CN109627012A - 一种自支撑石墨相氮化碳薄膜的制备方法 - Google Patents

一种自支撑石墨相氮化碳薄膜的制备方法 Download PDF

Info

Publication number
CN109627012A
CN109627012A CN201811540274.4A CN201811540274A CN109627012A CN 109627012 A CN109627012 A CN 109627012A CN 201811540274 A CN201811540274 A CN 201811540274A CN 109627012 A CN109627012 A CN 109627012A
Authority
CN
China
Prior art keywords
carbon nitride
phase carbon
graphite phase
nitride film
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811540274.4A
Other languages
English (en)
Other versions
CN109627012B (zh
Inventor
郭良洽
蔡状
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201811540274.4A priority Critical patent/CN109627012B/zh
Publication of CN109627012A publication Critical patent/CN109627012A/zh
Application granted granted Critical
Publication of CN109627012B publication Critical patent/CN109627012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0605Binary compounds of nitrogen with carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明涉及一种自支撑石墨相氮化碳薄膜的制备方法,具体包括以下步骤:(1)将盛放有石墨相氮化碳粉末的坩埚置于真空管式炉的炉腔中央,石英管两端预留进气口与出气口,使出气口一端有管体暴露在室温环境中;(2)向石英管中通入惰性保护气,开启管式炉升温至600‑800℃,维持一段时间后自然冷却至室温;(3)将冷却的生长石墨相氮化碳薄膜的石英管出气口浸泡在水中,石墨相氮化碳薄膜脱离石英管内壁,获得自支撑石墨相氮化碳薄膜。本产品所描述的自支撑石墨相氮化碳薄膜制备方法简单、仪器设备要求低、容易获得、无毒、环保、具有蓝色荧光以及良好的力学机械性能。

Description

一种自支撑石墨相氮化碳薄膜的制备方法
技术领域
本发明涉及一种自支撑石墨相氮化碳薄膜的制备方法。
背景技术
近年来石墨相氮化碳作为有机聚合物半导体材料被广泛应用于光解水产氢和光催化降解有机污染物等领域;同时因为其优越的荧光性质及生物相容性,在生物成像、载药以及生物传感等领域也受到了广泛的关注。但是受其合成方法的限制,对于石墨相氮化碳材料的研究大多是基于其粉末或者溶液分散液的状态。近年来的研究结果显示氮化碳薄膜具有优越的光电化学性质、力学性质,以及在能源转化方面也具有巨大的潜力。因而,开发一种操作简便、成本低廉以及可大面积制备石墨相氮化碳薄膜的方法是急需的。目前,合成石墨相氮化碳薄膜的方法主要有:化学气相沉积方法、静电纺丝技术、磁控反应溅射激光蒸发反应法等。石墨相氮化碳薄膜合成方法的专利有:一种半导体氮化碳薄膜的制备方法(201610366362.1),一种制备氮化碳薄膜的方法(201510770167.0),一种石墨相氮化碳薄膜修饰电极的制备方法 (201610671067.7), 一种可见光响应的碳@石墨相氮化碳薄膜电极及其制备方法(201610161140.6) 等。然而,这些方法操作较为复杂,需多步操作,专业仪器设备要求高,且利用化学气相沉积方法制备的薄膜在形成过程中会出现聚合不完全,结构缺陷多等问题。再者,这些方法的实验条件要求较为苛刻,且制备的薄膜与基底紧密结合,无法脱离基底单独存在,以上这些缺点限制了它们的应用与发展。因此,开发一种简便、廉价、可控的制备大面积自撑石墨相氮化碳薄膜的方法显得十分必要。
发明内容
本发明的目的在于提供一种自支撑石墨相氮化碳薄膜的制备方法。制备得到的产品可应用于光催化、荧光分析、拦截紫外光,而且可以利用热能、湿度、太阳光等能源驱动薄膜弯曲伸直的形变运动来实现能源转化。
为实现上述目的,本发明采用如下技术方案:一种自支撑石墨相氮化碳薄膜的制备方法,包括以下步骤:
(1)将盛放有石墨相氮化碳粉末的坩埚置于真空管式炉的炉腔中央,石英管两端预留进气口与出气口,使出气口一端有管体暴露在室温环境中;
(2)向石英管中通入惰性保护气,开启管式炉升温至600-800℃,维持一段时间后自然冷却至室温;
(3)将冷却的生长石墨相氮化碳薄膜的石英管出气口浸泡在水中,石墨相氮化碳薄膜脱离石英管内壁,获得自支撑石墨相氮化碳薄膜。
步骤(1)所述石墨相氮化碳粉末的加入量为1-5 g。
步骤(2)所述惰性保护气为氮气或氩气中的一种。
所述惰性保护气的流速为50-100 mL min-1
步骤(2)所述管式炉的升温速度为1-15 ℃ min-1
步骤(2)所述升温后的维持时间为2-4 h。
本发明的优点在于:
(1)本产品所描述的自支撑石墨相氮化碳薄膜制备方法简单、仪器设备要求低、容易获得、无毒、环保,具有蓝色荧光以及良好的力学机械性能。
(2)尽管已有石墨相氮化碳薄膜制备方法的报道,但是其制备方法仍较为复杂,成膜过程多为化学聚合,因而出现薄膜缺陷多、微观结构扭曲等特点,并且所制得的石墨相氮化碳薄膜无法脱离生长基底单独存在。本发明提供了一种制备大面积自支撑石墨相氮化碳薄膜的方法,通过物理蒸汽沉积的方法,利用氢键与水分子的作用,自组装形成薄膜,在制备过程中无需准备特殊处理的基底,利用管式炉中石英管内部温度的梯度差异一步操作即可组装形成,其面积和厚度均可人为调控,且具有优越的力学及机械性能,制备过程简单,原料廉价,产品质量稳定适合大规模生产制备。
(3)本发明制得的产品可应用于光催化、荧光分析、拦截紫外光,并且可利用热能、湿度、太阳光等能源驱动薄膜弯曲伸直的形变运动来实现能源转化。
附图说明
图1为石墨相氮化碳自支撑薄膜合成原理图。
图2为石墨相氮化碳自支撑薄膜在自然光下照片及断面的SEM图。
图3为石墨相氮化碳自支撑薄膜的红外吸收光谱图。
图4为石墨相氮化碳自支撑薄膜的固体荧光发射图谱。
图5为石墨相氮化碳自支撑薄膜的透光率图谱。
图6为石墨相氮化碳自支撑薄膜的应变应力曲线。
具体实施方式
实施例1
称取1.0 g石墨相氮化碳粉末置于坩埚内,放置于管式炉石英管中央,按100 mL min-1的流速通入氮气,设置7.5 ℃/min的速率加热到720 ℃,然后在该温度下保持2 h自然冷却,将生长石墨相氮化碳薄膜一端的石英管浸泡于水中,得到淡黄色透明的自支撑石墨相氮化碳薄膜,厚度为4.6 μm(图2c)。
实施例2
称取2.0 g石墨相氮化碳粉末置于坩埚内,放置于管式炉石英管中央,按50mL min-1的流速通入氩气,设置7.5 ℃/min的速率加热到720 ℃,然后在该温度下保持2 h自然冷却,将生长石墨相氮化碳薄膜一端的石英管浸泡于水中,得到的石墨相氮化碳自支撑薄膜厚度为12.6 μm(图2b)。
实施例3
称取5.0 g石墨相氮化碳粉末置于坩埚内,放置于管式炉石英管中央,按100mL min-1的流速通入氩气,设置7.5 ℃/min的速率加热到720 ℃,然后在该温度下保持4 h自然冷却,将生长石墨相氮化碳薄膜一端的石英管浸泡于水中,得到的石墨相氮化碳自支撑薄膜厚度为108μm(图2a)。
实施例4
称取2.0 g石墨相氮化碳粉末置于坩埚内,放置于管式炉石英管中央,按100 mL min-1的流速通入氮气,设置1 ℃/min的速率加热到600 ℃,然后在该温度下保持2 h自然冷却,将生长石墨相氮化碳薄膜一端的石英管浸泡于水中,得到的石墨相氮化碳自支撑薄膜。
实施例5
称取3.0 g石墨相氮化碳粉末置于坩埚内,放置于管式炉石英管中央,按75 mL min-1的流速通入氮气,设置7.5 ℃/min的速率加热到750 ℃,然后在该温度下保持3 h自然冷却,将生长石墨相氮化碳薄膜一端的石英管浸泡于水中,得到的石墨相氮化碳自支撑薄膜。
实施例6
称取5.0 g石墨相氮化碳粉末置于坩埚内,放置于管式炉石英管中央,按50 mL min-1的流速通入氩气,设置15 ℃/min的速率加热到800 ℃,然后在该温度下保持4 h自然冷却,将生长石墨相氮化碳薄膜一端的石英管浸泡于水中,得到的石墨相氮化碳自支撑薄膜。
利用红外光谱法对实施例2制备得到的自支撑石墨相氮化碳薄膜进行检测,结果见图3;其红外光谱在808 cm-1有吸收,说明薄膜仍保留氮化碳的三嗪环结构。
利用荧光发射光谱和荧光寿命定义实施例2得到的自支撑石墨相氮化碳薄膜进行检测,结果见图4;其最大荧光发射波长在470 nm,说明发射蓝色荧光。
利用可见光透射光谱对实施例2得到的自支撑石墨相氮化碳薄膜进行检测,结果见图5;自支撑石墨相氮化碳薄膜能有效的截止紫外波段的光,而使可见光和近红外光透过。
利用万能试验机对实施例2制备得到的自支撑石墨相氮化碳薄膜进行检测,结果见图6;当自支撑石墨相氮化碳薄膜长为1 cm和宽为1.5 cm时,其杨氏模量可达0.1 GPa。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (6)

1.一种自支撑石墨相氮化碳薄膜的制备方法,其特征在于,包括以下步骤:
(1)将盛放有石墨相氮化碳粉末的坩埚置于真空管式炉的炉腔中央,石英管两端预留进气口与出气口,使出气口一端有管体暴露在室温环境中;
(2)向石英管中通入惰性保护气,开启管式炉升温至600-800℃,维持一段时间后自然冷却至室温;
(3)将冷却的生长石墨相氮化碳薄膜的石英管出气口浸泡在水中,石墨相氮化碳薄膜脱离石英管内壁,获得自支撑石墨相氮化碳薄膜。
2.根据权利要求1所述一种自支撑石墨相氮化碳薄膜的制备方法,其特征在于,步骤(1)所述石墨相氮化碳粉末的加入量为1-5 g。
3.根据权利要求1所述一种自支撑石墨相氮化碳薄膜的制备方法,其特征在于,步骤(2)所述惰性保护气为氮气或氩气中的一种。
4.根据权利要求3所述一种自支撑石墨相氮化碳薄膜的制备方法,其特征在于,所述惰性保护气的流速为50-100 mL min-1
5.根据权利要求1所述一种自支撑石墨相氮化碳薄膜的制备方法,其特征在于,步骤(2)所述管式炉的升温速度为1-15 ℃ min-1
6.根据权利要求1所述一种自支撑石墨相氮化碳薄膜的制备方法,其特征在于,步骤(2)所述升温后的维持时间为2-4 h。
CN201811540274.4A 2018-12-17 2018-12-17 一种自支撑石墨相氮化碳薄膜的制备方法 Active CN109627012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811540274.4A CN109627012B (zh) 2018-12-17 2018-12-17 一种自支撑石墨相氮化碳薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811540274.4A CN109627012B (zh) 2018-12-17 2018-12-17 一种自支撑石墨相氮化碳薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN109627012A true CN109627012A (zh) 2019-04-16
CN109627012B CN109627012B (zh) 2021-06-22

Family

ID=66074522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811540274.4A Active CN109627012B (zh) 2018-12-17 2018-12-17 一种自支撑石墨相氮化碳薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN109627012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046724A (zh) * 2021-03-15 2021-06-29 郑州大学 一种大面积石墨相氮化碳薄膜、制备方法及应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598041A (zh) * 2004-08-17 2005-03-23 同济大学 超薄自支撑聚酰亚胺滤光薄膜的物理气相沉积制备方法
CN102154627A (zh) * 2011-01-21 2011-08-17 新疆大学 一种制备独立自支撑透明氮化铝纳米晶薄膜的方法
CN103771565A (zh) * 2014-01-02 2014-05-07 浙江工商大学 一种氮化碳/二氧化钛纳米管的复合电极的制备方法
CN106206773A (zh) * 2016-08-16 2016-12-07 华中科技大学 一种石墨相氮化碳薄膜修饰电极的制备方法
CN107043222A (zh) * 2017-01-20 2017-08-15 西北师范大学 磷掺杂石墨相氮化碳纳米薄膜的制备方法
WO2017209823A2 (en) * 2016-03-14 2017-12-07 The University Of Chicago Injectable pastes based on oppositely charged polymer/calcium phosphate hybrid nanoparticles
CN108728794A (zh) * 2017-04-24 2018-11-02 中国科学院苏州纳米技术与纳米仿生研究所 一种有机自支撑膜、其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1598041A (zh) * 2004-08-17 2005-03-23 同济大学 超薄自支撑聚酰亚胺滤光薄膜的物理气相沉积制备方法
CN102154627A (zh) * 2011-01-21 2011-08-17 新疆大学 一种制备独立自支撑透明氮化铝纳米晶薄膜的方法
CN103771565A (zh) * 2014-01-02 2014-05-07 浙江工商大学 一种氮化碳/二氧化钛纳米管的复合电极的制备方法
WO2017209823A2 (en) * 2016-03-14 2017-12-07 The University Of Chicago Injectable pastes based on oppositely charged polymer/calcium phosphate hybrid nanoparticles
CN106206773A (zh) * 2016-08-16 2016-12-07 华中科技大学 一种石墨相氮化碳薄膜修饰电极的制备方法
CN107043222A (zh) * 2017-01-20 2017-08-15 西北师范大学 磷掺杂石墨相氮化碳纳米薄膜的制备方法
CN108728794A (zh) * 2017-04-24 2018-11-02 中国科学院苏州纳米技术与纳米仿生研究所 一种有机自支撑膜、其制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赵敏学等: "β-C3N4的研究进展", 《真空科学与技术学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046724A (zh) * 2021-03-15 2021-06-29 郑州大学 一种大面积石墨相氮化碳薄膜、制备方法及应用

Also Published As

Publication number Publication date
CN109627012B (zh) 2021-06-22

Similar Documents

Publication Publication Date Title
Wu et al. Characterization and properties of a Sr2Si5N8: Eu2+-based light-conversion agricultural film
CN103303910B (zh) 一种制备石墨烯的方法及其制备的石墨烯
CN109292824B (zh) 一种氯化钠辅助多层过渡金属硫属化合物生长的方法
CN107445206B (zh) 一种碱金属离子辅助过渡金属硫属化合物生长的方法
CN113512056B (zh) 一种单一分子量共轭芴-偶氮苯精确序列齐聚物及其合成方法与应用
CN103980668B (zh) 一种碳纳米管/非晶碳/环氧树脂复合材料的制备方法
CN112111119A (zh) 一种具有优异性能的聚乙烯醇纳米复合材料及其制备方法
CN105483824A (zh) 制备单晶双层石墨烯的方法
CN109627012A (zh) 一种自支撑石墨相氮化碳薄膜的制备方法
CN108584917B (zh) 一种亲水性碳纳米管薄膜的制备方法
CN109734060A (zh) 氮化碳纳米材料及其制备方法和应用
CN107164739A (zh) Cvd生长多层异质结的方法和装置
CN110205110A (zh) 孔道限域-壳层隔绝双重保护钙钛矿纳米粒子的制备方法
CN105908491B (zh) 制备表面生长有碳纳米管的连续碳纤维的装置和方法
Iguchi Generation of orthorhombic polyoxymethylene in a cationic polymerization system of trioxane
CN106995947B (zh) 氮化物纤维的渐进式脱碳方法
CN105731431A (zh) 一种基于固相热化学反应的表面石墨烯的化学修饰方法
He et al. Efficient Solar‐Powered Interfacial Evaporation, Water Remediation, and Waste Conversion Based on a Tumbler‐Inspired, All‐Cellulose, and Monolithic Design
CN106276859B (zh) 一种包覆有碳膜的碳纳米管微球的制备方法
CN108070842A (zh) 基于头发丝作为碳源使用mpcvd法生长单晶金刚石的方法
CN101210347B (zh) 一种制备有机化合物单晶纳米结构的方法
Sorokin The Effect of the Past History of Cells of Chlorella on Their Photosynthetic Capacity.
CN106623980B (zh) 一种金属钼纳米片的制备方法
CN110316718A (zh) 一种双发射红色荧光碳量子点及其制备方法
CN107337198B (zh) 一种基于单壁碳纳米管的仿蜘蛛网结构材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant