辐射源的目标被动协同探测方法及系统
CN112068099B (zh) * 2020-07-31 2023-12-22 西安电子科技大学 基于误差补偿的多辐射源快速定位测速方法和装置
CN112068099A (zh) * 2020-07-31 2020-12-11 西安电子科技大学 基于误差补偿的多辐射源快速定位测速方法和装置
CN112114296A (zh) * 2020-09-18 2020-12-22 王玉冰 用于无人机协同tdoa/fdoa复合定位的参数估计方法及系统
CN112114296B (zh) * 2020-09-18 2024-04-16 王玉冰 用于无人机协同tdoa/fdoa复合定位的参数估计方法及系统
CN114501298A (zh) * 2020-11-11 2022-05-13 中移物联网有限公司 一种定位方法、装置及电子设备
CN114501298B (zh) * 2020-11-11 2023-11-10 中移物联网有限公司 一种定位方法、装置及电子设备
CN112526449A (zh) * 2020-11-27 2021-03-19 中国人民解放军海军工程大学 一种利用运动目标对接收站位置信息进行校准的方法
CN113484854B (zh) * 2021-07-21 2023-04-11 电子科技大学 一种外辐射源位置未知的目标定位方法
CN113484854A (zh) * 2021-07-21 2021-10-08 电子科技大学 一种外辐射源位置未知的目标定位方法
CN117110984A (zh) * 2023-07-25 2023-11-24 中国人民解放军战略支援部队信息工程大学 一种收发两端传感器存在时频同步误差条件下的TOAs/FOAs闭式协同定位方法

Also Published As

Publication number Publication date
CN109633592B (zh) 2020-11-17

Similar Documents

Publication Publication Date Title
CN109633592A (zh) 运动观测站误差下外辐射源雷达时差与频差协同定位方法
CN108717184B (zh) 基于误差校正的联合doa与toa单站无源定位方法
CN109633581B (zh) 基于外辐射源tdoa/fdoa误差校正下的定位方法
Park et al. Closed-form localization for distributed MIMO radar systems using time delay measurements
AU2009333351B2 (en) Method for position estimation using generalized error distributions
Gentner et al. Indoor positioning using time difference of arrival between multipath components
CN108387876B (zh) 基于ctls的外辐射源雷达网双基距误差配准方法
CN109633591A (zh) 一种观测站位置误差下外辐射源雷达双基距定位方法
CN110389327A (zh) 接收站位置误差下多站多外辐射源雷达双基距定位方法
Norouzi et al. Joint time difference of arrival/angle of arrival position finding in passive radar
CN108957387A (zh) 一种卫星信号二维到达角估计方法及系统
CN110389326A (zh) 一种接收站误差下多站多外辐射源雷达运动目标定位方法
CN111257901A (zh) 多径传播条件下散射体位置已知的定位方法
CN109932698A (zh) 基于地形信息的米波雷达低仰角估计方法
CN111107626A (zh) 一种基于时间反演的doa定位方法
CN112180323A (zh) 基于Wi-Fi的TOA与AOA室内联合定位算法研究
Yang et al. Optimal sensor placement for source tracking under synchronization offsets and sensor location errors with distance-dependent noises
CN111198387A (zh) 一种抗欺骗干扰的空时采样导航定位方法
CN109521418B (zh) 基于干涉场的地基雷达测角方法
Xiong Denoising of bistatic ranges for elliptic positioning
Davey et al. Detection and tracking of multipath targets in over-the-horizon radar
Nicolalde-Rodríguez et al. Robust passive coherent location via nonlinearly constrained least squares
Mohammadzadeh BLSML: A Combined Passive Method for Target Position Estimation using Brown's Least Square Error and Maximum Likelihood with Integrated Optimization
Nguyen et al. On the bias of pseudolinear estimators for time-of-arrival based localization
Song et al. Direct location for multiple passive radars without and with reference

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant