CN109633470B - 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 - Google Patents

基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 Download PDF

Info

Publication number
CN109633470B
CN109633470B CN201910008583.5A CN201910008583A CN109633470B CN 109633470 B CN109633470 B CN 109633470B CN 201910008583 A CN201910008583 A CN 201910008583A CN 109633470 B CN109633470 B CN 109633470B
Authority
CN
China
Prior art keywords
loop
full charge
time
charge time
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910008583.5A
Other languages
English (en)
Other versions
CN109633470A (zh
Inventor
卢文斌
周頔
陈锐衡
赵欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Petrochina Kunlun Connected Power Technology Guangdong Co ltd
Shenzhen Academy Of Metrology & Quality Inspection
Original Assignee
Potevio New Energy Shenzhen Co ltd
Shenzhen Academy Of Metrology & Quality Inspection
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Potevio New Energy Shenzhen Co ltd, Shenzhen Academy Of Metrology & Quality Inspection filed Critical Potevio New Energy Shenzhen Co ltd
Priority to CN201910008583.5A priority Critical patent/CN109633470B/zh
Publication of CN109633470A publication Critical patent/CN109633470A/zh
Application granted granted Critical
Publication of CN109633470B publication Critical patent/CN109633470B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)

Abstract

基于EKF‑GPR和日常片段数据的电池实时全充时间的估算方法,属于一种电池实时全充时间的估算方法。本发明针对现有的的缺陷,提供了一种测量周期短、过程简单、便于测量和记录、实用性强的电池实时全充时间的估算方法。本发明中,初始化赋值,对恒流充电的全充数据进行高斯过程回归,计算初始超参数;提取次的片段数据,利用首次的全充数据作为状态的初值,状态向量初始化为首次的全充时间,对当前次的片段数据进行扩展卡尔曼滤波‑高斯过程回归,估计当前次恒流充电所需要的全充时间;扩展卡尔曼滤波循环递推;预测全充时间:计算次片段数据的全充时间:更新循环:赋值,计算,重复步骤二到步骤五。本发明主要用于估算电池实时全充时间。

Description

基于EKF-GPR和日常片段数据的电池实时全充时间的估算 方法
技术领域
本发明属于一种电池实时全充时间的估算方法。
背景技术
在电动汽车电池管理系统中,实时监控动力锂电池的健康状态(State-of-Health,SOH)能准确反映出电池当前容量能力,可及时做好维护或更换的准备工作,有效发现和避免电池的不安全行为,为动力电池的稳定性提供保障。电池的健康状态SOH也被称为寿命状态,表征电池在长期使用过程中的老化情况和劣化程度的指标,通常根据电池使用一段时间后某些直接可测或间接计算得到的性能参数的实际值与标称值的比值估算。SOH受众多因素影响,与电池老化机理相关,其中很多参数都难以实时测量,因此相对于电池剩余电量(State-of-Charge,SOC)而言,SOH估算的复杂性和难度更高。
目前,对于电池SOH的研究主要包括直接测量法、基于模型的方法和数据驱动的方法。利用数据模型处理电池SOH预测的方法主要包括自回归、神经网络、支持向量机和卡尔曼滤波和粒子滤波等方法。这些方法所使用的SOH定义不完全一致,但多利用了电池的放电容量和标称容量比值。最常用的容量测试几乎均是静态条件下,将电池充至满电,在特定温度及恒定电流下放电到放电截止电压,并用电流值对放电时间进行积分计算得到容量。该方法的缺点是动力电池充放电周期较长且过程繁琐,加重了检测的时间成本。对于动力汽车锂电池而言,其充电过程相对放电过程更为稳定且易于测量和记录,因此考虑利用充电容量计算SOH更为实用。
因此,就需要一种测量周期短、过程简单、便于测量和记录、实用性强的电池实时全充时间的估算方法。
发明内容
本发明针对现有的电池实时全充时间估算方法周期长、过程繁琐、不易测量和记录、实用性差的缺陷,提供了一种测量周期短、过程简单、便于测量和记录、实用性强的电池实时全充时间的估算方法。
本发明所涉及的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法的技术方案如下:
本发明所涉及的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,它包括以下步骤:
步骤一、初始化:恒流充电电流I,恒压充电截止电压V,初次循环loop0,初始恒流充电下的全充数据d0=(t0(k),v0(k)),k=1,2,...,n0,n0为在恒流充电电流I充电下电池达到恒压充电截止电压V时的总采样时间点数,t0(k)是等间隔采样的离散相对时间,采样时间间隔ΔT=t0(k+1)-t0(k)为常数,v0(k)表示第k个采样点的电压;扩展卡尔曼滤波的初始状态矩阵A0
步骤二、高斯过程回归:利用周期协方差函数与神经网络协方差函数之和的协方差函数对恒流充电的全充数据d0进行高斯过程回归,计算初始超参数hyp0
步骤三、扩展卡尔曼滤波:提取loop=loop0+1次的片段数据d1=(t1(k),v1(k)),k=1,2,...,n1,利用loop0次的全充数据d0作为状态的初值,状态向量初始化为loop0次的全充时间xloop(1)=t0(n),对loop次的片段数据进行扩展卡尔曼滤波-高斯过程回归,估计第loop次恒流充电所需要的全充时间;
步骤四、扩展卡尔曼滤波循环递推;
步骤五、预测全充时间:计算loop次片段数据的全充时间xloop(1)
xloop(1)=xn+[ΔT×n-1] (29);
步骤六、更新循环:赋值给loop0=loop,计算(t0(k),v0(k))=(xloop(k),v1(k)),重复步骤二到步骤五。
进一步地:在步骤二中,所述周期协方差函数为:
Figure BDA0001936383650000021
其中,xp,xq∈Rn为任意随机变量,k1(xp,xq)为周期协方差函数,
Figure BDA0001936383650000022
为信号方差,l为方差尺度,集合
Figure BDA0001936383650000023
为超参数,xp为输入值,对角矩阵为
Figure BDA0001936383650000024
所述神经网络协方差函数为:
Figure BDA0001936383650000025
其中,k2(xp,xq)为神经网络协方差函数。
进一步地:在步骤三中,所述全充时间为:
xloop(k)=Akxloop(k-1)-ΔT+ω(k-1) (21)
z(k)=GP(d0,xloop(k))+v(k) (22)
其中,Ak表示扩展卡尔曼滤波的当前状态矩阵,GP表示高斯回归函数,z(k)表示电压值,xloop(k)表示全充时间,z(k)为利用超参数hyp0和初始全充数据d0做高斯过程回归预测的电压值。
进一步地:在步骤四中,所述扩展卡尔曼滤波循环递推:
预测方程为:
Figure BDA0001936383650000031
Figure BDA0001936383650000032
其中,
Figure BDA0001936383650000033
为状态量,R(k-1)为状态误差,
Figure BDA0001936383650000034
为观测量,Q(k)为观测误差,利用差商近似雅可比矩阵进行更新模型为:
Figure BDA0001936383650000035
其中,
Figure BDA0001936383650000036
为观测量和状态量的关系量;
所述计算增益为:
Figure BDA0001936383650000037
其中
Figure BDA0001936383650000038
为状态函数;
更新状态为:
Figure BDA0001936383650000039
更新协方差:
Figure BDA00019363836500000310
其中,R(k)为噪声ω(k)的协方差,Q(k)为噪声v(k)的协方差,且噪声ω(k)和v(k)均为设定值。
本发明所涉及的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法的有益效果是:
本发明涉及的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,基于扩展卡尔曼滤波和高斯过程回归的全充时间估算方法,解决了片段充电数据预测电池实时全充时间的问题。充放电容量均随着充放电次数的增加呈现总体下降和局部再升的趋势,两者具有强相关性。预测的全充时间在变化趋势上与真实值完全一致。80次预测结果的平均相对误差为0.0175。由于电池的初始充放电循环数据不稳定,实验数据做了预处理,我们采用真实电池充电的第100次循环数据作为初始全充数据,而忽略了前99次循环的数据。在前50次循环中估计全充时间的误差在2%以内。随着循环次数的增加误差也逐渐增大。误差增加的原因主要有两点:一是误差随着迭代次数的增加会累积,二是因为某些片段数据的数据量过少。实际应用时,应在一定的充放电循环后人为进行一次全放全充操作以更新初始全充时间值来减少预测误差。通过实验仿真,验证了高斯过程扩展卡尔曼滤波在锂电池健康状态评估中的针对性、有效性和实时性。
附图说明
图1为电池实时全充时间的估算方法流程图;
图2为电池充电容量和放电容量对比曲线图;
图3为利用充电容量和放电容量计算的SOH对比曲线图;
图4为使用放电容量作为标称容量的SOH对比曲线图;
图5为估计的全充时间和真实的全充时间曲线图;
图6为估计的全充时间绝对误差曲线图;
图7为估计的全充时间相对误差曲线图;
图8为估计的全充时间相对误差绝对值曲线图。
具体实施方式
下面结合实施例对本发明的技术方案做进一步的说明,但并不局限于此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
结合图1说明本实施例,在本实施例中,本发明所涉及的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,它包括以下步骤:
步骤一、初始化:恒流充电电流I,恒压充电截止电压V,初次循环loop0,初始恒流充电下的全充数据d0=(t0(k),v0(k)),k=1,2,...,n0,n0为在恒流充电电流I充电下电池达到恒压充电截止电压V时的总采样时间点数,t0(k)是等间隔采样的离散相对时间,采样时间间隔ΔT=t0(k+1)-t0(k)为常数,v0(k)表示第k个采样点的电压;扩展卡尔曼滤波的初始状态矩阵A0
步骤二、高斯过程回归:利用周期协方差函数与神经网络协方差函数之和的协方差函数对恒流充电的全充数据d0进行高斯过程回归,计算初始超参数hyp0
步骤三、扩展卡尔曼滤波:提取loop=loop0+1次的片段数据d1=(t1(k),v1(k)),k=1,2,...,n1,利用loop0次的全充数据d0作为状态的初值,状态向量初始化为loop0次的全充时间xloop(1)=t0(n),对loop次的片段数据进行扩展卡尔曼滤波-高斯过程回归,估计第loop次恒流充电所需要的全充时间;
步骤四、扩展卡尔曼滤波循环递推;
步骤五、预测全充时间:计算loop次片段数据的全充时间:
xloop(1)=xn+[ΔT×n-1] (29);
步骤六、更新循环:赋值给loop0=loop,计算(t0(k),v0(k))=(xloop(k),v1(k)),重复步骤二到步骤五。
更为具体地:在步骤二中,所述周期协方差函数为:
Figure BDA0001936383650000051
其中,xp为输入值,xp,xq∈Rn为任意随机变量,k1(xp,xq)为周期协方差函数,
Figure BDA0001936383650000052
为信号方差,l为方差尺度,集合
Figure BDA0001936383650000053
为超参数,对角矩阵为
Figure BDA0001936383650000054
所述神经网络协方差函数为:
Figure BDA0001936383650000055
其中,k2(xp,xq)为神经网络协方差函数。
更为具体地:在步骤三中,所述全充时间为:
xloop(k)=Akxloop(k-1)-ΔT+ω(k-1) (21)
z(k)=GP(d0,xloop(k))+v(k) (22)
其中,Ak表示扩展卡尔曼滤波的当前状态矩阵,GP表示高斯回归函数,z(k)表示电压值,xloop(k)表示全充时间,z(k)为利用超参数hyp0和初始全充数据d0做高斯过程回归预测的电压值。
更为具体地:在步骤四中,所述扩展卡尔曼滤波循环递推:
预测方程为:
Figure BDA0001936383650000061
Figure BDA0001936383650000062
其中,
Figure BDA0001936383650000063
为状态量,R(k-1)为状态误差,
Figure BDA0001936383650000064
为观测量,Q(k)为观测误差,利用差商近似雅可比矩阵进行更新模型为:
Figure BDA0001936383650000065
其中,
Figure BDA0001936383650000066
为观测量和状态量的关系量;
所述计算增益为:
Figure BDA0001936383650000067
其中
Figure BDA0001936383650000068
为状态函数;
更新状态为:
Figure BDA0001936383650000069
更新协方差:
Figure BDA00019363836500000610
其中,R(k)为噪声ω(k)的协方差,Q(k)为噪声v(k)的协方差,且噪声ω(k)和v(k)均为设定值。
电池容量是指在某一定的条件下,活性物质参加电化学反应所释放电量的多少,有时也会将电池所能充入的最大电量作为电池容量,将电池容量类比到电动汽车的动力电池容量,基于恒流充电的动力电池SOC计算公式如下:
Figure BDA00019363836500000611
式(3)中,C表示电池充电SOC,C0表示初始SOC,I表示电池充电电流,t表示电池充电时从初始时刻充电到截止电压所需的时间;若假设电池从0容量开始充电,则基于充电容量的电池SOC为
Figure BDA0001936383650000071
由于电动汽车在实际使用过程中不会等到电池将全部电量都用尽后才进行充电,在用动力电池在实际的使用过程中,充电情况一般是类似SOC从20%到80%或者SOC从40%到100%这样的片段充电数据,这样无法从每次充电情况来判断实时全充时间和电池可用容量。因此,利用从任意的起始SOC值处进行恒流充电至100%这样的片段数据进行锂电池当前全充时间预测,进而预测电池的当前SOC和SOH。
扩展卡尔曼滤波算法(EKF)是由卡尔曼滤波转变而来,其算法的核心在于对非线性系统的局部线性化。其实质为基于递归估算的最优自适应算法。EKF是广泛使用的非线性系统的最优状态估计算法。
通常情况下,EKF包括状态方程和量测方程,其非线性系统方程的表示如下:
Figure BDA0001936383650000072
式(6)中,x(k-1)为k时刻系统的状态向量,z(k-1)为k时刻系统的量测向量,u(k-1)为控制输入向量;ω(k-1)为系统噪声,v(k)为量测噪声,f(·),h(·)分别为非线性函数。使用一阶泰勒展开式使系统的非线性状态空间方程转换为线性的状态空间方程,再结合使用卡尔曼滤波算法可以实现扩展卡尔曼滤波的递推。
高斯过程的全部统计特性完全由其均值函数和协方差函数决定:
Figure BDA0001936383650000073
式中xp,xq∈Rn为任意随机变量。因此,高斯过程可定义为:f(x)~GP(m(x),k(xp,xq))。
设给定包含N个观测数据点D=(X,y)={(x1,y1),(x2,y2),...,(xN,yN)},其中X=[x1 x2 ... xN]为N个n维训练输入矢量xi联合的n×N维输入矩阵,y=[y1 y2 ... yN]T为训练输出标量的联合输出矢量,yi∈R。
考虑如下回归模型
yp=f(xp)+εp (8)
其中,xp(p=1,…,N)表示输入值,f表示函数关系,yp(p=1,…,N)表示输出值,εp表示加性高斯噪声,所述加性高斯噪声的服从均值为0、方差为
Figure BDA0001936383650000081
Figure BDA0001936383650000082
高斯过程回归根据训练集学习输入x与输出y之间的非线性映射关系
Figure BDA00019363836500000812
从而对新的输入x*来预测其输出y*。观测值y和预测值f*的联合分布函数为
Figure BDA0001936383650000083
其中k(X,x*)表示训练集和预测值的协方差函数,k(x*,x*)表示预测值的协方差函数。
根据贝叶斯公式,如果知道了先验分布,那么后验分布就可以根据贝叶斯线性模型得到
Figure BDA0001936383650000084
Figure BDA0001936383650000085
Figure BDA0001936383650000086
高斯过程通常会有不同的协方差函数,常见的协方差函数为平方指数协方差函数
Figure BDA0001936383650000087
其中
Figure BDA0001936383650000088
为信号方差,l为方差尺度,集合
Figure BDA0001936383650000089
为超参数,可以通过最大化训练集的对数边缘似然函数得到。
高斯过程回归学习扩展卡尔曼滤波的状态方程、量测方程以及噪声协方差矩阵,训练数据为Dloop-1=(zloop-1(1),zloop-1(2),...,zloop-1(N))为上一次循环的量测值,xloop(k)为当前循环数下的第k个状态量,同时也是高斯过程回归的测试输入值。高斯过程将状态方程和量测方程表示为:
xloop(k)=GPf([xloop(k-1),uloop(k-1)])+ω(k-1) (14)
zloop(k)=GPh(Dloop-1,xloop(k))+v(k) (15)
Figure BDA00019363836500000810
Figure BDA00019363836500000811
其中,R和Q均为噪声方差,GP为高斯过程回归。根据SOH历史数据的一般规律,即整体下降,局部再升性,选择线性函数m(x)=ax+b作为高斯过程回归的均值函数,使用式(18)作为高斯过程回归的协方差函数,
k(xp,xq)=k1(xp,xq)+k2(xp,xq) (18)
其中神经网络协方差函数为
Figure BDA0001936383650000091
对角矩阵为
Figure BDA0001936383650000092
周期协方差函数为
Figure BDA0001936383650000093
设此时的超参数
Figure BDA0001936383650000094
将高斯过程回归融入扩展卡尔曼滤波中,采用高斯过程回归方法提高系统模型精度,具体的递归预测算法如下:
1)初始化:恒流充电电流I,恒压充电截止电压V,初次循环loop0,初始恒流充电下的全充数据d0=(t0(k),v0(k)),k=1,2,...,n0,n0为在恒流I充电下电池达到截止电压V时的总采样时间点数,t0(k)是等间隔采样的离散相对时间,采样时间间隔ΔT=t0(k+1)-t0(k)为常数,v0(k)表示第k个采样点的电压;扩展卡尔曼滤波的初始状态矩阵A0
2)高斯过程回归:利用周期协方差函数与神经网络协方差函数之和的协方差函数对恒流充电的全充数据d0进行高斯过程回归,计算初始超参数hyp0
3)扩展卡尔曼滤波:提取loop=loop0+1次的片段数据d1=(t1(k),v1(k)),k=1,2,...,n1,利用loop0次的全充数据d0作为状态的初值,状态向量初始化为loop0次的全充时间xloop(1)=t0(n),对loop次的片段数据进行扩展卡尔曼滤波-高斯过程回归,估计第loop次恒流充电所需要的全充时间:
xloop(k)=Akxloop(k-1)-ΔT+ω(k-1) (21)
z(k)=GP(d0,xloop(k))+v(k) (22)
其中Ak表示扩展卡尔曼滤波的当前状态矩阵,GP表示高斯回归函数,z(k)表示电压值,xloop(k)表示全充时间,z(k)为利用超参数hyp0和初始全充数据d0做高斯过程回归预测的电压值。
4)扩展卡尔曼滤波循环递推:
预测方程:
Figure BDA0001936383650000101
Figure BDA0001936383650000102
利用差商近似雅可比矩阵进行更新模型:
Figure BDA0001936383650000103
计算增益:
Figure BDA0001936383650000104
更新状态:
Figure BDA0001936383650000105
更新协方差:
Figure BDA0001936383650000106
其中,R(k)为噪声ω(k)的协方差,Q(k)为噪声v(k)的协方差,且噪声ω(k)和v(k)均为设定值。
5)预测全充时间:计算loop次片段数据的全充时间:
xloop(1)=xn+[ΔT×n-1] (29)
6)更新循环:赋值给loop0=loop,计算(t0(k),v0(k))=(xloop(k),v1(k)),重复2-5。
图2为电池的充放电容量分别随充放电循环的变化规律图,可以看出,充放电容量均随着充放电次数的增加呈现总体下降和局部再升的趋势,两者的容量曲线具有强相关性。
图3为利用图2的充放电容量计算的SOH值对比图,可以看到,两种方法计算的SOH存在一定误差。
图4为改进前后的SOH对比图,这种误差主要是由于初始标称容量的差距引起的,因此提出利用放电标称容量作为充电的标称值计算SOH,很明显,SOH的误差极大缩小。
图5是利用片段的充电数据估计的全充时间和真实的全充时间的对比图。可以看到,预测的全充时间在变化趋势上与真实值完全一致。
图6、图7和图8分别展示了估计的全充时间和真实的全充时间的绝对误差、相对误差以及相对误差绝对值。根据图8可以计算,80次预测结果的平均相对误差为0.0175。由于电池的初始充放电循环数据不稳定,实验数据做了预处理,我们采用真实电池充电的第100次循环数据作为初始全充数据,而忽略了前99次循环的数据。从图6-8得到,在前50次循环中估计全充时间的误差在2%以内。随着循环次数的增加误差也逐渐增大。误差增加的原因主要有两点:一是误差随着迭代次数的增加会累积,二是因为某些片段数据的数据量过少。实际应用时,应在一定的充放电循环后人为进行一次全放全充操作以更新初始全充时间值来减少预测误差。

Claims (4)

1.基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,其特征在于,它包括以下步骤:
步骤一、初始化:恒流充电电流I,恒压充电截止电压V,初次循环loop0,初始恒流充电下的全充数据d0=(t0(k),v0(k)),k=1,2,...,n0,n0为在恒流充电电流I充电下电池达到恒压充电截止电压V时的总采样时间点数,t0(k)是等间隔采样的离散相对时间,采样时间间隔ΔT=t0(k+1)-t0(k)为常数,v0(k)表示第k个采样点的电压;扩展卡尔曼滤波的初始状态矩阵A0
步骤二、高斯过程回归:利用周期协方差函数与神经网络协方差函数之和的协方差函数对恒流充电的全充数据d0进行高斯过程回归,计算初始超参数hyp0
步骤三、扩展卡尔曼滤波:提取loop=loop0+1次的片段数据d1=(t1(k),v1(k)),k=1,2,...,n1,利用loop0次的全充数据d0作为状态的初值,状态向量初始化为loop0次的全充时间xloop(1)=t0(n),对loop次的片段数据进行扩展卡尔曼滤波-高斯过程回归,估计第loop次恒流充电所需要的全充时间;
步骤四、扩展卡尔曼滤波循环递推;
步骤五、预测全充时间:计算loop次片段数据的全充时间xloop(1)
xloop(1)=xn+[ΔT×n-1] (29);
步骤六、更新循环:赋值给loop0=loop,计算(t0(k),v0(k))=(xloop(k),v1(k)),重复步骤二到步骤五。
2.根据权利要求1所述的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,其特征在于,在步骤二中,所述周期协方差函数为:
Figure FDA0002963515490000011
其中,xp为输入值,xp,xq∈Rn为任意随机变量,k1(xp,xq)为周期协方差函数,
Figure FDA0002963515490000012
为信号方差,l为方差尺度,集合
Figure FDA0002963515490000013
为超参数,对角矩阵为Λ=diag(l-2);
所述神经网络协方差函数为:
Figure FDA0002963515490000021
其中,k2(xp,xq)为神经网络协方差函数。
3.根据权利要求1所述的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,其特征在于,在步骤三中,所述全充时间为:
xloop(k)=Akxloop(k-1)-ΔT+ω(k-1) (21)
z(k)=GP(d0,xloop(k))+v(k) (22)
其中,Ak表示扩展卡尔曼滤波的当前状态矩阵,GP表示高斯回归函数,xloop(k)表示全充时间,z(k)为利用超参数hyp0和初始全充数据d0做高斯过程回归预测的电压值。
4.根据权利要求1所述的基于EKF-GPR和日常片段数据的电池实时全充时间的估算方法,其特征在于,在步骤四中,所述扩展卡尔曼滤波循环递推:
预测方程为:
Figure FDA0002963515490000022
Figure FDA0002963515490000023
其中,
Figure FDA0002963515490000024
为状态量,R(k-1)为状态误差,
Figure FDA0002963515490000025
为观测量,
利用差商近似雅可比矩阵进行更新模型为:
Figure FDA0002963515490000026
其中,
Figure FDA0002963515490000027
为观测量和状态量的关系量;
计算增益为:
Figure FDA0002963515490000028
其中
Figure FDA0002963515490000029
为状态函数;
更新状态为:
Figure FDA00029635154900000210
更新协方差:
Figure FDA00029635154900000211
其中,R(k)为噪声ω(k)的协方差,Q(k)为噪声v(k)的协方差,且噪声ω(k)和v(k)均为设定值。
CN201910008583.5A 2019-01-04 2019-01-04 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法 Active CN109633470B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910008583.5A CN109633470B (zh) 2019-01-04 2019-01-04 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910008583.5A CN109633470B (zh) 2019-01-04 2019-01-04 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法

Publications (2)

Publication Number Publication Date
CN109633470A CN109633470A (zh) 2019-04-16
CN109633470B true CN109633470B (zh) 2021-04-16

Family

ID=66057964

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910008583.5A Active CN109633470B (zh) 2019-01-04 2019-01-04 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法

Country Status (1)

Country Link
CN (1) CN109633470B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111460380B (zh) * 2020-03-30 2022-03-18 上海交通大学 一种基于高斯过程回归的多工况续驶里程预测方法及系统
CN112034356B (zh) * 2020-09-09 2023-03-28 哈尔滨工业大学 基于gp-ukf的电动汽车动力电池在线soh估算方法
CN112379272B (zh) 2020-11-16 2021-09-21 北京理工大学 一种基于人工智能的锂离子电池系统soc估计方法
US12067809B2 (en) 2021-12-17 2024-08-20 Caterpillar Inc. Machine and battery system prognostics
CN116224127A (zh) * 2023-04-03 2023-06-06 杭州科工电子科技有限公司 基于大数据分析的电池健康状态估算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
CN102798823A (zh) * 2012-06-15 2012-11-28 哈尔滨工业大学 基于高斯过程回归的锂电池健康状况预测方法
CN102831100A (zh) * 2012-07-18 2012-12-19 深圳职业技术学院 电池荷电状态估算方法及装置
CN104048675A (zh) * 2014-06-26 2014-09-17 东南大学 一种基于高斯过程回归的组合导航系统故障诊断方法
CN106443471A (zh) * 2016-09-20 2017-02-22 首都师范大学 锂离子电池soc估计方法及其硬件实现
CN107422269A (zh) * 2017-06-16 2017-12-01 上海交通大学 一种锂电池在线soc测量方法
CN109061505A (zh) * 2018-08-28 2018-12-21 淮阴工学院 一种锂电池soh的检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012098968A1 (ja) * 2011-01-17 2012-07-26 プライムアースEvエナジー株式会社 二次電池の充電状態推定装置
CN102798823A (zh) * 2012-06-15 2012-11-28 哈尔滨工业大学 基于高斯过程回归的锂电池健康状况预测方法
CN102831100A (zh) * 2012-07-18 2012-12-19 深圳职业技术学院 电池荷电状态估算方法及装置
CN104048675A (zh) * 2014-06-26 2014-09-17 东南大学 一种基于高斯过程回归的组合导航系统故障诊断方法
CN106443471A (zh) * 2016-09-20 2017-02-22 首都师范大学 锂离子电池soc估计方法及其硬件实现
CN107422269A (zh) * 2017-06-16 2017-12-01 上海交通大学 一种锂电池在线soc测量方法
CN109061505A (zh) * 2018-08-28 2018-12-21 淮阴工学院 一种锂电池soh的检测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression;Datong Liu 等;《Microelectronics Reliability》;20131231;第832-839页 *
自适应平方根无迹卡尔曼滤波算法;李鹏 等;《控制理论与应用》;20100228;第27卷(第2期);第143-146页 *

Also Published As

Publication number Publication date
CN109633470A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
CN109633477B (zh) 基于ekf-gpr和日常片段数据的电池组健康状态的实时监控方法
CN109633470B (zh) 基于ekf-gpr和日常片段数据的电池实时全充时间的估算方法
CN113466723B (zh) 确定电池荷电状态的方法及装置,电池管理系统
CN111505506A (zh) 一种多尺度卡尔曼滤波与无迹卡尔曼滤波融合的电池soc估算方法
JP5058814B2 (ja) バッテリーの状態及びパラメーターの推定システム及び方法
CN104181470B (zh) 一种基于非线性预测扩展卡尔曼滤波的电池soc估计方法
JP4722857B2 (ja) 進歩セルモデル予測技術を用いたバッテリパックの電力容量の計算方法
CN106055775B (zh) 一种粒子滤波与机理模型相结合的二次电池寿命预测方法
CN110596593A (zh) 基于智能自适应扩展卡尔曼滤波的锂离子电池soc估计方法
Wei et al. Lyapunov-based state of charge diagnosis and health prognosis for lithium-ion batteries
CN111220920B (zh) 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法
CN110058160A (zh) 基于srekf的锂电池健康状态的预测方法
CN113466725B (zh) 确定电池荷电状态的方法及装置,存储介质及电子设备
CN104035035A (zh) 确定电池的残余容量的方法
CN114839538A (zh) 一种提取锂离子电池退化特征用于估计剩余寿命的方法
CN110412472B (zh) 一种基于正态伽马滤波的电池荷电状态估计方法
CN112415412A (zh) 估算电池soc值的方法和装置及车辆、存储介质
CN112327169B (zh) 一种锂电池剩余寿命预测方法
Dong et al. State of health estimation and remaining useful life estimation for Li-ion batteries based on a hybrid kernel function relevance vector machine
CN110927597B (zh) 一种确定电池放电曲线的方法
Babaeiyazdi et al. State-of-Charge Prediction of Degrading Li-ion Batteries Using an Adaptive Machine Learning Approach
Saqli et al. An overview of State of Charge (SOC) and State of Health (SOH) estimation methods of Li-ion batteries
CN117022048A (zh) 一种电动汽车电池荷电状态的评估方法
CN117110880A (zh) 一种用于云端-边缘端协同的电池多状态联合估计方法
CN115308611B (zh) 考虑温度补偿的锂离子电池剩余寿命预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Lu Wenbin

Inventor after: Zhou Di

Inventor after: Chen Ruiheng

Inventor after: Zhao Xin

Inventor before: Lu Wenbin

Inventor before: Zhou Di

Inventor before: Chen Ruiheng

CB03 Change of inventor or designer information
TA01 Transfer of patent application right

Effective date of registration: 20200522

Address after: 518000 Guangdong city of Shenzhen province Nanshan District Xili Street Tongfa Road No. 4

Applicant after: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION

Applicant after: POTEVIO NEW ENERGY (SHENZHEN) Co.,Ltd.

Address before: 518000 Guangdong city of Shenzhen province Nanshan District Xili Street Tongfa Road No. 4

Applicant before: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 518000 No. 4 Tongfa Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee after: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION

Country or region after: China

Patentee after: PetroChina Kunlun Connected Power Technology (Guangdong) Co.,Ltd.

Address before: 518000 No. 4 Tongfa Road, Xili Street, Nanshan District, Shenzhen City, Guangdong Province

Patentee before: SHENZHEN ACADEMY OF METROLOGY & QUALITY INSPECTION

Country or region before: China

Patentee before: POTEVIO NEW ENERGY (SHENZHEN) CO.,LTD.

CP03 Change of name, title or address