CN109628874A - 一种工件表面强化复合渗氮工艺 - Google Patents
一种工件表面强化复合渗氮工艺 Download PDFInfo
- Publication number
- CN109628874A CN109628874A CN201811270726.1A CN201811270726A CN109628874A CN 109628874 A CN109628874 A CN 109628874A CN 201811270726 A CN201811270726 A CN 201811270726A CN 109628874 A CN109628874 A CN 109628874A
- Authority
- CN
- China
- Prior art keywords
- workpiece
- infiltration
- nitriding
- temperature
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/24—Nitriding
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/36—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
Abstract
本发明公开了一种工件表面强化复合渗氮工艺,包括渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮步骤,其中等离子体渗氮温度为480℃‑500℃,保温时间为3h‑4h,控制气氛为甲烷与氨气;工件渗前需用稀盐酸清洗,酒精冲洗,再用吹风机吹干;炉内抽真空约到10MPa后,充入控制气氛并维持工作气压100MPa,待温度升到预定温度时,将工件放入,保温后随炉自然冷却。发明具有渗氮层中白色化合物层连续、均匀、致密、与基体结合牢固、厚度约为7‑13μm,低温复合渗氮工艺科学、合理,成果转化潜力大,主要应用在精密器件表面强化上。
Description
技术领域
本发明涉及一种复合渗氮工艺,具体地说是一种工件表面强化复合渗氮工艺。
背景技术
所谓渗氮就是将材料置于含氮介质的密封容器中,在一定温度下进行保温,活性氮原子吸附到工件表面,并通过扩散使材料表层形成氮化物的工艺过程。工件表面经渗氮处理后,在表面会获得一定厚度的渗氮层,因渗氮层具有高硬度、高耐蚀性、高耐磨性等特点,使渗氮技术得到十分广泛的应用,目前,主要应用在精密器件、矿山机械、工程机械、农业机具等工件表面强化上。
目前,渗氮方法主要包括液体渗氮、离子渗氮、气体渗氮。工业生产中常用的是气体渗氮与离子渗氮。其中,气体渗氮因为其理论简单,操作方便,但由于气体渗氮时间长,若时间控制不恰当,表层形成的渗氮层脆性较大,受到冲击后易剥落,所以限制了其应用范围。近些年,由于国家经济的高速发展,生态文明建设的需求,等离子体渗氮技术受到了广泛的关注。国内外学者主要研究的渗氮技术为离子渗氮和气体渗氮,一般渗氮温度大于500℃,渗氮时间大于14h。国内主要研究的高校有清华大学、山东大学、国防科技大学、西安理工大学、武汉科技大学、佳木斯大学、山东农业大学、山东建筑大学等等高校科研院所。但这样工艺条件下渗氮工艺存在明显的不足:①工件强化处理后变形较大,渗氮层疏松,有脱落现象;②渗氮层中的白色化合物层致密度低;鉴于以上不足,为进一步拓宽渗氮工艺的广泛应用。国内外学者、专家逐步开始探索低温渗硼技术的研究,并在部分工件表面开始试用。
尽可能的降低渗氮温度和提高渗氮速率一直是世界各国热处理专家关心的问题。
低温渗氮工艺一般需要在渗前进行预处理,例如:表面纳米化处理、表面轰击处理、表面形变处理、表面激光处理、表面电场处理等等,渗氮温度控制在300℃-500℃之间,渗氮时间一般大于9h,一般控制气氛为纯氮气、纯氨气。这样的渗氮工艺可以减小工件变形,更多的是降低了渗氮层脆性。特别适用于一些结构复杂、型腔小、精度要求高的工件表面。同时该工艺还具有简单、通用、操作方便等优点,已成为渗氮工艺技术发展的重要组成部分。但现有的低温渗氮工艺存在渗氮层中的白色化合物层较浅(小于等于7μm)、且致密度低的不足。
工件表面低温固体渗氮前的工艺主要通过增加工件表面的扩散通道和降低工件表面氮原子的扩散激活能来提高渗氮速率,这种工件表面渗氮工艺其应用前景非常广阔。
发明内容
本发明的目的是为克服上述现有技术的不足,提供一种工件表面渗氮层中白色化合物层相对较深、致密、脆性小、较为连续、均匀,同时减小工件变形的复合渗氮工艺。该工艺科学、合理,成果转化潜力大,实用价值广,主要应用在精密器件表面强化上。
本发明的目的是采用下述技术方案实现的。一种工件表面强化复合渗氮工艺,包括渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮步骤,其中等离子体渗氮温度为480℃-500℃,保温时间为3h-4h,控制气氛为甲烷与氨气;工件渗前需用稀盐酸清洗,酒精冲洗,再用吹风机吹干;炉内抽真空约到10MPa后,充入控制气氛并维持工作气压100MPa,待温度升到预定温度时,将工件放入,保温后随炉自然冷却。
低温复合渗氮工艺提高扩散速率的机理分析。
工件经调质处理后表层组织为回火索氏体,工件表面硬度较高,心部塑性较好。随后的微加工处理,目的是去除经调质处理后工件表面的氧化皮,为后续工艺做准备。为提高渗速,采用渗前工件表面高频淬火处理,经表面淬火处理后的工件表层的组织为马氏体和残余奥氏体,两者均为结构缺陷,除此之外,工件表层还存在大量的应力、位错等缺陷,这些缺陷为后续的低温渗氮工艺提供能量和结构的支持,激发了氮原子的活性,提高氮原子的扩散速率,加快渗速。另外,工件经表面淬火处理后,表层硬度大大提高,降低了基体与渗氮层之间的硬度梯度,改善了渗氮层脱落现象,增强了渗氮层与基体的结合性。表面淬火处理后进行的微加工处理,目的也是去除经表面淬火处理后工件表面存在的氧化皮,为后续的低温渗氮工艺做铺垫,提高渗氮层与基体的结合性,改善渗氮层质量。
本发明具有以下优点:
1、工件表面渗氮层中白色化合物层连续、均匀、致密、与基体结合牢固。
2、白色化合物层相对较厚,约为7-13μm ,主要应用在精密器件表面强化上。
3、低温复合渗氮中氮原子活性增强、扩散速率提高、成本低。
4、低温复合渗氮工艺科学、合理,成果转化潜力大,实用价值广。
附图说明
图1是45钢经480℃×4h渗氮层的组织形貌图;
图2是45钢经500℃×3h渗氮层的组织形貌图;
图3是45钢经500℃×3h渗氮层的显微硬度图。
具体实施方式
下面结合附图和实施例对本发明做进一步说明。
实施例1:一种工件表面强化复合渗氮工艺,包括渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮步骤。
对45钢试样进行渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮,渗后对渗氮层进行观察。其工艺过程如下:
1.渗前调质处理
利用箱式电阻炉对45钢进行淬火+高温回火处理。试样尺寸为10mm×10mm×10mm,淬火温度为840℃,保温时间为30min,水淬;回火温度550℃,保温时间为30min。
2.渗前微加工处理
利用机床对45钢进行渗前微加工处理,去除表面氧化皮即可。
3.渗前表面高频淬火处理
利用高频感应加热炉对45钢进行表面高频淬火处理,淬火温度为860℃,保温时间为8s,水淬。
4.渗前微加工处理
利用机床对45钢进行渗前微加工处理,去除表面氧化皮即可。
5.工件装箱
工件渗前需用稀盐酸清洗,酒精冲洗,再用吹风机吹干。
6.控制气氛充入
炉内抽真空约到10MPa后,充入控制气氛并维持工作气压100MPa,待温度升到预定温度时,将工件放入,保温4h后随炉自然冷却。
7.等离子体渗氮
温度为480℃,保温时间为4h,控制气氛为甲烷与氨气,随炉冷却;为保证试样表面不产生氧化色,切断电源后,仍使炉内保持真空状态,冷却到150℃左右时,开炉空冷至室温后取出试样,并将其表面清理干净。
如图1所示,45钢经480℃×4h等离子体渗氮,渗氮层中白色化合物层组织致密、连续、均匀、平均厚度为7µm、渗氮层与基体结合性较好。
渗前的各种预处理为后续的低温复合渗氮提供了能量和结构上的条件,增强了氮原子活性、提高了氮原子扩散速率、改善了白色化合物层的组织疏松;低温复合渗氮工艺科学、合理,成果转化潜力大,实用价值广,可以应用在精密器件表面强化上。
实施例2:一种工件表面强化复合渗氮工艺,包括渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮步骤。
对45钢试样进行渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮,渗后对渗氮层进行观察。其工艺过程如下:
1.渗前调质处理
利用箱式电阻炉对45钢进行淬火+高温回火处理。试样尺寸为10mm×10mm×10mm,淬火温度为840℃,保温时间为30min,水淬;回火温度550℃,保温时间为30min。
2.渗前微加工处理
利用机床对45钢进行渗前微加工处理,去除表面氧化皮即可。
3.渗前表面高频淬火处理
利用高频感应加热炉对45钢进行表面高频淬火处理,淬火温度为860℃,保温时间为14s,水淬。
4.渗前微加工处理
利用机床对45钢进行渗前微加工处理,去除表面氧化皮即可。
5.工件装箱
工件渗前需用稀盐酸清洗,酒精冲洗,再用吹风机吹干。
6.控制气氛充入
炉内抽真空约到10MPa后,充入控制气氛并维持工作气压100MPa,待温度升到预定温度时,将工件放入,保温3h后随炉自然冷却。
7.等离子体渗氮
温度为500℃,保温时间为3h,控制气氛为甲烷与氨气,随炉冷却;为保证试样表面不产生氧化色,切断电源后,仍使炉内保持真空状态,冷却到150℃左右时,开炉空冷至室温后取出试样,并将其表面清理干净。
如图2所示,45钢经500℃×3h等离子体渗氮,渗氮层中白色化合物层组织致密、连续、均匀、平均厚度为11µm、渗氮层与基体结合性较好。
如图3所示,45钢经500℃×3h等离子体渗氮,渗氮层强化了45钢基体,显微硬度值约为300-850HV,硬度梯度较为缓慢,渗氮层与基体结合性良好。
渗前的各种预处理为后续的低温复合渗氮提供了能量和结构上的条件,增强了氮原子活性、提高了氮原子扩散速率、改善了白色化合物层的组织疏松;低温复合渗氮工艺科学、合理,成果转化潜力大,实用价值广,可以应用在精密器件表面强化上。
Claims (1)
1.一种工件表面强化复合渗氮工艺,包括渗前调质处理、渗前微加工处理、渗前表面高频淬火处理、渗前微加工处理、工件装箱、控制气氛充入、等离子体渗氮步骤,其中等离子体渗氮温度为480℃-500℃,保温时间为3h-4h,控制气氛为甲烷与氨气;工件渗前需用稀盐酸清洗,酒精冲洗,再用吹风机吹干;炉内抽真空约到10MPa后,充入控制气氛并维持工作气压100MPa,待温度升到预定温度时,将工件放入,保温后随炉自然冷却。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811270726.1A CN109628874A (zh) | 2018-10-29 | 2018-10-29 | 一种工件表面强化复合渗氮工艺 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811270726.1A CN109628874A (zh) | 2018-10-29 | 2018-10-29 | 一种工件表面强化复合渗氮工艺 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN109628874A true CN109628874A (zh) | 2019-04-16 |
Family
ID=66066858
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201811270726.1A Pending CN109628874A (zh) | 2018-10-29 | 2018-10-29 | 一种工件表面强化复合渗氮工艺 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109628874A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117230405A (zh) * | 2023-10-17 | 2023-12-15 | 江苏远方动力科技有限公司 | 曲轴轴颈颈表面高频淬火低温渗氮复合强化系统及方法 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101368275A (zh) * | 2007-08-15 | 2009-02-18 | 沈阳鼓风机(集团)有限公司 | 42CrMoE热处理工艺 |
CN102321887A (zh) * | 2011-10-18 | 2012-01-18 | 上海西工压缩机配件有限公司 | 经复合表面改性的38CrMoAl压缩机叶片及其制备工艺 |
CN103343314A (zh) * | 2013-07-06 | 2013-10-09 | 许斌 | 一种新型的硼-铬-稀土低温共渗剂 |
CN103526153A (zh) * | 2012-07-03 | 2014-01-22 | 山东科技大学 | 一种渗氮方法 |
CN103882372A (zh) * | 2014-04-01 | 2014-06-25 | 山东建筑大学 | 一种低中碳钢表面强化新方法 |
CN103938150A (zh) * | 2014-04-01 | 2014-07-23 | 山东建筑大学 | 一种新型低温固体渗硼活化剂 |
CN103938152A (zh) * | 2014-04-01 | 2014-07-23 | 山东建筑大学 | 一种工件表面低温固体多元渗硼工艺 |
CN104928586A (zh) * | 2015-06-30 | 2015-09-23 | 宝山钢铁股份有限公司 | 一种热冲压模具钢及其生产方法 |
CN105648395A (zh) * | 2016-03-18 | 2016-06-08 | 常州大学 | 一种快速离子渗氮方法 |
CN106086777A (zh) * | 2016-07-21 | 2016-11-09 | 常州大学 | 45钢传动轴快速离子渗氮方法 |
CN108611589A (zh) * | 2018-05-07 | 2018-10-02 | 常州大学 | 一种提高离子渗氮效率的复合预处理工艺 |
-
2018
- 2018-10-29 CN CN201811270726.1A patent/CN109628874A/zh active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101368275A (zh) * | 2007-08-15 | 2009-02-18 | 沈阳鼓风机(集团)有限公司 | 42CrMoE热处理工艺 |
CN102321887A (zh) * | 2011-10-18 | 2012-01-18 | 上海西工压缩机配件有限公司 | 经复合表面改性的38CrMoAl压缩机叶片及其制备工艺 |
CN103526153A (zh) * | 2012-07-03 | 2014-01-22 | 山东科技大学 | 一种渗氮方法 |
CN103343314A (zh) * | 2013-07-06 | 2013-10-09 | 许斌 | 一种新型的硼-铬-稀土低温共渗剂 |
CN103882372A (zh) * | 2014-04-01 | 2014-06-25 | 山东建筑大学 | 一种低中碳钢表面强化新方法 |
CN103938150A (zh) * | 2014-04-01 | 2014-07-23 | 山东建筑大学 | 一种新型低温固体渗硼活化剂 |
CN103938152A (zh) * | 2014-04-01 | 2014-07-23 | 山东建筑大学 | 一种工件表面低温固体多元渗硼工艺 |
CN104928586A (zh) * | 2015-06-30 | 2015-09-23 | 宝山钢铁股份有限公司 | 一种热冲压模具钢及其生产方法 |
CN105648395A (zh) * | 2016-03-18 | 2016-06-08 | 常州大学 | 一种快速离子渗氮方法 |
CN106086777A (zh) * | 2016-07-21 | 2016-11-09 | 常州大学 | 45钢传动轴快速离子渗氮方法 |
CN108611589A (zh) * | 2018-05-07 | 2018-10-02 | 常州大学 | 一种提高离子渗氮效率的复合预处理工艺 |
Non-Patent Citations (1)
Title |
---|
袁兴栋: ""碳钢表面预处理对硼铬稀土低温共渗的影响及其作用机理研究", 《中国博士学位论文全文数据库 工程科技I辑》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117230405A (zh) * | 2023-10-17 | 2023-12-15 | 江苏远方动力科技有限公司 | 曲轴轴颈颈表面高频淬火低温渗氮复合强化系统及方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103643243B (zh) | 一种金属材料高强韧化表面改性方法 | |
CN108048894B (zh) | 一种金属表面纳米孔阵列薄膜的制备方法 | |
CN103981523B (zh) | 一种超亲水性Ti6Al7Ni表面喷砂酸蚀处理方法 | |
US20190323102A1 (en) | Surface treatment method of metallic materials | |
CN102492918B (zh) | 活塞杆、活塞杆表面处理的碳氮共渗剂及其生产方法 | |
CN104911533B (zh) | 一种金属工件低温耐蚀气体渗氮方法及其产品 | |
CN106756768B (zh) | 一种锆钛合金双辉等离子渗氮的表面强化方法 | |
CN107620031A (zh) | 基于空心阴极离子源的奥氏体不锈钢氮化处理系统及方法 | |
CN109628874A (zh) | 一种工件表面强化复合渗氮工艺 | |
CN105568212B (zh) | 一种通过盐浴预氧化提高盐浴渗氮效率的方法 | |
CN109576632A (zh) | 一种碳钢表面强化复合渗氮工艺 | |
Wu et al. | Research on new rapid and deep plasma nitriding techniques of AISI 420 martensitic stainless steel | |
CN109576631A (zh) | 一种工件表面强化新方法 | |
CN107502856A (zh) | 一种奥氏体不锈钢低温快速离子渗氮的方法 | |
CN108691003A (zh) | 一种改善钴基合金表面综合性能的方法 | |
CN109371212A (zh) | 一种大变形增强快速离子渗氮方法 | |
CN106755860B (zh) | 一种水射流喷丸和等离子渗氮的复合处理表面改性方法 | |
CN103789722B (zh) | 一种显著提高齿轮耐蚀性的化学热处理方法 | |
CN113652626B (zh) | 一种实现复杂形状钢铁零件低温渗氮的方法 | |
CN106381462B (zh) | 一种钼表面离子渗硫制备二硫化钼渗层的方法 | |
CN106926333B (zh) | 提高木材表面对漆膜附着力的处理方法 | |
CN106756759B (zh) | 一种铁基合金表面高强韧渗氮层及其制备方法 | |
CN114182196A (zh) | 钛合金真空气体阶梯渗氮方法 | |
CN109811389B (zh) | 一种氮化钛铌纳米管阵列及渗氮层复合结构的制备方法 | |
CN103060754A (zh) | 一种抗高温氧化的钛合金梯度材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20190416 |