CN109633581B - 基于外辐射源tdoa/fdoa误差校正下的定位方法 - Google Patents

基于外辐射源tdoa/fdoa误差校正下的定位方法 Download PDF

Info

Publication number
CN109633581B
CN109633581B CN201811601502.4A CN201811601502A CN109633581B CN 109633581 B CN109633581 B CN 109633581B CN 201811601502 A CN201811601502 A CN 201811601502A CN 109633581 B CN109633581 B CN 109633581B
Authority
CN
China
Prior art keywords
target
distance
external radiation
tdoa
fdoa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811601502.4A
Other languages
English (en)
Other versions
CN109633581A (zh
Inventor
左燕
陈志猛
蔡立平
黄越雯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Dianzi University
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN201811601502.4A priority Critical patent/CN109633581B/zh
Publication of CN109633581A publication Critical patent/CN109633581A/zh
Application granted granted Critical
Publication of CN109633581B publication Critical patent/CN109633581B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/415Identification of targets based on measurements of movement associated with the target
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • G01S7/418Theoretical aspects

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明公开了一种基于外辐射源TDOA/FDOA误差校正下的定位方法。本发明针对量测存在系统偏差下外辐射源定位问题,根据获得的TDOA和FDOA量测信息,引入辅助变量将非线性方程转化为伪线性方程,建立目标位置、速度和系统偏差的估计模型,并采用迭代加权最小二乘法对其进行估计。并利用辅助变量与目标位置和速度之间的关联性构造关联最小二乘估计模型,采用关联加权最小二乘改进上述估计结果。本发明通过联合估计目标位置,速度和系统偏差,提高目标定位精度。本发明引入辅助变量,合理将非线性量测模型转化为伪线性估计模型,在保证估计性能的前提下降低外辐射源定位的复杂度。

Description

基于外辐射源TDOA/FDOA误差校正下的定位方法
技术领域
本发明属于雷达数据处理领域,具体涉及一种基于外辐射源雷达到达时差与到达频差联合误差校正与定位方法。
背景技术
外辐射源雷达不主动发射信号,依靠第三方辐射源(如手机通讯信号、电视广播信号等)探测目标,具有低成本、隐蔽性好、抗干扰能力强等特点。外辐射源雷达接收站接收发射源直达波信号和经目标散射的回波信号,通过信号处理得当目标到达角度(DOA)、到达时差(TDOA)和到达频差(FDOA)的量测信息。外辐射源雷达系统作为一种双/多基地结构的传感器组网系统,通过对量测值进行数据融合处理,实现目标无源定位。对于运动目标,通常联合TDOA和FDOA获得目标的位置和速度估计。
目前,现有联合TDOA和FDOA的定位算法主要针对目标辐射源定位系统,基于外辐射源的TDOA/FDOA定位算法研究较少。赵勇胜等针对单站外辐射源提出一种基于极大似然估计的TDOA/FDOA联合定位算法,上述外辐射源TDOA/FDOA定位问题需要来自同一目标的所有的量测值是无偏的。而实际问题中发射源与接收站之间时钟不同步,信号传播时参考路径与实际路径不同产生多径现象,以及外辐射源雷达系统偏差的存在使得量测值存在固定偏差。忽视偏差的影响会导致目标定位估计性能严重下降,甚至产生虚假目标。因此,外辐射源TDOA/FDOA联合误差校正和目标定位是外辐射源雷达系统数据处理的一项关键技术。
发明内容
本发明考虑偏差的影响,针对多发单收外辐射源雷达网TDOA/FDOA定位问题,提出了一种基于关联加权最小二乘估计算法,通过联合估计系统偏差和运动目标状态(位置和速度),实现系统偏差校正和运动目标精确定位。
本发明方法的具体步骤是:
步骤1.外辐射源雷达接收站(观测站)接收来自目标散射第三方辐射源发射的信号,得到目标到达时差TDOA和到达频差FDOA的量测信息;
步骤2.对TDOA量测信息,构造辅助变量Rp,将TDOA非线性量测方程转化为伪线性估计方程;
步骤3.TDOA伪线性方程对时间求导,联合FDOA非线性量测方程,构造辅助变量
Figure BDA0001922603980000021
获得FDOA的伪线性估计方程;
步骤4.联立TDOA和FDOA伪线性估计方程,选择系统偏差和运动目标状态为估计向量X,构造线性估计方程Z=HX+Be;
步骤5.通过迭代加权最小二乘算法得到运动目标状态(位置和速度)和系统偏差的估计值
Figure BDA0001922603980000022
步骤6.考虑辅助变量和目标位置速度及系统偏差之间的关联性,建立估计模型,采用关联最小二乘估计算法对步骤5的估计值进行改进。
本发明的有益效果:
1.考虑系统偏差对目标定位性能的影响,通过联合估计目标状态(位置和速度)和系统偏差,通过误差校正提高目标定位精度。
2.联合TDOA和FDOA单站外辐射源定位利用时域和频域两类量测信息,相较于单一信息源,有利于改善目标定位性能,而且对运动目标速度进行精确估计。
3.在多基结构外辐射源雷达系统中,通过引入辅助变量,合理将强非线性量测模型转化为伪线性估计模型,在保证估计性能的前提下降低外辐射源定位的复杂度。
4.考虑辅助变量与待求变量之间的关联性,设计关联加权最小二乘算法,进一步减小估计误差。
具体实施方式:
基于外辐射源TDOA/FDOA误差校正下的定位方法,该方法包括以下步骤:
步骤1:在多发单收外辐射源雷达网中,包括M个外辐射源和一个接收站,接收站为原点,第m个外辐射源位置为qm=[xm,ym]T,第p个目标的坐标位置为
Figure BDA0001922603980000023
则到达时差TDOA和到达频差FDOA量测为
Figure BDA0001922603980000024
Figure BDA0001922603980000025
式中,
Figure BDA0001922603980000026
Figure BDA0001922603980000027
分别为TDOA和FDOA的真实值,
Figure BDA0001922603980000028
Figure BDA0001922603980000029
c为信号的传播速度c=3×108m/s,fm为外辐射源m的频率,||·||为欧几里得距离;Δtm和Δfm分别为TDOA和FDOA的系统误差,etm,p和efm,p分别为TDOA和FDOA的量测误差,服从高斯分布。
外辐射源的位置、频率和观测站的位置通常是先验已知,因此TDOA和FDOA可转化为目标到达外辐射源与到达观测站的距离和um,p以及距离和变化率ρm,p
Figure BDA0001922603980000031
Figure BDA0001922603980000032
式中,
Figure BDA0001922603980000033
Figure BDA0001922603980000034
分别为距离和真实值、距离和变化率真实值,
Figure BDA0001922603980000035
δm、Δρm分别为对应的距离和系统误差、距离和变化率系统误差;
Figure BDA0001922603980000036
分别为距离和量测噪声、距离和变化率量测噪声,均服从高斯分布。
步骤2:在双基距量测模型中引入辅助变量Rp=||rp||,将非线性方程(3)转化为伪线性方程,形式如下
Figure BDA0001922603980000037
式中,
Figure BDA0001922603980000038
步骤3:将式(5)等式两边同时对时间求导,得
Figure BDA0001922603980000039
式中,
Figure BDA00019226039800000310
Figure BDA00019226039800000311
带入式(5)和式(6)可得:
Figure BDA00019226039800000312
Figure BDA00019226039800000313
步骤4:将目标位置
Figure BDA00019226039800000314
目标速度
Figure BDA00019226039800000315
辅助变量Rp
Figure BDA00019226039800000316
以及系统偏差δm和Δρm作为待求变量,联立式(7)和(8),构造线性估计方程
Z=HX+Be (9)
式中:
Figure BDA00019226039800000317
Figure BDA00019226039800000318
Figure BDA0001922603980000041
Figure BDA0001922603980000042
Figure BDA0001922603980000043
Figure BDA0001922603980000044
Figure BDA0001922603980000045
Figure BDA0001922603980000046
Figure BDA0001922603980000047
Figure BDA0001922603980000048
Figure BDA0001922603980000049
Figure BDA00019226039800000410
Figure BDA00019226039800000411
步骤5:采用迭代加权最小二乘法获得目标位置,速度与系统误差的估计值,具体如下:
步骤5.1.初始化,令迭代次数k=0,设置初值
Figure BDA00019226039800000412
Figure BDA00019226039800000413
步骤5.2.将
Figure BDA00019226039800000414
Figure BDA00019226039800000415
Figure BDA00019226039800000416
带入系数矩阵H和Z,令k=k+1,计算加权最小二乘估计值
Figure BDA00019226039800000417
其中,权重W=E[BeeTBT]-1=(B QBT)-1,Q为量测噪声协方差矩阵。获得目标位置估计值
Figure BDA00019226039800000418
Figure BDA00019226039800000419
目标速度估计值
Figure BDA00019226039800000420
Figure BDA00019226039800000421
中间变量
Figure BDA00019226039800000422
Figure BDA00019226039800000423
以及偏差估计值
Figure BDA00019226039800000424
Figure BDA00019226039800000425
步骤5.3.当
Figure BDA00019226039800000426
迭代停止,得到估计值
Figure BDA00019226039800000427
ε1和ε2为阈值;否则,转步骤5.2。
步骤6:考虑辅助变量
Figure BDA00019226039800000428
与目标位置和速度之间的关联性,设计关联最小二乘算法对步骤5的估计值
Figure BDA00019226039800000429
进行改进,具体如下:
步骤6.1.考虑辅助变量Rp
Figure BDA00019226039800000430
与目标位置和目标速度的相关性,选择目标位置
Figure BDA0001922603980000051
目标速度
Figure BDA0001922603980000052
距离和率误差Δρm和距离和误差δm作为变量,构造关联加权最小二乘估计模型如下
ZDLS=HDLSXDLS+BDLSΔXWLS (10)
式中:
Figure BDA0001922603980000053
Figure BDA0001922603980000054
HDLS=blkdiag{H′1,H′2,...H′P,EM,EM},
BDLS=blkdiag{B′1,B′2,...,B′P,EM,EM},
Figure BDA0001922603980000055
步骤6.2.对式(10)采用加权最小二乘估计求解,得到估计值如下
Figure BDA0001922603980000056
其中,
Figure BDA0001922603980000057
最终,得到目标位置
Figure BDA0001922603980000058
目标速度
Figure BDA0001922603980000059
距离和变化率误差Δρm和距离和误差δm

Claims (1)

1.基于外辐射源TDOA/FDOA误差校正下的定位方法,其特征在于:该方法包括以下步骤:
步骤1:在多发单收外辐射源雷达网中,包括M个外辐射源和一个接收站,接收站为原点,第m个外辐射源位置为qm=[xm,ym]T,第p个目标的坐标位置为
Figure FDA0002576650700000011
则到达时差TDOA和到达频差FDOA量测为
Figure FDA0002576650700000012
Figure FDA0002576650700000013
式中,
Figure FDA0002576650700000014
Figure FDA0002576650700000015
分别为TDOA和FDOA的真实值,
Figure FDA0002576650700000016
Figure FDA0002576650700000017
c为信号的传播速度c=3×108m/s,fm为外辐射源m的频率,||·||为欧几里得距离;△tm和△fm分别为TDOA和FDOA的系统误差,
Figure FDA0002576650700000018
Figure FDA0002576650700000019
分别为TDOA和FDOA的量测误差,服从高斯分布;
外辐射源的位置、频率和观测站的位置通常是先验已知,因此TDOA和FDOA可转化为目标到达外辐射源与到达观测站的距离和um,p以及距离和变化率ρm,p
Figure FDA00025766507000000110
Figure FDA00025766507000000111
式中,
Figure FDA00025766507000000112
Figure FDA00025766507000000113
分别为距离和真实值、距离和变化率真实值,
Figure FDA00025766507000000114
δm、△ρm分别为对应的距离和系统误差、距离和变化率系统误差;
Figure FDA00025766507000000115
分别为距离和量测噪声、距离和变化率量测噪声,均服从高斯分布;
步骤2:在双基距量测模型中引入辅助变量Rp=||rp||,将非线性方程(3)转化为伪线性方程,形式如下
Figure FDA00025766507000000116
式中,
Figure FDA00025766507000000117
步骤3:将式(5)等式两边同时对时间求导,得
Figure FDA0002576650700000021
式中,
Figure FDA0002576650700000022
Figure FDA0002576650700000023
Figure FDA0002576650700000024
带入式(5)和式(6)可得:
Figure FDA0002576650700000025
Figure FDA0002576650700000026
步骤4:将目标位置
Figure FDA0002576650700000027
目标速度
Figure FDA0002576650700000028
辅助变量Rp
Figure FDA0002576650700000029
以及系统偏差δm和△ρm作为待求变量,联立式(7)和(8),构造线性估计方程
Z=HX+Be (9)
式中:
Figure FDA00025766507000000210
Figure FDA00025766507000000211
H=[diag{H1(1) H1(2)...H1(P)},[H2(1) H2(2)...H2(P)]T],
Figure FDA00025766507000000212
Figure FDA00025766507000000213
Figure FDA00025766507000000214
h11(p)=diag(2u1,p1-2Rp,2u2,p2-2Rp,...,2uM,pM-2Rp),
Figure FDA00025766507000000215
Figure FDA00025766507000000216
B=diag{B1...BP},
Figure FDA00025766507000000217
B11(p)=diag{2(δ1+Rp-u1,p),...,2(δM+Rp-uM,p)},
B22(p)=diag{(δ1+Rp-u1,p),...,(δM+Rp-uM,p)},
Figure FDA00025766507000000218
步骤5:采用迭代加权最小二乘法获得目标位置,速度与系统误差的估计值,具体如下:
步骤5.1.初始化,令迭代次数k=0,设置初值
Figure FDA0002576650700000031
Figure FDA0002576650700000032
步骤5.2.将
Figure FDA0002576650700000033
Figure FDA0002576650700000034
Figure FDA0002576650700000035
带入系数矩阵H和Z,令k=k+1,计算加权最小二乘估计值
Figure FDA0002576650700000036
其中,权重W=E[BeeTBT]-1=(BQBT)-1,Q为量测噪声协方差矩阵;获得目标位置估计值
Figure FDA0002576650700000037
Figure FDA0002576650700000038
目标速度估计值
Figure FDA0002576650700000039
Figure FDA00025766507000000310
中间变量
Figure FDA00025766507000000311
Figure FDA00025766507000000312
以及偏差估计值
Figure FDA00025766507000000313
Figure FDA00025766507000000314
步骤5.3.当
Figure FDA00025766507000000315
迭代停止,得到估计值
Figure FDA00025766507000000316
ε1和ε2为阈值;否则,转步骤5.2;
步骤6:考虑辅助变量
Figure FDA00025766507000000317
Figure FDA00025766507000000318
与目标位置和速度之间的关联性,设计关联最小二乘算法对步骤5的估计值
Figure FDA00025766507000000319
进行改进,具体如下:
步骤6.1.考虑辅助变量Rp
Figure FDA00025766507000000320
与目标位置和目标速度的相关性,选择目标位置
Figure FDA00025766507000000321
目标速度
Figure FDA00025766507000000322
距离和变化率系统误差△ρm和距离和系统误差δm作为变量,构造关联加权最小二乘估计模型如下
ZDLS=HDLSXDLS+BDLS△XWLS (10)
式中:
Figure FDA00025766507000000323
Figure FDA00025766507000000324
HDLS=blkdiag{H′1,H′2,...H′P,EM,EM},
BDLS=blkdiag{B′1,B′2,...,B′P,EM,EM},
Figure FDA00025766507000000325
步骤6.2.对式(10)采用加权最小二乘估计求解,得到估计值如下
Figure FDA0002576650700000041
其中,
Figure FDA0002576650700000042
最终,得到目标位置
Figure FDA0002576650700000043
目标速度
Figure FDA0002576650700000044
距离和变化率系统误差△ρm和距离和系统误差δm
CN201811601502.4A 2018-12-26 2018-12-26 基于外辐射源tdoa/fdoa误差校正下的定位方法 Active CN109633581B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811601502.4A CN109633581B (zh) 2018-12-26 2018-12-26 基于外辐射源tdoa/fdoa误差校正下的定位方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811601502.4A CN109633581B (zh) 2018-12-26 2018-12-26 基于外辐射源tdoa/fdoa误差校正下的定位方法

Publications (2)

Publication Number Publication Date
CN109633581A CN109633581A (zh) 2019-04-16
CN109633581B true CN109633581B (zh) 2020-11-06

Family

ID=66077964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811601502.4A Active CN109633581B (zh) 2018-12-26 2018-12-26 基于外辐射源tdoa/fdoa误差校正下的定位方法

Country Status (1)

Country Link
CN (1) CN109633581B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110174643B (zh) * 2019-05-16 2021-01-05 电子科技大学 一种无需噪声功率信息的基于到达时间差的定位方法
CN110161475A (zh) * 2019-05-30 2019-08-23 杭州电子科技大学 一种时钟偏差下多发多收外辐射源雷达双基距定位方法
CN110426672B (zh) * 2019-07-23 2021-05-04 江南大学 一种基于区间分析的双迭代定位系统及其应用
CN110940976B (zh) * 2019-11-18 2022-03-08 杭州电子科技大学 基于误差校正的多站多外辐射源雷达运动目标定位方法
CN111103585B (zh) * 2019-11-29 2023-05-26 西安电子科技大学 基于双通道联合处理的合成孔径宽带信号源侦察成像方法
CN111257901A (zh) * 2020-02-28 2020-06-09 西南电子技术研究所(中国电子科技集团公司第十研究所) 多径传播条件下散射体位置已知的定位方法
CN111551895B (zh) * 2020-04-25 2021-01-26 中国人民解放军战略支援部队信息工程大学 基于加权多维标度和拉格朗日乘子的运动源tdoa和fdoa定位方法
CN111983572B (zh) * 2020-06-30 2024-03-26 江西锐迪航空科技发展有限公司 基于位置已知辐射源的接收机误差校正方法
CN111983561A (zh) * 2020-06-30 2020-11-24 江西锐迪航空科技发展有限公司 接收机位置误差下多无人机目标的tdoa定位方法
CN112444776A (zh) * 2020-10-21 2021-03-05 山东大学 一种基于tdoa和fdoa的无人机高精度定位方法
CN112540343B (zh) * 2020-11-19 2024-06-18 安徽大学 基于移动接收器协同分析的移动目标源定位方法
CN112526449B (zh) * 2020-11-27 2022-12-27 中国人民解放军海军工程大学 一种利用运动目标对接收站位置信息进行校准的方法
CN112904274A (zh) * 2021-01-21 2021-06-04 中国人民解放军海军工程大学 一种改进tdoa/fdoa算法的多运动目标定位方法
CN114910864B (zh) * 2022-06-14 2023-08-15 中国人民解放军战略支援部队信息工程大学 一种信号传播速度未知且存在信号频率漂移的多平台多普勒定位方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9891306B2 (en) * 2015-07-02 2018-02-13 Raytheon Company Geolocating a remote emitter
CN105759241B (zh) * 2015-12-18 2018-09-04 中国航天科工集团八五一一研究所 基于时差频差的直接定位方法
CN108469627B (zh) * 2018-03-16 2020-07-17 中国电子科技集团公司第三十六研究所 基于时频差的地面同频多静止辐射源定位方法及系统
CN108717184B (zh) * 2018-04-27 2020-09-01 杭州电子科技大学 基于误差校正的联合doa与toa单站无源定位方法
CN108387876B (zh) * 2018-04-27 2020-11-27 杭州电子科技大学 基于ctls的外辐射源雷达网双基距误差配准方法

Also Published As

Publication number Publication date
CN109633581A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109633581B (zh) 基于外辐射源tdoa/fdoa误差校正下的定位方法
CN108717184B (zh) 基于误差校正的联合doa与toa单站无源定位方法
CN109633592B (zh) 运动观测站误差下外辐射源雷达时差与频差协同定位方法
US9407317B2 (en) Differential ultra-wideband indoor positioning method
CN108387876B (zh) 基于ctls的外辐射源雷达网双基距误差配准方法
CN110261819B (zh) 基于时延补偿的多无人机协同定位方法
CN108363054B (zh) 用于单频网络和多路径传播的被动雷达多目标跟踪方法
CN107820206B (zh) 基于信号强度的非视距定位方法
CN110940976B (zh) 基于误差校正的多站多外辐射源雷达运动目标定位方法
Li et al. Improved two-step constrained total least-squares TDOA localization algorithm based on the alternating direction method of multipliers
CN111123197A (zh) 基于tdoa的目标辐射源定位方法
US20160182164A1 (en) Signal Strength Distribution Establishing Method and Wireless Positioning System
KR20090087557A (ko) 실내 측위 시스템 및 방법
CN116148829A (zh) 一种基于非合作外辐射源的多基雷达定位方法
Liu et al. A moving source localization method for distributed passive sensor using TDOA and FDOA measurements
Ho Localization through transceivers in unknown constant velocity trajectories
Nicolalde-Rodríguez et al. Robust passive coherent location via nonlinearly constrained least squares
Zhu et al. Localization optimization algorithm of maximum likelihood estimation based on received signal strength
CN107318159A (zh) 一种室内指纹定位方法
Mardeni et al. Mobile station localization in wireless cellular systems using UTDOA
Maceraudi et al. Multipath-aided direct path toa reconstruction for integrated uwb receivers in generalized nlos
Zhang et al. A cost‐efficient joint target location and clock bias estimation technique using multiple time step measurements in mobile bistatic sonar
Yang et al. Location tracking in mobile networks under correlated shadowing effects
CN116017281B (zh) 一种基于超宽带通信技术的室内定位方法
Farhi Dynamic location estimation by Kalman filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant