CN1096286C - 薄膜过滤系统对数降低值预测及多孔薄膜完整性试验方法 - Google Patents

薄膜过滤系统对数降低值预测及多孔薄膜完整性试验方法 Download PDF

Info

Publication number
CN1096286C
CN1096286C CN98803016A CN98803016A CN1096286C CN 1096286 C CN1096286 C CN 1096286C CN 98803016 A CN98803016 A CN 98803016A CN 98803016 A CN98803016 A CN 98803016A CN 1096286 C CN1096286 C CN 1096286C
Authority
CN
China
Prior art keywords
film
flow
air
pressure
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98803016A
Other languages
English (en)
Other versions
CN1249698A (zh
Inventor
迈克尔·R·L·塞尔比
汉弗莱·J·J·德拉蒙德
沃伦·T·约翰逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Water Technologies Holding Corp
Siemens Industry Inc
Original Assignee
USF Filtration and Separations Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USF Filtration and Separations Group Inc filed Critical USF Filtration and Separations Group Inc
Publication of CN1249698A publication Critical patent/CN1249698A/zh
Application granted granted Critical
Publication of CN1096286C publication Critical patent/CN1096286C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/102Detection of leaks in membranes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/10Allowing a continuous bypass of at least part of the flow, e.g. of secondary air, vents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2273/00Operation of filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2273/18Testing of filters, filter elements, sealings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种预测薄膜过滤系统中对数降低值的方法,该方法包括:确定通过薄膜的过滤流率,应用完整性试验测量结果,确定薄膜的旁通流率,以及应用确定的过滤流率与确定的旁通流率的比例,按(2)确定对数降低值。还公开了多孔薄膜完整性试验方法。

Description

薄膜过滤系统对数降低值预测及多孔薄膜完整性试验方法
技术领域
本发明涉及过滤系统中对数降低值的预测方法以及应用这样的一些值控制和监视运行中的过滤系统。
背景技术
过滤系统去除粒子的能力通常按照对数降低值(LRV)进行测量。对于任何给定的粒子,对数降低值定义为: LRV = log 10 ( C inf C eff ) - - - - - - ( 1 )
此处Cinf=流入液体中的粒子浓度,
    Ceff=流出液体中的粒子浓度。
在计算中使用的粒子可以是任何一种关心的粒子,例如,在消毒系统中它通常是细菌或病毒,但也可以是悬浮的固体。
发明内容
本发明提出了一种预测薄膜过滤系统中对数降低值的方法,该方法包括以下步骤:
i)确定通过薄膜的过滤流率;
ii)应用完整性试验测量结果,确定薄膜旁通流率;
iii)应用确定的过滤流率与确定的旁通流率的比例,按下式推测对数降低值: LRV = log 10 ( Q filt Q Bypass ) - - - - - ( 2 )
申请人已发展了若干确定过滤薄膜完整性的试验,这些试验包括扩散空气流量(DAF)和压力衰减试验(PDT)。
根据又一方面,本发明提出了一种试验多孔薄膜完整性的方法,该方法包括的步骤有:
i)湿润薄膜;
ii)对薄膜的一侧施加低于薄膜孔隙的越泡点(bubble point)的气体压力;和
iii)测量越过薄膜的气体流量,所述气体流量包括通过薄膜的扩散流量和通过薄膜中渗漏和缺陷的流量,所述气体流量与薄膜中的任何缺陷有关。
气体流量最好通过监视施加于薄膜一侧的气体压力的压力衰减进行测量。另一种较优形式是,气体流量通过以流体体积包围所述薄膜的另一侧并测量由于所述气体流量造成的所述流体排出量而加以测量。
除非文中明确要求,否则在说明书和权利要求的全文中,词“包括”、“正包括”及类似词都应解释为与排除或穷尽相反的包含意义;也即解释为“包含,但不限于”的意义。
具体实施方式
现将对这些完整性试验的较优实例说明如下,但这只是为了展示。如果完全湿润的薄膜(即全部孔隙都充装着液体)的腔充装着压力低于起泡点的空气,则薄膜的孔隙将保持湿润,除了由于扩散引起的较小流量外,通过孔隙不会有显著的空气流量。如果出现缺陷(如纤维断裂),则空气将通过缺陷流动,当然假定缺陷的尺寸是这样的,即它所有的起泡点低于试验压力。因此,在此情况下空气的流量与薄膜系统的完整性直接有关。对完整的系统,空气流量很小,直接测量十分困难。为简化试验,并克服这一问题,通过测量液体流量(在DAF试验情况)或通过测量压力衰减(在压力保持/衰减试验情况)间接测量空气流量。
在扩散空气流量试验中,首先用空气将腔加压至试验压力(通常为100kPa),保持薄膜的进料侧充满。一旦达到试验压力,通过测量阀门封闭过滤侧,打开进料侧,液体流量可通过测量阀门进行测量。最初,液体快速流过阀门。高的初始流量主要是由于薄膜膨胀排出的水体积以及由于水移向薄膜孔隙端点排出的水体积形成的。
初始阶段后,流量降至较为稳定的水平,余下的液体流量完全是由于扩散空气流动和空气流过任何缺陷排出的液体形成的。此空气流量是DAF测量结果,通常为每单位时间内的体积。
扩散空气流动是由被溶解空气输运通过薄膜引起的空气通过完整的湿润薄膜的流动。被溶解空气扩散的驱动力是湿润薄膜两侧的差动局部压力。由于空气的溶解度随压力而增加,在液体层中有较高的被溶解空气浓度。系统趋于平均水层中的浓度,这造成空气稳定地输运通过薄膜。在低压侧(进料侧),较低的局部空气压力使空气得以持续地离开溶液。被释放的空气聚积在进料侧的顶部,于是出现被排出水通过进料侧测量阀的伴随流动。
薄膜中的缺陷被考虑为薄膜中的“孔”,实际上,它们穿透薄膜壁的整个宽度。空气通过缺陷的流动是由“粘性”气体流动引起的。这意味,空气一开始替代缺陷中的水,然后简单地流过缺陷。替代缺陷中的水是相当容易的,因为按定义,缺陷大于孔隙,因而具有低得多的起泡点(较小的毛细管作用)。空气通过缺陷的流动与缺陷的大小及缺陷的数目有关。
由围绕O形环泄漏引起的空气流动是空气在DAF测量中高流量的另一原因。
因此,DAF测量结果是两个分量之和,通过薄膜的扩散空气流量(好)和通过薄膜中缺陷和O形环泄漏的空气流量(坏)。对任何类型的具体过滤器,通过薄膜的扩散空气流量既可计算也可测量。比较DAF测量值与完全完整的过滤器的预期值,就能确定过滤器相对完整性的指标。
在压力衰减试验中,如同DAF试验一样,首先用空气将腔加压至试验压力,保持薄膜的进料侧充满。一旦达到试验压力,封闭过滤侧,将进料侧向大气打开。然后监视过滤系统中压力随时间的下降。此压力衰减与通过薄膜的空气流动直接有关,因而假定到处都不存在泄漏时,也就与系统的完整性有关。
在DAF试验中,测量的是通过薄膜的空气流量。通常假定这正是空气通过薄膜中缺陷的流量。此空气通过缺陷的流量可与运行条件下液体通过相同缺陷的流量有关。比较通过缺陷的液体流量和过滤期间通过薄膜的液体流量,对数降低值的精确预测可由下列方程算得: LRV = log 10 ( Q l , filt Q l , DAF ) - - - - - ( 3 ) 此处:
Ql,filt=过滤期间通过薄膜的液体流量(在DAF试验压力下);和
Ql,DAF=在运行条件下,从DAF试验测量结果中算得的通过缺陷的等效液体流量。
通过缺陷的液体流量等效值Ql,DAF可从被测的DAF结果中算得,这就是通过缺陷的空气流量。DAF试验是在称为试验压力Ptest的预置压力下进行的。薄膜的下游侧向大气打开,  因而具有大气压力Patm.当空气通过缺陷流过薄膜时,由于试验压力大于在下游侧遇到的大气压力,因而薄膜膨胀。因此,DAF试验期间从下游侧排出的水体积反映了大气压力下空气通过薄膜的体积。
根据Qa,DAF(通过缺陷的空气流量)计算Ql,DAF时,按以上给出的,可推导出一个校正薄膜两侧压差的简单方法。首先根据测得的通过缺陷的空气体积流量可算出空气通过薄膜的质量流量。然后可将此空气质量流量返回换算成薄膜下游侧上的体积流量。
将缺陷看作通过薄膜的圆柱形孔。可能情况并不严格是这样的,但是这是一个很好的假定,并得以进行通过缺陷的模型计算。只要流动是层流的,且缺陷的长度例如至少为其直径的十倍,则测得的空气通过圆柱形缺陷的体积流量(Qv,a,defect)可由哈根-泊肃叶方程描述: Q V , a , defect = π d 4 ( P test - P atm ) 128 η a l - - - ( 4 ) 此处:
d=缺陷直径;
Ptest=试验(上游)压力;
Patm=DAF试验期间的大气(下游)压力;
ηa=过滤温度下的空气粘性;和
l=薄膜的厚度。
通过缺陷的空气质量流量可通过空气体积流量与密度修正相连系。
Qm,a,defect=ρ Qv,a,defect    (5)此处:
ρ=空气在薄膜中的密度。
空气密度可根据理想气体方程算出: ρ = PM RT - - - ( 6 ) 此外:
P=压力;
M=空气分子量;
R=气体常数;和
T=温度。
对薄膜情况,压力是一个难于确定的参数,因为薄膜两侧总是存在一个衡定的从Ptest至Patm的压力梯度。处理此问题的一个简单方法是应用平均压力。 P = P test + P atm 2 - - - ( 7 )
根据方程5-7,通过缺陷的空气质量流量由下式给出: Q m , a , defect = πd 4 ( P 2 test - P 2 atm ) 256 η a l M RT - - - ( 8 )
现在给定被空气排出的水体积是位于下游侧,则需考虑的空气体积可根据大气(下游)压力下通过缺陷的空气质量流量算出。
假定,由理想气体方程: P atm = ρRT M - - - - ( 9 )
结合方程5、8和9,我们得到: Q V , a , defect = πd 4 ( P 2 test - P 2 atm ) 256 η a l P atm - - - ( 10 )
哈根-泊肃叶方程也可用于计算通过缺陷的液体流量。液体流量方程就是与由方程4给出的空气流量方程相同。由于通常使用的液体为水,它是不可压的,因而空气流量需考虑的压力,在这里不需考虑。通过与以上相同缺陷的液体体积流量由下式给出: Q V , l , defect = πd 4 TMP 128 η l l - - - - ( 11 ) 此处TMP是横越薄膜的压力,即过滤运行压力,它正是等于过滤期间薄膜两侧的压差。
比较方程10和11,我们得到在运行TMP下通过缺陷的液体体积流量为: Q V , l , defect = Q V , a , defect ηa ηl 2 P test TMP ( P 2 test - P 2 atm ) - - - - ( 12 )
注意,Qv,1,defect可根据实验计算,因为Qv,a,defect正是测得的DAF流量,而方程12中的其它参数或已知,或能容易地测得。
测得的Qv,1,defect能用于计算LRV值。根据方程3,LRV由下式给出: LRV = log 10 ( Q V , l , filt Q V , l , defect ) - - - - - - ( 13 ) 此外Qv,1,filt正是正常过滤模式下通过薄膜的流量。结合方程12和13,于是LRV可按下式计算: LRV = log 10 ( Q V , l , filt η l ( P 2 test - P 2 atm Q V , a , defect η a 2 P atm TMP ) - - - - ( 14 ) 注意,方程14中的所有参数均可直接测得。
假定DAF试验中测得的空气流量是由通过缺陷的泄漏引起的,而过滤器密封,则旁通流量也可按下式确定,即: Q bypass = Q DAF × 2 μ air P Filt P Vent μ Filt ( P 2 Test - P 2 Vent ) - - - ( 15 ) 此处:
Qbypass=等效旁通液体流量;
QDAF=应用DAF试验测得的旁通空气流量;
μair=空气的粘性;
μFilt=过滤流体的粘性(通常试验期间为水);
PTest=DAF试验压力,绝对;
PVent=DAF排放压力,绝对,通常为大气压;
PFilt=横越薄膜的过滤压力。
于是对数降低值可按下式确定,即: LRV = log 10 ( Q Filt Q DAF × μ Filt ( P Test 2 - P Vent 2 ) 2 μ air P Filt P Vent ) - - - - - ( 16 ) 此处QFilt=过滤流率。应用DAF试验,可能根据压力衰减结果确立对数降低数。唯一要求的附加信息是压力衰减试验期间给定系统的过滤管道的加压体积。旁通流量可由下列方程确立: Q bypass = Δ PV Filt P atm t × 2 μ air P Filt P Vent μ Filt ( P 2 Test - P 2 Vent ) - - - - - ( 17 ) 此处:
ΔP=经过时间t测得的压力衰减;
VFilt=过滤系统在试验压力下的体积;
Patm=大气压力;
μair=空气的粘性;
μFilt=过滤流体的粘性(试验期间通常为水);
PTest=试验压力,绝对;
PVent=排放压力,绝对,通常为大气压;
PFilt=横越薄膜的过滤压力。
应用DAF试验,通过与过滤流率相比较,对数降低值可根据旁通流率按下式预定: LRV = log 10 ( Q Filt × P atm t Δ PV Filt × μ Filt ( P Test 2 - P Vent 2 ) 2 μ air P Filt P Vent ) - - - - - - - ( 18 )
此处QFilt=过滤流率。
DAF和PDT试验能加以自动化以便在运行期间提供对系统完整性的经常性过程监视。此外,这些试验还具有高度灵敏度,能直接监视系统完整性而无需进行复杂的水试验。预测的对数降低值能用于监视和控制系统的性能及完整性的丧失。对某个具体系统进行需要的或要求的LRV与预测LRV的比较,并根据这一比较进行系统性能的调节可对系统加以控制。
将意识到,不偏离所说明发明的精神或范围,还可提出发明更多的实施例和示例。

Claims (4)

1.薄膜过滤系统对数降低值的预测方法,该方法包括以下步骤:
i)确定通过薄膜的过滤流率Qfilt
ii)应用完整性试验测量结果确定薄膜旁通流率QBypass
iii)应用确定的过滤流率与确定的旁通流率的比例,按下式推测对数降低值: LRV = log 10 ( Q filt Q Bypass ) .
2.多孔薄膜完整性的试验方法,包括以下步骤:
i)湿润薄膜;
ii)对薄膜的一侧施加低于薄膜孔隙的起泡点的气体压力;和
iii)测量越过薄膜的气体流量,所述气体流量包括通过薄膜的扩散流量和通过薄膜中渗漏和缺陷的流量,所述气体流量与薄膜中的任何缺陷有关。
3.如权利要求2的方法,其特征在于,气体流量是通过监视施加于薄膜一侧的气体压力的压力衰减进行测量的。
4.如权利要求2的方法,其特征在于,气体流量是通过以流体体积包围所述薄膜的另一侧,并测量由于所述气体流量造成的所述流体排出量而加以测量的。
CN98803016A 1997-05-30 1998-05-26 薄膜过滤系统对数降低值预测及多孔薄膜完整性试验方法 Expired - Fee Related CN1096286C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AUPO7097A AUPO709797A0 (en) 1997-05-30 1997-05-30 Predicting logarithmic reduction values
AUPO7097 1997-05-30

Publications (2)

Publication Number Publication Date
CN1249698A CN1249698A (zh) 2000-04-05
CN1096286C true CN1096286C (zh) 2002-12-18

Family

ID=3801388

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98803016A Expired - Fee Related CN1096286C (zh) 1997-05-30 1998-05-26 薄膜过滤系统对数降低值预测及多孔薄膜完整性试验方法

Country Status (8)

Country Link
US (1) US6202475B1 (zh)
JP (1) JP2002500554A (zh)
KR (1) KR100491071B1 (zh)
CN (1) CN1096286C (zh)
AU (2) AUPO709797A0 (zh)
DE (1) DE19882069B4 (zh)
GB (1) GB2336684B (zh)
WO (1) WO1998053902A1 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040232076A1 (en) * 1996-12-20 2004-11-25 Fufang Zha Scouring method
CA2275146C (en) * 1996-12-20 2006-10-31 Usf Filtration And Separations Group, Inc. Scouring method
US6641733B2 (en) * 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
EP1159058B1 (en) * 1999-02-26 2003-07-23 United States Filter Corporation Method and apparatus for evaluating a membrane
AUPP985099A0 (en) * 1999-04-20 1999-05-13 Usf Filtration And Separations Group Inc. Membrane filtration manifold system
AUPQ680100A0 (en) * 2000-04-10 2000-05-11 Usf Filtration And Separations Group Inc. Hollow fibre restraining system
KR100338346B1 (ko) * 2000-05-24 2002-05-30 박호군 막여과 시간에 따른 막오염 진행 추이를 동시에연속적으로 모니터링하기 위한 막여과 장치 및 방법
AUPR064800A0 (en) * 2000-10-09 2000-11-02 Usf Filtration And Separations Group Inc. Improved membrane filtration system
AUPR094600A0 (en) * 2000-10-23 2000-11-16 Usf Filtration And Separations Group Inc. Fibre membrane arrangement
AUPR143400A0 (en) * 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
AUPR421501A0 (en) * 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
AUPR584301A0 (en) * 2001-06-20 2001-07-12 U.S. Filter Wastewater Group, Inc. Membrane polymer compositions
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
AUPR774201A0 (en) * 2001-09-18 2001-10-11 U.S. Filter Wastewater Group, Inc. High solids module
DE60213184T2 (de) * 2001-11-16 2007-06-28 U.S. Filter Wastewater Group, Inc. Methode zur Reinigung von Membranen
US7247238B2 (en) * 2002-02-12 2007-07-24 Siemens Water Technologies Corp. Poly(ethylene chlorotrifluoroethylene) membranes
AUPS300602A0 (en) 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
CA2501628C (en) 2002-10-10 2012-12-04 U.S. Filter Wastewater Group, Inc. A filtration and backwashing arrangement for membrane modules
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
AU2003903507A0 (en) 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
CA2535360C (en) 2003-08-29 2013-02-12 U.S. Filter Wastewater Group, Inc. Backwash
AU2004289373B2 (en) 2003-11-14 2010-07-29 Evoqua Water Technologies Llc Improved module cleaning method
EP1720640A4 (en) * 2004-02-18 2007-05-30 Siemens Water Tech Corp CONTINUOUS INTEGRITY TEST BY PRESSURE DECREASE
US8758621B2 (en) 2004-03-26 2014-06-24 Evoqua Water Technologies Llc Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP2007535398A (ja) 2004-04-22 2007-12-06 シーメンス ウォーター テクノロジース コーポレイション 有機物質を消化するためのメンブレンバイオリアクタおよび処理槽を含む濾過装置ならびに廃液処理方法
CN1988949B (zh) * 2004-07-02 2012-08-22 西门子工业公司 气体可透膜
ATE523240T1 (de) 2004-07-05 2011-09-15 Siemens Water Tech Corp Hydrophile membranen
NZ588094A (en) * 2004-08-20 2012-04-27 Siemens Water Tech Corp Potting head for hollow fibre filter module
JP5101284B2 (ja) * 2004-08-31 2012-12-19 ダウ グローバル テクノロジーズ エルエルシー 分離モジュールをテストする方法
JP4838248B2 (ja) 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション 逆洗液体廃棄物の低減
US8506806B2 (en) 2004-09-14 2013-08-13 Siemens Industry, Inc. Methods and apparatus for removing solids from a membrane module
US8377305B2 (en) 2004-09-15 2013-02-19 Siemens Industry, Inc. Continuously variable aeration
US7591950B2 (en) * 2004-11-02 2009-09-22 Siemens Water Technologies Corp. Submerged cross-flow filtration
CN101065177B (zh) * 2004-11-02 2011-07-27 西门子水技术公司 浸没式横向流过滤
ES2365928T3 (es) * 2004-12-03 2011-10-13 Siemens Industry, Inc. Post-tratamiento de membranas.
WO2006066350A1 (en) 2004-12-24 2006-06-29 Siemens Water Technologies Corp. Simple gas scouring method and apparatus
EP2394731A1 (en) 2004-12-24 2011-12-14 Siemens Industry, Inc. Cleaning in membrane filtration systems
CA2593412A1 (en) * 2005-01-14 2006-07-20 Siemens Water Technologies Corp. Filtration system
JP2008539054A (ja) 2005-04-29 2008-11-13 シーメンス・ウォーター・テクノロジーズ・コーポレイション 膜フィルターのための化学洗浄
WO2006135966A1 (en) * 2005-06-20 2006-12-28 Siemens Water Technologies Corp. Cross linking treatment of polymer membranes
CA2614498A1 (en) 2005-07-14 2007-01-18 Siemens Water Technologies Corp. Monopersulfate treatment of membranes
MY146286A (en) 2005-08-22 2012-07-31 Siemens Industry Inc An assembly for water filtration using a tube manifold to minimise backwash
WO2007044442A2 (en) * 2005-10-05 2007-04-19 Siemens Water Technologies Corp. Method and system for treating wastewater
US20070138090A1 (en) 2005-10-05 2007-06-21 Jordan Edward J Method and apparatus for treating wastewater
WO2007044345A2 (en) * 2005-10-05 2007-04-19 Siemens Water Technologies Corp. Method and apparatus for treating wastewater
US20070144949A1 (en) * 2005-12-02 2007-06-28 Hidayat Husain Method and apparatus for testing membrane integrity
WO2008051546A2 (en) 2006-10-24 2008-05-02 Siemens Water Technologies Corp. Infiltration/inflow control for membrane bioreactor
CA2682707C (en) 2007-04-02 2014-07-15 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
KR20160045152A (ko) 2007-05-29 2016-04-26 에보쿠아 워터 테크놀로지스 엘엘씨 수처리 시스템
AU2009273775B2 (en) 2008-07-24 2014-11-20 Evoqua Water Technologies Llc Frame system for membrane filtration modules
NZ591259A (en) 2008-08-20 2013-02-22 Siemens Industry Inc A hollow membrane filter backwash system using gas pressurised at at least two pressures feed from the down stream side to push water through the filter to clean it
AU2010101488B4 (en) 2009-06-11 2013-05-02 Evoqua Water Technologies Llc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
KR101590191B1 (ko) * 2009-09-08 2016-02-01 코오롱인더스트리 주식회사 막 완결성 테스트 방법
AU2011245709B2 (en) 2010-04-30 2015-06-11 Evoqua Water Technologies Llc Fluid flow distribution device
US9022224B2 (en) 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
CN103958024B (zh) 2011-09-30 2016-07-06 伊沃夸水处理技术有限责任公司 改进的歧管排列
SG11201401091SA (en) 2011-09-30 2014-04-28 Evoqua Water Technologies Llc Isolation valve
EP2866922B1 (en) 2012-06-28 2018-03-07 Evoqua Water Technologies LLC A potting method
US9962865B2 (en) 2012-09-26 2018-05-08 Evoqua Water Technologies Llc Membrane potting methods
DE112013004713T5 (de) 2012-09-26 2015-07-23 Evoqua Water Technologies Llc Membransicherungsvorrichtung
AU2013323934A1 (en) 2012-09-27 2015-02-26 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
AU2014329869B2 (en) 2013-10-02 2018-06-14 Evoqua Water Technologies Llc A method and device for repairing a membrane filtration module
DE102014012784A1 (de) * 2014-08-29 2016-03-03 Sartorius Stedim Biotech Gmbh Verfahren und Vorrichtung zur Durchführung einer Integritätsprüfung eines Filterelements
CN107847869B (zh) 2015-07-14 2021-09-10 罗门哈斯电子材料新加坡私人有限公司 用于过滤系统的通气装置
WO2018213662A1 (en) * 2017-05-19 2018-11-22 Hach Company Membrane integrity monitoring in water treatment
US11712666B2 (en) 2021-07-26 2023-08-01 Cytiva Us Llc Method and system for filter device integrity testing

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2132366B (en) * 1982-12-27 1987-04-08 Brunswick Corp Method and device for testing the permeability of membrane filters
GB8313635D0 (en) * 1983-05-17 1983-06-22 Whatman Reeve Angel Plc Porosimeter
DE3428307A1 (de) * 1984-08-01 1986-02-13 Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg Anzeigevorrichtung fuer den verschmutzungsgrad von ansaugluftfiltern
US4660411A (en) * 1985-05-31 1987-04-28 Reid Philip L Apparatus for measuring transmission of volatile substances through films
US4656865A (en) * 1985-09-09 1987-04-14 The Dow Chemical Company System for analyzing permeation of a gas or vapor through a film or membrane
DE3546091A1 (de) * 1985-12-24 1987-07-02 Kernforschungsz Karlsruhe Querstrom-mikrofilter
DE3617724A1 (de) * 1986-05-27 1987-12-03 Akzo Gmbh Verfahren zur bestimmung des blaspunktes bzw. der groessten pore von membranen oder filterwerkstoffen
US4846970A (en) * 1987-06-22 1989-07-11 Osmonics, Inc. Cross-flow filtration membrane test unit
US5138870A (en) * 1989-07-10 1992-08-18 Lyssy Georges H Apparatus for measuring water vapor permeability through sheet materials
US5104546A (en) * 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration
US5069065A (en) * 1991-01-16 1991-12-03 Mobil Oil Corporation Method for measuring wettability of porous rock
GB2253572B (en) 1991-02-11 1994-12-14 Aljac Engineering Limited Flow device in fluid circuits
DE4119040C2 (de) * 1991-06-10 1997-01-02 Pall Corp Verfahren und Gerät zum Testen des Betriebszustands von Filterelementen
EP0592066B1 (en) * 1992-05-01 1997-09-03 Memtec Japan Limited Apparatus for testing membrane filter integrity
US5282380A (en) * 1992-06-30 1994-02-01 Millipore Corporation Integrity test for membranes
JPH0671120A (ja) 1992-08-27 1994-03-15 Akai Electric Co Ltd 濾過器の目詰まり検出方法
US5361625A (en) * 1993-04-29 1994-11-08 Ylvisaker Jon A Method and device for the measurement of barrier properties of films against gases
US5297420A (en) * 1993-05-19 1994-03-29 Mobil Oil Corporation Apparatus and method for measuring relative permeability and capillary pressure of porous rock
FR2705734B1 (fr) 1993-05-25 1995-06-30 Snecma Procédé et dispositif pour améliorer la sécurité des filtres à fluide.
EP0640822B1 (en) * 1993-08-30 1998-04-22 Millipore Investment Holdings Limited Integrity test for porous structures using acoustic emission
MY116501A (en) * 1995-03-15 2004-02-28 Siemens Industry Inc Filtration monitoring and control system

Also Published As

Publication number Publication date
CN1249698A (zh) 2000-04-05
AU732511B2 (en) 2001-04-26
DE19882069B4 (de) 2013-11-07
KR100491071B1 (ko) 2005-05-24
GB9917873D0 (en) 1999-09-29
JP2002500554A (ja) 2002-01-08
KR20010013118A (ko) 2001-02-26
GB2336684A (en) 1999-10-27
AU7513698A (en) 1998-12-30
AUPO709797A0 (en) 1997-06-26
US6202475B1 (en) 2001-03-20
GB2336684B (en) 2001-09-12
WO1998053902A1 (en) 1998-12-03
DE19882069T1 (de) 2000-04-27
GB2336684A8 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
CN1096286C (zh) 薄膜过滤系统对数降低值预测及多孔薄膜完整性试验方法
JP2013505824A (ja) 多孔質フィルターのための完全性試験方法
Daniel¹ et al. Laboratory hydraulic conductivity testing of GCLs in flexible-wall permeameters
EP1159058A1 (en) Method and apparatus for evaluating a membrane
CN1662295A (zh) 使空心纤维隔膜模块的完整性损失的影响减至最小的方法
HU221782B1 (hu) Eljárás és berendezés folyadékszűrésre való, legalább egy membrán sértetlenségének vizsgálatára
CN209069798U (zh) 一种达西渗透实验仪
JP6590964B2 (ja) 過酸化水素濃度の測定システムおよび測定方法
CN104005744A (zh) 一种评价化学驱油剂与储层渗透率匹配关系的物理模拟实验方法及实验装置
KR20230125043A (ko) 흡입력의 변화 하에 불포화 토양의 가스 투과 계수를연속 테스트하는 장치와 방법
CN213091444U (zh) 一种多孔膜孔径的量化评估装置
CN110243714B (zh) 测定聚合物水动力学尺寸的方法
JP2002320829A (ja) 膜モジュールの完全性検査方法
CN112051198A (zh) 一种多孔膜孔径的量化评估方法
DeMoyer et al. Comparison of submerged aerator effectiveness
CN214844663U (zh) Mbr膜测试装置
EP1358465A1 (en) Pore structure analysis of individual layers of multi-layered composite porous materials
CN216771629U (zh) 一种胺液吸收塔气体夹带量的测试装置
CN115494016B (zh) 饱和-非饱和土壤中溶液中硝态氮浓度原位在线测量方法
CN114813508B (zh) 逐级加载作用下非连续等效渗透系数测试系统及方法
CN219046063U (zh) 混凝土水气渗透系数检测及最小渗透接触面积测定装置
CN115308083A (zh) 一种驱油用聚合物在多孔介质中流变性测试方法
EP4019118A1 (en) Method and system for testing the integrity of filters
CN117323828A (zh) 一种膜污染指数评价的方法及设备
CN111982777A (zh) 液流电池多孔电极渗透率的测量装置及其测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: SIEMENS WATER TECHNOLOGY CO.,LTD.

Free format text: FORMER OWNER: USF FILTER SEPARATION GROUP CO.

Effective date: 20080118

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20080118

Address after: Massachusetts, USA

Patentee after: Siemens Water Technologies Corp.

Address before: Massachusetts USA

Patentee before: USF FILTRATION AND SEPARATIONS Group Inc.

ASS Succession or assignment of patent right

Owner name: SIEMENS WATER TECHNOLOGIES LTD.

Free format text: FORMER OWNER: SIEMENS WATER TECHNOLOGIES COR

Effective date: 20111008

Owner name: SIEMENS BUILDING TECH AG

Free format text: FORMER OWNER: SIEMENS WATER TECHNOLOGIES LTD.

Effective date: 20111008

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20111008

Address after: American Georgia

Patentee after: SIEMENS INDUSTRY, Inc.

Address before: American Pennsylvania

Patentee before: Siemens Water Technologies Holding Corp.

Effective date of registration: 20111008

Address after: American Pennsylvania

Patentee after: Siemens Water Technologies Holding Corp.

Address before: Massachusetts, USA

Patentee before: Siemens Water Technologies Corp.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20021218

Termination date: 20150526

EXPY Termination of patent right or utility model