CN109633422A - 基于扫描混淆的加密芯片安全测试方法 - Google Patents

基于扫描混淆的加密芯片安全测试方法 Download PDF

Info

Publication number
CN109633422A
CN109633422A CN201811571322.6A CN201811571322A CN109633422A CN 109633422 A CN109633422 A CN 109633422A CN 201811571322 A CN201811571322 A CN 201811571322A CN 109633422 A CN109633422 A CN 109633422A
Authority
CN
China
Prior art keywords
scanning
password
test
chip
correctly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811571322.6A
Other languages
English (en)
Other versions
CN109633422B (zh
Inventor
王伟征
王威
蔡烁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changsha University of Science and Technology
Original Assignee
Changsha University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changsha University of Science and Technology filed Critical Changsha University of Science and Technology
Priority to CN201811571322.6A priority Critical patent/CN109633422B/zh
Publication of CN109633422A publication Critical patent/CN109633422A/zh
Application granted granted Critical
Publication of CN109633422B publication Critical patent/CN109633422B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318583Design for test
    • G01R31/318588Security aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318544Scanning methods, algorithms and patterns
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/317Testing of digital circuits
    • G01R31/3181Functional testing
    • G01R31/3185Reconfiguring for testing, e.g. LSSD, partitioning
    • G01R31/318533Reconfiguring for testing, e.g. LSSD, partitioning using scanning techniques, e.g. LSSD, Boundary Scan, JTAG
    • G01R31/318583Design for test
    • G01R31/318586Design for test with partial scan or non-scannable parts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Storage Device Security (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及了一种基于扫描混淆的、保护加密芯片免受扫描攻击的可测试性设计结构。在常规扫描设计结构的基础上,该安全的可测试性设计结构引入了扫描密码寄存器及相关逻辑,要求在测试时先从芯片输入端口加载测试密码。只有加载了正确的测试密码,芯片测试才能正常进行。如果攻击者不了解正确的测试流程、没有正确的测试密码,那么他就不能在规定的时间内通过特定的输入端口加载正确的测试密码,从而在1‑2‑128的概率下不能为扫描链扫入任意的值,也不能从输出端观测到扫描链真实的状态,基于扫描的非入侵时攻击实际上是不可能进行的。本发明在不影响电路性能和测试质量、不增加测试时间的前提下,抵御了现有的基于扫描的非入侵时攻击。

Description

基于扫描混淆的加密芯片安全测试方法
技术领域
本发明属于硬件安全领域,更具体地,涉及一种用于保护加密芯片免受扫描攻击的安全测试结构。
背景技术
随着信息化和数字化社会的发展,信息安全和保密变得越来越重要,加密算法得到了广泛应用。无论高端安全处理器还是低端智能卡,为了提高数据的吞吐量,加密算法通常利用硬件模块来实现。加密算法对错误是零容忍的,因此加密硬件需要进行严格的测试。
扫描设计是一种广泛应用的集成电路可测试性设计技术,它通过直接控制和观测内部触发器的状态来增强电路的可测试性,把时序电路的测试问题转换成了组合电路的测试问题,从而降低了测试的难度。扫描设计在每个常规触发器的输入端添加了一个2选1的数据选择器(MUX),把它转变成了扫描触发器。每个扫描触发器有两个可选择的输入源:原常规触发器的数据输入(Di)和由其它扫描触发器驱动的扫描输入(Si)。电路的测试控制信号(TC)用作MUX的地址输入。通过把扫描触发器的输出端串接到其后续扫描触发器的Si,可构造出移位寄存器(也就是扫描链)。把第一个扫描触发器的Si绑定到芯片的一个输入引脚上,并把最后一个扫描触发器的输出绑定到芯片的一个输出引脚上,就可以通过芯片的输入输出引脚控制和观测电路的内部状态。
扫描设计是一把双刃剑。在加密芯片中插入扫描链,提高了它的可测试性,保证有故障的芯片能被筛查出来。但是扫描设计给密码芯片带来了安全隐患。有了扫描链的帮助,攻击者可以在芯片输入端加载预先设计好的明文,然后在扫描链的输出端观察加密的中间状态。最终根据已知明文、相应的中间状态以及加密算法的知识来破解密钥。据报道,DES(数据加密标准)芯片、AES(高级加密标准)芯片和ECC(椭圆加密算法)芯片等都可以被基于扫描的侧信道攻击所破解。
现有专利中,没找到与基于扫描混淆的加密芯片安全测试方法相似的专利发明。
发明内容
针对现有扫描技术的缺陷,本发明的目的在于提供一种安全的扫描设计方案,在不影响电路性能以及测试质量的前提下,克服基于扫描的侧信道攻击。
为实现上述目的,本发明提供了一种基于扫描混淆的可测试性设计方案。这种方案与常规的扫描设计相似的是,加密芯片可工作在两种模式:功能模式和测试模式。与常规的扫描设计不同的是,当加密芯片工作在测试模式时,只有输入正确的测试密码,扫描操作才能正常进行,否则在扫描链输出端观测到的中间状态会被混淆。
在常规扫描设计的基础上,本发明的基于扫描混淆的测试结构引入了密码寄存器,用来存储扫描密码。这些扫描密码用于控制一部分存储秘密信息的扫描单元。进入测试模式时,如果输入的寄存控制密码正确,该密码寄存器可以利用原始输入端口并行加载扫描密码。如果扫描密码也是正确的,一个时钟周期后,密码寄存器的时钟会被锁定为常数,正确的扫描密码被一直保存在寄存器中。在接下来的数据扫描期间,扫描链能够正常移入和移出数据。
进入测试模式时,如果输入了错误的寄存控制密码,则不能输入扫描密码。如果输入了正确的寄存控制密码和错误的扫描密码,对于受错误扫描密码位控制的扫描单元,其移入的值并非前一个扫描单元的值(实际上是被混淆的值)。而且,移位寄存器的时钟将始终处于激活状态,寄存器一直循环移位或者不断从输入端获取值,寄存器的状态不断变化,受寄存器控制的扫描单元的工作状态也会动态地发生变化,扫描数据被动态地混淆,扫描攻击是不可能进行的。
通过本发明所构思的以上技术方案,与现有技术相比,具有以下的有益效果:
1、能够克服现有的各种基于扫描的攻击,同时允许执行在线测试和离线测试、固定型测试和时延测试等所有类型的测试,对芯片测试没有任何影响。
2、本发明提出的安全测试结构,没有增加额外的输入、输出信号,对电路设计的影响较小,且不易被攻击者所察觉,安全性能高。
3、在本发明所构思的安全测试结构中,扫描密码在进入测试模式时通过原始输入端加载进入电路,不需要增加额外的测试时间,也不影响在测试模式下通过原始输入端加载测试数据。
4、面积开销低。本发明所构思的可测试性设计结构在现有可测试性结构的基础上仅增加了一个密码寄存器及相关逻辑(包括一个2位的计数器、一个D触发器、少数的逻辑门),增加的面积开销较小。
5、引入的额外硬件逻辑不在功能路径上。在功能模式下,传播延时没有任何改变,因此电路的性能没有降低。
附图说明
图1是基于扫描混淆的加密芯片安全测试结构示意图。
具体实施方式
下面结合附图对本发明进行详细描述。
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,本发明的安全扫描方案可通过在常规扫描结构的基础上加入了移位寄存器(R1)、一个2位的计数器,一个D触发器(D1)以及少数的逻辑门(G1~G5)来实现。对于基于块的加密算法(例如AES加密算法),其硬件实现都包含至少128位的明文输入端。在芯片上电或复位后第一次进入测试模式时,本发明的安全扫描方案在第一个时钟周期利用明文输入端加载测试密码,在第二个时钟周期以后利用明文输入端加载测试数据。
当电路输入信号TC为逻辑0时,Di进入扫描单元,电路处于功能模式;当TC为逻辑1时,电路处于测试(扫描)模式。对于密码寄存器R1中的每个单元,随机选择Q或端控制一个扫描单元的扫描输入值,这通过在每个扫描单元的扫描输入端再增加一个数据选择器并由Q或控制该数据选择器的地址输入端(图中标记为se')来实现。在功能模式下,寄存器R1不影响扫描单元的捕获操作,本安全测试方案引入的硬件逻辑看起来是透明的,芯片能够正常工作。在功能模式下,由于TC=0,计数器的使能输入端无效,计数器的状态保持不变;G5的输出恒为逻辑1,因此寄存器R1时钟恒为逻辑1,R1状态也保持不变。在测试模式下,寄存器R1的状态将影响扫描链的移位操作。当se'为逻辑1时,前一个扫描单元的值能够移入下一个扫描单元;而当se'为逻辑0时,前一个扫描单元的值将丢失,移入下一个扫描单元的值是电路中某个结点在当前时刻的状态,扫描数据通过这种方式被混淆。
下面详细介绍测试模式的工作流程。
假定芯片上电时首先进行初始化(也就是复位,Reset),电路中的触发器初始值为逻辑0,也就是说图1中的移位寄存器、触发器D1、计数器的初始状态(Q1Q0)都是逻辑0。
在芯片上电或复位后,首次进入测试模式(TC=1)时,因为初始的所以G3的输出为逻辑1,这时计数器的使能输入端(EN)有效,计数器处于计数状态,在2个时钟周期内(上升沿触发)状态(Q1Q0)从00→01→10。当Q1Q0=10时变为逻辑0,逻辑门G3输出为逻辑0,计数器处于保持状态,Q1恒为逻辑1。此时逻辑门G4恒为逻辑1,触发器D1的时钟被锁定为常数(逻辑1)。在芯片上电或复位后首次进入测试模式时,在第2个时钟周期上升沿,触发器D1的时钟总能被锁定。除非芯片再次复位,否则触发器D1的时钟不能被解锁。
在芯片上电或复位后首次进入测试模式时,在第1个时钟周期,D1的状态为逻辑0,寄存器R1的时钟处于激活状态。寄存器中的每个存储单元输入端有一个数据选择器,这些数据选择器的地址输入端统一受逻辑门G1控制,G1的输入端由n位的明文输入端并随机插入非门来驱动。通过这n位的明文输入端加载的密码称为寄存控制密码(n位,1≤n≤127)。根据第一个时钟上升沿到达前实际加载的寄存控制密码,此时R1可有2种工作模式:移位和并行输入。
情况一:如果插入非门的输入端加载逻辑0值,未插入非门的输入端加载逻辑1值,我们称加载的寄存控制密码正确,此时G1的输出为逻辑1,寄存器R1将处于并行输入模式。为寄存器输入的值称为扫描密码。如果某寄存器单元的Q端控制一个扫描单元的se',那么应为该寄存器单元输入逻辑1值,而如果Q控制一个扫描单元的se',则应该输入逻辑0值。如果输入的扫描密码全部正确,逻辑门G2的输入端全为逻辑1,输出就为逻辑1;如果输入的扫描密码至少有一位是错误的,G2的输出为逻辑0。当时钟下降沿到达后,G2的值存储在触发器D1中,因为D1的时钟在下一个时钟上升沿会被锁定,D1的状态将保持不变。根据D1的状态,之后电路的工作情况可分为2种:
(1)如果D1的状态为逻辑1,寄存器R1的时钟将被锁定为常数(逻辑1),寄存器R1的状态保持不变。由于输入了正确的扫描密码,扫描操作能够正常进行。
(2)如果D1的状态为逻辑0,在测试模式下R1的时钟始终是激活的。①如果此后明文输入端加载的测试数据使得G1输出为逻辑0(概率为1-2-n),R1处于移位模式,受寄存器控制的扫描单元的se'时而为逻辑0、时而为逻辑1,扫描数据会被动态地混淆。②如果此后明文输入端加载的测试数据恰好使G1输出为逻辑1(概率为2-n),R1处于并行输入模式,其状态取决于相应输入端的测试数据位。如果这些测试数据位不与扫描密码完全一致(概率为1-2-128+n),受错误密码位控制的扫描单元无法移入前一个扫描单元的值,扫描数据被静态地混淆;而如果这些测试数据位恰好等于扫描密码(概率为2-128+n),扫描链能够正常移入和移出数据(概率为2-n×2-128+n=2-128)。
情况二:如果加载的寄存控制密码不完全正确,此时G1的输出为逻辑0,寄存器R1将处于移位模式。此时不能从外部端口输入扫描密码。寄存器R1的初始状态为全零,为了能够使R1出现非零状态,我们随机地选择一些寄存器单元的连接到一个下一个单元的输入端,并把寄存器单元连接成闭合的环,构建一个简单的非线性循环移位寄存器。在移位模式下,该移位寄存器能够从全零状态开始在多个状态间进行循环,并通过合理的设计使得这些状态不包括扫描密码。这样,第一个时钟上升沿过后,G2的值为逻辑0,当时钟下降沿到达后,逻辑0值存储在触发器D1中,因为D1的时钟在下一个时钟上升沿到达后会被锁定,D1的零状态将保持不变。在测试模式下R1的时钟始终是激活的。①如果此后明文输入端加载的测试数据使得G1输出为逻辑0(概率为1-2-n),R1处于移位模式,受寄存器控制的扫描单元的se'时而为逻辑0、时而为逻辑1,扫描数据会被动态地混淆。②如果此后明文输入端加载的测试数据恰好使G1输出为逻辑1(概率为2-n),R1处于并行输入模式,其状态取决于相应输入端的测试数据位。如果这些测试数据位不与扫描密码完全一致(概率为1-2-128+n),受错误密码位控制的扫描单元无法移入前一个扫描单元的值,扫描数据被静态地混淆;而如果这些测试数据位恰好等于扫描密码(概率为2-128+n),扫描链能够正常移入和移出数据(概率为2-n×2-128+n=2-128)。
测试密码被破解的概率与参数n的值无关。而n越小,扫描密码寄存器就越大,能够混淆的扫描单元就越多,但总的硬件开销也相对较大。权衡这2个因素,n的取值可以在64上下变化。
基于上述安全扫描设计方案的详细说明,其工作原理可以概括描述如下。如果攻击者不了解正确的测试流程、没有正确的测试密码,那么他就不能在芯片上电或复位后首次进入测试模式时,通过明文输入端加载正确的测试密码,从而在1-2-128的概率下不能给扫描链移入任意的值,也不能从扫描链输出端观测到扫描链真实的状态(实际观测到的是混淆的状态),基于扫描的非入侵时攻击实际上是不可能完成的。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种基于扫描混淆的、保护加密芯片免受扫描攻击的可测试性设计结构其特征在于,在常规扫描设计的基础上加入了扫描密码寄存器及相关逻辑,并要求在芯片上电或复位后第一次进入测试模式时先从芯片输入端口加载测试密码;对于了解测试流程且拥有测试密码的授权用户而言,只要在规定的时间内通过特定的输入端口加载正确的测试密码,芯片测试就能正常进行;对于不了解测试流程、没有正确测试密码的攻击者而言,恰好在规定的时间内通过特定的输入端口加载正确的测试密码的概率仅为2-128,从而在1-2-128的概率下不能为扫描链扫入任意的值,也不能从输出端观测到扫描链真实的状态,基于扫描的非入侵时攻击实际上是不可能进行的。
2.根据权利要求1的安全可测试性设计结构,其特征在于,在芯片上电或复位后第一次进入测试模式时,利用明文输入端在第一个时钟周期加载测试密码;明文输入端在第二个时钟周期以后可用来加载测试数据。这种加载测试密码的方式既不影响正常的测试,也不需要增加额外的测试准备时间。
3.根据权利要求1的安全可测试性设计结构,其特征在于,附加的硬件逻辑仅受系统时钟信号和测试控制信号支配,没有增加额外的输入,攻击者不易察觉到电路增加了安全机制,这就增加了攻击的难度。
4.根据权利要求1的安全可测试性设计结构,其特征在于,引入的额外硬件逻辑不在功能路径上,也仅有部分硬件逻辑在扫描路径上;没有增加功能路径延时,因此没有降低电路的性能。
CN201811571322.6A 2018-12-21 2018-12-21 基于扫描混淆的加密芯片安全测试方法 Expired - Fee Related CN109633422B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811571322.6A CN109633422B (zh) 2018-12-21 2018-12-21 基于扫描混淆的加密芯片安全测试方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811571322.6A CN109633422B (zh) 2018-12-21 2018-12-21 基于扫描混淆的加密芯片安全测试方法

Publications (2)

Publication Number Publication Date
CN109633422A true CN109633422A (zh) 2019-04-16
CN109633422B CN109633422B (zh) 2021-08-17

Family

ID=66076322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811571322.6A Expired - Fee Related CN109633422B (zh) 2018-12-21 2018-12-21 基于扫描混淆的加密芯片安全测试方法

Country Status (1)

Country Link
CN (1) CN109633422B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554305A (zh) * 2019-09-09 2019-12-10 龙芯中科技术有限公司 测试控制装置、芯片及方法
CN111898150A (zh) * 2020-08-07 2020-11-06 长沙理工大学 基于测试授权验证的低开销加密芯片可测试性设计结构
WO2022164381A1 (en) * 2021-01-26 2022-08-04 Agency For Science, Technology And Research An advanced encryption standard (aes) device
CN117216812A (zh) * 2023-11-06 2023-12-12 深圳市纽创信安科技开发有限公司 攻击检测电路、芯片与电子设备
CN117825936A (zh) * 2024-03-04 2024-04-05 南京邮电大学 基于改进的线性反馈移位寄存器的安全测试电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126504A (ja) * 2003-10-22 2005-05-19 Chuo Rika Kogyo Corp 水性エマルジョン型接着剤組成物
CN102636705A (zh) * 2012-03-09 2012-08-15 德清县供电局 一种远程漏电保护器故障及交流接触器堵塞或故障判断装置及其分析方法
CN102803976A (zh) * 2009-06-24 2012-11-28 斯蒂芬·艾伦·莫顿 电源线检测系统和电子接头
CN203204127U (zh) * 2013-03-26 2013-09-18 苏州翔硕电子有限公司 电子密码锁电路测试仪
CN105283844A (zh) * 2013-06-05 2016-01-27 三星电子株式会社 电子设备和通过电子设备提供电池信息的方法
CN107783028A (zh) * 2017-10-16 2018-03-09 苏州国芯科技有限公司 一种芯片进入测试模式的控制方法及系统
CN107966644A (zh) * 2017-10-23 2018-04-27 北京中电华大电子设计有限责任公司 一种随机密钥的测试模式保护方法及电路
CN108896903A (zh) * 2018-06-13 2018-11-27 天津大学 基于逻辑加密的逐次验证型安全扫描链装置和方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126504A (ja) * 2003-10-22 2005-05-19 Chuo Rika Kogyo Corp 水性エマルジョン型接着剤組成物
CN102803976A (zh) * 2009-06-24 2012-11-28 斯蒂芬·艾伦·莫顿 电源线检测系统和电子接头
CN102636705A (zh) * 2012-03-09 2012-08-15 德清县供电局 一种远程漏电保护器故障及交流接触器堵塞或故障判断装置及其分析方法
CN203204127U (zh) * 2013-03-26 2013-09-18 苏州翔硕电子有限公司 电子密码锁电路测试仪
CN105283844A (zh) * 2013-06-05 2016-01-27 三星电子株式会社 电子设备和通过电子设备提供电池信息的方法
CN107783028A (zh) * 2017-10-16 2018-03-09 苏州国芯科技有限公司 一种芯片进入测试模式的控制方法及系统
CN107966644A (zh) * 2017-10-23 2018-04-27 北京中电华大电子设计有限责任公司 一种随机密钥的测试模式保护方法及电路
CN108896903A (zh) * 2018-06-13 2018-11-27 天津大学 基于逻辑加密的逐次验证型安全扫描链装置和方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
WEIZHENG WANG: "A Secure DFT Architecture Protecting Crypto Chips Against Scan-Based Attacks", 《IEEE ACCESS》 *
WEIZHENGWANG: "Enhancing Sensor Network Security with ImprovedInternal Hardware Design", 《SENSORS》 *
朱荟潼: "构造简单加密方案实现混淆", 《科技创新与应用》 *
钟春丽: "基于边界扫描技术的抗混淆自适应测试算法", 《信息工程大学学报》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110554305A (zh) * 2019-09-09 2019-12-10 龙芯中科技术有限公司 测试控制装置、芯片及方法
CN111898150A (zh) * 2020-08-07 2020-11-06 长沙理工大学 基于测试授权验证的低开销加密芯片可测试性设计结构
WO2022164381A1 (en) * 2021-01-26 2022-08-04 Agency For Science, Technology And Research An advanced encryption standard (aes) device
CN117216812A (zh) * 2023-11-06 2023-12-12 深圳市纽创信安科技开发有限公司 攻击检测电路、芯片与电子设备
CN117216812B (zh) * 2023-11-06 2024-02-27 深圳市纽创信安科技开发有限公司 攻击检测电路、芯片与电子设备
CN117825936A (zh) * 2024-03-04 2024-04-05 南京邮电大学 基于改进的线性反馈移位寄存器的安全测试电路
CN117825936B (zh) * 2024-03-04 2024-05-10 南京邮电大学 基于改进的线性反馈移位寄存器的安全测试电路

Also Published As

Publication number Publication date
CN109633422B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN109633422A (zh) 基于扫描混淆的加密芯片安全测试方法
Cui et al. Static and dynamic obfuscations of scan data against scan-based side-channel attacks
Agoyan et al. When clocks fail: On critical paths and clock faults
Majzoobi et al. Techniques for design and implementation of secure reconfigurable PUFs
CN102495360B (zh) 一种安全扫描寄存器、安全扫描链及其扫描方法
CN106646203B (zh) 防止利用扫描链攻击集成电路芯片的动态混淆扫描链结构
CN109188246B (zh) 一种安全的加密芯片可测试性设计结构
Karousos et al. Weighted logic locking: a new approach for IC piracy protection
Kamali et al. SCRAMBLE: The state, connectivity and routing augmentation model for building logic encryption
CN108875431A (zh) 防止集成电路知识产权剽窃的动态混淆封装接口控制单元
Atobe et al. Secure scan design with dynamically configurable connection
CN113297634B (zh) 一种基于全自旋逻辑的物理不可克隆函数硬件电路及实现方法
CN112364391A (zh) 仲裁器puf可靠响应筛选系统及其偏置控制和响应筛选方法
CN112272084A (zh) 抗攻击和自检特性的基于复合型puf的密钥生成系统及方法
Nassar et al. CaPUF: Cascaded PUF structure for machine learning resiliency
Surya et al. Local clock glitching fault injection with application to the ASCON cipher
CN110456260A (zh) 一种密钥隔离安全扫描链电路
CN114679277B (zh) 一种基于sr puf的可靠性自检和可靠响应去偏方法
CN208092728U (zh) 用于检测故障的器件和电子芯片
Kumar et al. Physical unclonable functions for on-chip instrumentation: Enhancing the security of the internal joint test action group network
Kareem et al. Towards performance optimization of ring oscillator PUF using Xilinx FPGA
Lata An approach towards resisting side-channel attacks for secured testing of advanced encryption algorithm (AES) cryptochip
CN109581183B (zh) 一种集成电路的安全测试方法与系统
Wu et al. High throughput design and implementation of SHA-3 hash algorithm
Gebali New configurable galois/inverter ring oscillator (giro) physically unclonable functions: design, analysis and authentication algorithms

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210817

Termination date: 20211221