CN109633470B - 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 - Google Patents
基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 Download PDFInfo
- Publication number
- CN109633470B CN109633470B CN201910008583.5A CN201910008583A CN109633470B CN 109633470 B CN109633470 B CN 109633470B CN 201910008583 A CN201910008583 A CN 201910008583A CN 109633470 B CN109633470 B CN 109633470B
- Authority
- CN
- China
- Prior art keywords
- loop
- full charge
- time
- charge time
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 70
- 230000008569 process Effects 0.000 claims abstract description 41
- 239000012634 fragment Substances 0.000 claims abstract description 21
- 238000010277 constant-current charging Methods 0.000 claims abstract description 18
- 238000001914 filtration Methods 0.000 claims abstract description 17
- 239000013598 vector Substances 0.000 claims abstract description 10
- 238000007600 charging Methods 0.000 claims description 21
- 239000011159 matrix material Substances 0.000 claims description 18
- 238000013528 artificial neural network Methods 0.000 claims description 12
- 230000000737 periodic effect Effects 0.000 claims description 11
- 238000005070 sampling Methods 0.000 claims description 8
- 238000010280 constant potential charging Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 abstract description 12
- 230000007547 defect Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 31
- 238000004422 calculation algorithm Methods 0.000 description 6
- 238000012549 training Methods 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 229910052744 lithium Inorganic materials 0.000 description 4
- 230000032683 aging Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000013499 data model Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012886 linear function Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012706 support-vector machine Methods 0.000 description 1
Images
Landscapes
- Secondary Cells (AREA)
- Tests Of Electric Status Of Batteries (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910008583.5A CN109633470B (zh) | 2019-01-04 | 2019-01-04 | 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910008583.5A CN109633470B (zh) | 2019-01-04 | 2019-01-04 | 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109633470A CN109633470A (zh) | 2019-04-16 |
CN109633470B true CN109633470B (zh) | 2021-04-16 |
Family
ID=66057964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910008583.5A Active CN109633470B (zh) | 2019-01-04 | 2019-01-04 | 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109633470B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111460380B (zh) * | 2020-03-30 | 2022-03-18 | 上海交通大学 | 一种基于高斯过程回归的多工况续驶里程预测方法及系统 |
CN112034356B (zh) * | 2020-09-09 | 2023-03-28 | 哈尔滨工业大学 | 基于gp-ukf的电动汽车动力电池在线soh估算方法 |
CN112379272B (zh) | 2020-11-16 | 2021-09-21 | 北京理工大学 | 一种基于人工智能的锂离子电池系统soc估计方法 |
US12067809B2 (en) | 2021-12-17 | 2024-08-20 | Caterpillar Inc. | Machine and battery system prognostics |
CN116224127A (zh) * | 2023-04-03 | 2023-06-06 | 杭州科工电子科技有限公司 | 基于大数据分析的电池健康状态估算方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012098968A1 (ja) * | 2011-01-17 | 2012-07-26 | プライムアースEvエナジー株式会社 | 二次電池の充電状態推定装置 |
CN102798823A (zh) * | 2012-06-15 | 2012-11-28 | 哈尔滨工业大学 | 基于高斯过程回归的锂电池健康状况预测方法 |
CN102831100A (zh) * | 2012-07-18 | 2012-12-19 | 深圳职业技术学院 | 电池荷电状态估算方法及装置 |
CN104048675A (zh) * | 2014-06-26 | 2014-09-17 | 东南大学 | 一种基于高斯过程回归的组合导航系统故障诊断方法 |
CN106443471A (zh) * | 2016-09-20 | 2017-02-22 | 首都师范大学 | 锂离子电池soc估计方法及其硬件实现 |
CN107422269A (zh) * | 2017-06-16 | 2017-12-01 | 上海交通大学 | 一种锂电池在线soc测量方法 |
CN109061505A (zh) * | 2018-08-28 | 2018-12-21 | 淮阴工学院 | 一种锂电池soh的检测方法 |
-
2019
- 2019-01-04 CN CN201910008583.5A patent/CN109633470B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012098968A1 (ja) * | 2011-01-17 | 2012-07-26 | プライムアースEvエナジー株式会社 | 二次電池の充電状態推定装置 |
CN102798823A (zh) * | 2012-06-15 | 2012-11-28 | 哈尔滨工业大学 | 基于高斯过程回归的锂电池健康状况预测方法 |
CN102831100A (zh) * | 2012-07-18 | 2012-12-19 | 深圳职业技术学院 | 电池荷电状态估算方法及装置 |
CN104048675A (zh) * | 2014-06-26 | 2014-09-17 | 东南大学 | 一种基于高斯过程回归的组合导航系统故障诊断方法 |
CN106443471A (zh) * | 2016-09-20 | 2017-02-22 | 首都师范大学 | 锂离子电池soc估计方法及其硬件实现 |
CN107422269A (zh) * | 2017-06-16 | 2017-12-01 | 上海交通大学 | 一种锂电池在线soc测量方法 |
CN109061505A (zh) * | 2018-08-28 | 2018-12-21 | 淮阴工学院 | 一种锂电池soh的检测方法 |
Non-Patent Citations (2)
Title |
---|
Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression;Datong Liu 等;《Microelectronics Reliability》;20131231;第832-839页 * |
自适应平方根无迹卡尔曼滤波算法;李鹏 等;《控制理论与应用》;20100228;第27卷(第2期);第143-146页 * |
Also Published As
Publication number | Publication date |
---|---|
CN109633470A (zh) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109633477B (zh) | 基于ekf-gpr和日常片段数据的电池组健康状态的实时监控方法 | |
CN109633470B (zh) | 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 | |
CN113466723B (zh) | 确定电池荷电状态的方法及装置,电池管理系统 | |
CN111505506A (zh) | 一种多尺度卡尔曼滤波与无迹卡尔曼滤波融合的电池soc估算方法 | |
JP5058814B2 (ja) | バッテリーの状態及びパラメーターの推定システム及び方法 | |
CN104181470B (zh) | 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法 | |
JP4722857B2 (ja) | 進歩セルモデル予測技術を用いたバッテリパックの電力容量の計算方法 | |
CN106055775B (zh) | 一种粒子滤波与机理模型相结合的二次电池寿命预测方法 | |
CN110596593A (zh) | 基于智能自适应扩展卡尔曼滤波的锂离子电池soc估计方法 | |
Wei et al. | Lyapunov-based state of charge diagnosis and health prognosis for lithium-ion batteries | |
CN111220920B (zh) | 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法 | |
CN110058160A (zh) | 基于srekf的锂电池健康状态的预测方法 | |
CN113466725B (zh) | 确定电池荷电状态的方法及装置,存储介质及电子设备 | |
CN104035035A (zh) | 确定电池的残余容量的方法 | |
CN114839538A (zh) | 一种提取锂离子电池退化特征用于估计剩余寿命的方法 | |
CN110412472B (zh) | 一种基于正态伽马滤波的电池荷电状态估计方法 | |
CN112415412A (zh) | 估算电池soc值的方法和装置及车辆、存储介质 | |
CN112327169B (zh) | 一种锂电池剩余寿命预测方法 | |
Dong et al. | State of health estimation and remaining useful life estimation for Li-ion batteries based on a hybrid kernel function relevance vector machine | |
CN110927597B (zh) | 一种确定电池放电曲线的方法 | |
Babaeiyazdi et al. | State-of-Charge Prediction of Degrading Li-ion Batteries Using an Adaptive Machine Learning Approach | |
Saqli et al. | An overview of State of Charge (SOC) and State of Health (SOH) estimation methods of Li-ion batteries | |
CN117022048A (zh) | 一种电动汽车电池荷电状态的评估方法 | |
CN117110880A (zh) | 一种用于云端-边缘端协同的电池多状态联合估计方法 | |
CN115308611B (zh) | 考虑温度补偿的锂离子电池剩余寿命预测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Lu Wenbin Inventor after: Zhou Di Inventor after: Chen Ruiheng Inventor after: Zhao Xin Inventor before: Lu Wenbin Inventor before: Zhou Di Inventor before: Chen Ruiheng |
|
CB03 | Change of inventor or designer information | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20200522 Address after: 518000 Guangdong city of Shenzhen province Nanshan District Xili Street Tongfa Road No. 4 Applicant after: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION Applicant after: POTEVIO NEW ENERGY (SHENZHEN) Co.,Ltd. Address before: 518000 Guangdong city of Shenzhen province Nanshan District Xili Street Tongfa Road No. 4 Applicant before: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION |
|
TA01 | Transfer of patent application right | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: 518000 No. 4 Tongfa Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province Patentee after: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION Country or region after: China Patentee after: PetroChina Kunlun Connected Power Technology (Guangdong) Co.,Ltd. Address before: 518000 No. 4 Tongfa Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province Patentee before: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION Country or region before: China Patentee before: POTEVIO NEW ENERGY (SHENZHEN) CO.,LTD. |
|
CP03 | Change of name, title or address |