CN109616526B - Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect - Google Patents
Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect Download PDFInfo
- Publication number
- CN109616526B CN109616526B CN201910063365.1A CN201910063365A CN109616526B CN 109616526 B CN109616526 B CN 109616526B CN 201910063365 A CN201910063365 A CN 201910063365A CN 109616526 B CN109616526 B CN 109616526B
- Authority
- CN
- China
- Prior art keywords
- schottky diode
- anode
- layer
- schottky
- terahertz
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000000694 effects Effects 0.000 title claims abstract description 16
- 239000002184 metal Substances 0.000 claims description 38
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 31
- 238000002161 passivation Methods 0.000 claims description 11
- 239000000758 substrate Substances 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000008719 thickening Effects 0.000 claims description 5
- 235000012239 silicon dioxide Nutrition 0.000 claims description 4
- 239000000377 silicon dioxide Substances 0.000 claims description 4
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D8/00—Diodes
- H10D8/60—Schottky-barrier diodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D64/00—Electrodes of devices having potential barriers
- H10D64/60—Electrodes characterised by their materials
- H10D64/64—Electrodes comprising a Schottky barrier to a semiconductor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本发明公开了一种基于梯形阳极改善电流拥挤效应的太赫兹肖特基二极管,涉及肖特基二极管技术领域。所述二极管包括肖特基二极管本体,所述肖特基二极管本体包括若干个串联连接的肖特基二极管结,每个肖特基二极管结的阳极与阴极之间通过空气桥连接,所述空气桥下侧的阳极朝向与该阳极相近的阴极延伸,且阳极沿前后方向的宽度从右到左逐渐增加。所述二极管可有效改善肖特基二极管的电流拥挤效应,减小功率耗散,增加倍频二极管的倍频效率。
The invention discloses a terahertz Schottky diode which improves current crowding effect based on a trapezoidal anode, and relates to the technical field of Schottky diodes. The diode includes a Schottky diode body, the Schottky diode body includes several Schottky diode junctions connected in series, the anode and cathode of each Schottky diode junction are connected by an air bridge, the anode on the lower side of the air bridge extends towards the cathode close to the anode, and the width of the anode gradually increases from right to left along the front and rear direction. The diode can effectively improve the current crowding effect of the Schottky diode, reduce power dissipation, and increase the frequency doubling efficiency of the frequency doubling diode.
Description
技术领域technical field
本发明涉及肖特基二极管技术领域,尤其涉及一种基于梯形阳极改善电流拥挤效应的太赫兹肖特基二极管。The invention relates to the technical field of Schottky diodes, in particular to a terahertz Schottky diode that improves the current crowding effect based on a trapezoidal anode.
背景技术Background technique
太赫兹波是指频率在 100GHz-10THz范围内的电磁波,与毫米波的高端、亚毫米波及远红外有所交叠,处于宏观电子学向微观光子学的过度领域。太赫兹波在电磁波频谱中占有很特殊的位置。太赫兹是一种新的、有很多独特优点的辐射源;太赫兹技术是一个非常重要的交叉前沿领域,给技术创新、国民经济发展和国家安全提供了一个非常诱人的机遇。Terahertz waves refer to electromagnetic waves with a frequency in the range of 100GHz-10THz, which overlap with the high-end of millimeter waves, submillimeter waves and far infrared, and are in the transitional field from macroelectronics to microphotonics. Terahertz waves occupy a very special position in the electromagnetic spectrum. Terahertz is a new radiation source with many unique advantages; Terahertz technology is a very important cross-frontier field, which provides a very attractive opportunity for technological innovation, national economic development and national security.
THz频率低端范围内,通常采用半导体器件倍频方法获得固态源。该方法是将毫米波通过非线性半导体器件倍频至THz频段,具有结构紧凑、易于调节、寿命长,波形可控,常温工作等优点。目前短波长亚毫米波、THz固态源主要依靠倍频的方式获得。利用肖特基二极管器件实现高效倍频不仅电路结构简单、倍频效率较高,还兼有振荡源具有的较高输出功率、倍频放大链高频率稳定度、低相位噪声的优点;同时肖特基二极管器件可稳定工作于30GHz~3000GHz整个毫米波及亚毫米波频段。目前先进的变容二极管(RAL和VDI等研究机构生产)已经可以工作于3.1THz,具有良好的连续波功率和效率。因此肖特基二极管高效倍频技术非常适于高性能的毫米波、亚毫米波、THz系统,是一种极具研究、应用价值的THz频率源技术。由于具有极小的结电容和串联电阻,高的电子漂移速度,平面GaAs肖特基二极管已经在THz频段上得到了广泛的应用,是THz技术领域中核心的固态电子器件。In the low-end range of THz frequency, the solid-state source is usually obtained by frequency doubling of semiconductor devices. This method doubles the frequency of the millimeter wave to the THz frequency band through a nonlinear semiconductor device, and has the advantages of compact structure, easy adjustment, long life, controllable waveform, and normal temperature operation. At present, short-wavelength submillimeter wave and THz solid-state sources are mainly obtained by frequency doubling. The use of Schottky diode devices to achieve high-efficiency frequency multiplication not only has a simple circuit structure and high frequency multiplication efficiency, but also has the advantages of high output power of the oscillation source, high frequency stability of the frequency multiplication amplifier chain, and low phase noise; at the same time, Schottky diode devices can work stably in the entire millimeter wave and submillimeter wave frequency bands from 30GHz to 3000GHz. At present, advanced varactor diodes (produced by research institutions such as RAL and VDI) can already work at 3.1THz, and have good continuous wave power and efficiency. Therefore, Schottky diode high-efficiency frequency multiplication technology is very suitable for high-performance millimeter wave, submillimeter wave, and THz systems, and is a THz frequency source technology with great research and application value. Due to its extremely small junction capacitance and series resistance, and high electron drift speed, planar GaAs Schottky diodes have been widely used in the THz frequency band and are the core solid-state electronic devices in the THz technology field.
当肖特基二极管用于倍频工作时,一般输入的功率较大,约为100mW-500mW,有时甚至输入更大的输入功率,在大功率输入的情况下,太赫兹肖特基二极管中的电流较大,由于目前太赫兹倍频肖特基二极管的阳极为圆形或者矩形,且面积约为几十个平方微米,在圆形或者矩形的标准图形下,电流在通过这样的肖特基结时,有强烈的拥堵效应,造成电阻升高,耗散了输入功率,降低了倍频二极管的倍频效率。When Schottky diodes are used for frequency doubling, the input power is generally large, about 100mW-500mW, and sometimes even greater input power is input. In the case of high-power input, the current in the terahertz Schottky diodes is relatively large. Since the anode of the terahertz frequency doubling Schottky diodes is currently circular or rectangular, and the area is about tens of square microns. The frequency doubling efficiency of the frequency doubling diode.
发明内容Contents of the invention
本发明所要解决的技术问题是如何提供一种可有效改善肖特基二极管的电流拥挤效应,减小功率耗散,增加倍频二极管的倍频效率的太赫兹肖特基二极管。The technical problem to be solved by the present invention is how to provide a terahertz Schottky diode that can effectively improve the current crowding effect of the Schottky diode, reduce power dissipation, and increase the frequency doubling efficiency of the frequency doubling diode.
为解决上述技术问题,本发明所采取的技术方案是:一种基于梯形阳极改善电流拥挤效应的太赫兹肖特基二极管,包括肖特基二极管本体,所述肖特基二极管本体包括若干个串联连接的肖特基二极管结,每个肖特基二极管结的阳极与阴极之间通过空气桥连接,其特征在于:所述空气桥下侧的阳极朝向与该阳极相近的阴极延伸,且阳极沿前后方向的宽度从右到左逐渐增加。In order to solve the above technical problems, the technical solution adopted by the present invention is: a terahertz Schottky diode based on a trapezoidal anode to improve the current crowding effect, including a Schottky diode body, and the Schottky diode body includes several Schottky diode junctions connected in series, and the anode and cathode of each Schottky diode junction are connected through an air bridge.
进一步的技术方案在于:所述阳极分体朝向与该所述阳极相近的阴极延伸。A further technical solution is that: the anode split extends towards a cathode close to the anode.
进一步的技术方案在于:每个肖特基二极管结包括半绝缘GaAs衬底,所述半绝缘GaAs衬底的上表面设有重掺杂GaAs层,所述半绝缘GaAs衬底的上表面还设有钝化层,所述钝化层将所述重掺杂GaAs层分成左右两部分,每个所述重掺杂GaAs层的上表面为阶梯状,其中靠近所述肖特基二极管结内部的台阶面相对于外侧的台阶面较高,较高的台阶面上设有低掺杂GaAs层,较低的台阶面上设有欧姆接触金属层,所述欧姆接触金属层为所述肖特基二极管结的阴极,所述欧姆接触金属层的上表面设有金属加厚层,其中的一个所述低掺杂GaAs层的上表面设有肖特基接触金属层,所述肖特基接触金属层为所述肖特基二极管结的阳极,所述肖特基接触金属层以外的低掺杂GaAs层上设有二氧化硅层,所述肖特基接触金属层与位于另一侧的金属加厚层之间通过空气桥连接。A further technical solution is: each Schottky diode junction includes a semi-insulating GaAs substrate, the upper surface of the semi-insulating GaAs substrate is provided with a heavily doped GaAs layer, the upper surface of the semi-insulating GaAs substrate is also provided with a passivation layer, and the passivation layer divides the heavily doped GaAs layer into left and right parts, and the upper surface of each of the heavily doped GaAs layers is stepped, wherein the step surface close to the inside of the Schottky diode junction is higher than the outer step surface, the higher step surface is provided with a low-doped GaAs layer, and the lower step surface is provided with An ohmic contact metal layer, the ohmic contact metal layer is the cathode of the Schottky diode junction, the upper surface of the ohmic contact metal layer is provided with a metal thickening layer, the upper surface of one of the low-doped GaAs layers is provided with a Schottky contact metal layer, the Schottky contact metal layer is the anode of the Schottky diode junction, a silicon dioxide layer is provided on the low-doped GaAs layer other than the Schottky contact metal layer, and the Schottky contact metal layer is connected to the metal thickening layer on the other side through an air bridge.
进一步的技术方案在于:所述钝化层的制作材料为氮化硅。A further technical solution is: the passivation layer is made of silicon nitride.
进一步的技术方案在于:所述欧姆接触金属层的制作金属自下而上为Ni/Au/ Ge/Ni/Au。A further technical solution is: the fabrication metal of the ohmic contact metal layer is Ni/Au/Ge/Ni/Au from bottom to top.
进一步的技术方案在于:所述肖特基接触金属层的制作金属自下而上为Ti/Pt/Au。A further technical solution is: the fabrication metal of the Schottky contact metal layer is Ti/Pt/Au from bottom to top.
进一步的技术方案在于:所述太赫兹倍频肖特基二极管包括6个肖特基二极管结。A further technical solution is that: the terahertz frequency multiplier Schottky diode includes six Schottky diode junctions.
采用上述技术方案所产生的有益效果在于:本发明所述太赫兹肖特基二极管的阳极在圆形或矩形阳极主体的基础上增加两个向阴极延伸的阳极分体,构成电流扩散通道,在大功率泵浦条件下,可有效改善肖特基二极管的电流拥挤效应,减小功率耗散,增加倍频二极管的倍频效率。所述二极管只改变肖特基阳极形状,工艺简单,且与现有二极管工艺兼容,可大幅改善肖特基二极管的电流拥挤效应。The beneficial effects produced by adopting the above technical solution are: the anode of the terahertz Schottky diode of the present invention adds two anode splits extending toward the cathode on the basis of a circular or rectangular anode body to form a current diffusion channel. Under high-power pumping conditions, it can effectively improve the current crowding effect of the Schottky diode, reduce power dissipation, and increase the frequency doubling efficiency of the frequency doubling diode. The diode only changes the shape of the Schottky anode, has a simple process, is compatible with the existing diode process, and can greatly improve the current crowding effect of the Schottky diode.
附图说明Description of drawings
图1是本发明实施例所述太赫兹肖特基二极管的俯视结构示意图;FIG. 1 is a schematic top view of a terahertz Schottky diode according to an embodiment of the present invention;
图2是本发明实施例所述太赫兹肖特基二极管中阳极部分的放大结构示意图;2 is a schematic diagram of an enlarged structure of the anode part of the terahertz Schottky diode described in the embodiment of the present invention;
图3是图1中A-A向的剖视结构示意图;Fig. 3 is a schematic cross-sectional structure diagram of A-A direction in Fig. 1;
其中:1、钝化层;2、二氧化硅层;3、欧姆接触金属层;4、金属加厚层;5、半绝缘GaAs衬底;6、重掺杂GaAs层;7、低掺杂GaAs层;8、肖特基接触金属层;9、空气桥。Among them: 1. Passivation layer; 2. Silicon dioxide layer; 3. Ohmic contact metal layer; 4. Metal thickening layer; 5. Semi-insulating GaAs substrate; 6. Heavily doped GaAs layer; 7. Low doped GaAs layer; 8. Schottky contact metal layer; 9. Air bridge.
具体实施方式Detailed ways
下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described below in conjunction with the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似推广,因此本发明不受下面公开的具体实施例的限制。In the following description, a lot of specific details are set forth in order to fully understand the present invention, but the present invention can also be implemented in other ways different from those described here, and those skilled in the art can do similar promotion without violating the connotation of the present invention, so the present invention is not limited by the specific embodiments disclosed below.
如图1-2所示,本发明公开了一种基于梯形阳极改善电流拥挤效应的太赫兹肖特基二极管,包括肖特基二极管本体,所述肖特基二极管本体包括若干个串联连接的肖特基二极管结,每个肖特基二极管结的阳极与阴极之间通过空气桥9连接。所述空气桥9下侧的阳极朝向与该阳极相近的阴极延伸,且阳极沿前后方向的宽度从右到左逐渐增加。As shown in Figure 1-2, the present invention discloses a terahertz Schottky diode based on a trapezoidal anode to improve the current crowding effect, including a Schottky diode body, the Schottky diode body includes several Schottky diode junctions connected in series, and the anode and cathode of each Schottky diode junction are connected through an air bridge 9 . The anode on the lower side of the air bridge 9 extends towards the cathode close to the anode, and the width of the anode gradually increases from right to left along the front-to-back direction.
如图3所示,每个肖特基二极管结包括半绝缘GaAs衬底5,所述半绝缘GaAs衬底5的上表面设有重掺杂GaAs层6,所述半绝缘GaAs衬底5的上表面还设有钝化层1,所述钝化层1的制作材料可以为氮化硅。所述钝化层1将所述重掺杂GaAs层6分成左右两部分,每个所述重掺杂GaAs层6的上表面为阶梯状,其中靠近所述肖特基二极管结内部的台阶面相对于外侧的台阶面较高,较高的台阶面上设有低掺杂GaAs层7,较低的台阶面上设有欧姆接触金属层3,所述欧姆接触金属层3的制作金属自下而上可以为Ni/Au/ Ge/Ni/Au。所述欧姆接触金属层3的上表面设有金属加厚层4,其中的一个所述低掺杂GaAs层7的上表面设有肖特基接触金属层8,所述肖特基接触金属层8的制作金属自下而上可以为Ti/Pt/Au。所述肖特基接触金属层8以外的低掺杂GaAs层7上设有二氧化硅层2,所述肖特基接触金属层8与位于另一侧的金属加厚层4之间通过空气桥9连接。As shown in Figure 3, each Schottky diode junction includes a semi-insulating GaAs substrate 5, the upper surface of the semi-insulating GaAs substrate 5 is provided with a heavily doped GaAs layer 6, and the upper surface of the semi-insulating GaAs substrate 5 is also provided with a passivation layer 1, and the passivation layer 1 can be made of silicon nitride. The passivation layer 1 divides the heavily doped GaAs layer 6 into left and right parts. The upper surface of each of the heavily doped GaAs layers 6 is stepped, wherein the stepped surface close to the inside of the Schottky diode junction is higher than the stepped surface on the outside, a low-doped GaAs layer 7 is provided on the higher stepped surface, and an ohmic contact metal layer 3 is provided on the lower stepped surface. The metal for the ohmic contact metal layer 3 can be Ni/Au/Ge/Ni/Au from bottom to top. The upper surface of the ohmic contact metal layer 3 is provided with a metal thickening layer 4, and the upper surface of one of the low-doped GaAs layers 7 is provided with a Schottky contact metal layer 8, and the metal for making the Schottky contact metal layer 8 can be Ti/Pt/Au from bottom to top. The low-doped GaAs layer 7 other than the Schottky contact metal layer 8 is provided with a silicon dioxide layer 2 , and the Schottky contact metal layer 8 is connected to the thickened metal layer 4 on the other side through an air bridge 9 .
本发明所述的太赫兹肖特基倍频二极管可通过成熟的肖特基二极管加工工艺实现,目前肖特基二极管的制造技术在国内外均已成熟,包括阴极欧姆接触、阳极肖特基金属蒸发,空气桥连接以及隔离槽腐蚀,制作钝化层。正面加工工艺完成后,进行背面的减薄及分片,制作出太赫兹肖特基二极管。The terahertz Schottky frequency multiplier diode described in the present invention can be realized through mature Schottky diode processing technology. At present, the manufacturing technology of Schottky diodes is mature at home and abroad, including cathode ohmic contact, anode Schottky metal evaporation, air bridge connection and isolation groove corrosion, and making a passivation layer. After the front processing is completed, the back is thinned and sliced to produce a terahertz Schottky diode.
本发明所述太赫兹肖特基二极管的阳极在圆形或矩形阳极主体的基础上增加两个向阴极延伸的阳极分体,构成电流扩散通道,在大功率泵浦条件下,可有效改善肖特基二极管的电流拥挤效应,减小功率耗散,增加倍频二极管的倍频效率。所述二极管只改变肖特基阳极形状,工艺简单,且与现有二极管工艺兼容,可大幅改善肖特基二极管的电流拥挤效应。The anode of the terahertz Schottky diode of the present invention adds two anode splits extending toward the cathode on the basis of a circular or rectangular anode body to form a current diffusion channel, which can effectively improve the current crowding effect of the Schottky diode under high-power pumping conditions, reduce power dissipation, and increase the frequency doubling efficiency of the frequency doubling diode. The diode only changes the shape of the Schottky anode, has a simple process, is compatible with the existing diode process, and can greatly improve the current crowding effect of the Schottky diode.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910063365.1A CN109616526B (en) | 2019-01-23 | 2019-01-23 | Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910063365.1A CN109616526B (en) | 2019-01-23 | 2019-01-23 | Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109616526A CN109616526A (en) | 2019-04-12 |
CN109616526B true CN109616526B (en) | 2023-07-21 |
Family
ID=66020621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910063365.1A Active CN109616526B (en) | 2019-01-23 | 2019-01-23 | Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109616526B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110993699A (en) * | 2019-12-06 | 2020-04-10 | 中山大学 | Schottky diode and preparation method thereof |
CN111509051A (en) * | 2020-04-30 | 2020-08-07 | 北京国联万众半导体科技有限公司 | New Millimeter-Wave Ga2O3 Schottky Diode |
CN112802891B (en) * | 2021-01-14 | 2022-08-19 | 中国电子科技集团公司第五十五研究所 | Quasi-vertical Schottky diode with air bridge interconnected bar-shaped anode |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513752A (en) * | 1991-07-05 | 1993-01-22 | Sumitomo Electric Ind Ltd | Schottky diode |
JP2005268296A (en) * | 2004-03-16 | 2005-09-29 | Nippon Inter Electronics Corp | Schottky barrier diode |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8237239B2 (en) * | 2009-10-28 | 2012-08-07 | Vanguard International Semiconductor Corporation | Schottky diode device and method for fabricating the same |
CN102891081B (en) * | 2012-10-11 | 2015-02-25 | 王昊 | Manufacturing method of Terahertz Schottky diode |
CN103367463B (en) * | 2013-07-23 | 2015-12-09 | 中国工程物理研究院电子工程研究所 | A kind of Terahertz lateral direction schottky diode and preparation method thereof |
WO2016033557A2 (en) * | 2014-08-29 | 2016-03-03 | University Of Virginia | Quasi-vertical diode with integrated ohmic contact base and related method thereof |
CN105826400B (en) * | 2016-05-24 | 2019-01-04 | 中国电子科技集团公司第十三研究所 | The different Terahertz frequency multiplication Schottky diode of anode knot size |
CN105826401B (en) * | 2016-05-24 | 2018-11-02 | 中国电子科技集团公司第十三研究所 | The different Terahertz frequency multiplication Schottky diode of air bridges size |
-
2019
- 2019-01-23 CN CN201910063365.1A patent/CN109616526B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0513752A (en) * | 1991-07-05 | 1993-01-22 | Sumitomo Electric Ind Ltd | Schottky diode |
JP2005268296A (en) * | 2004-03-16 | 2005-09-29 | Nippon Inter Electronics Corp | Schottky barrier diode |
Also Published As
Publication number | Publication date |
---|---|
CN109616526A (en) | 2019-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104867968B (en) | For Terahertz low-frequency range GaAs based high-power Schottky frequency doubled diodes | |
CN109616513B (en) | Terahertz Schottky diode based on multi-split anode to improve current crowding effect | |
CN104465796A (en) | Kind mixing GaAs terahertz schottky third harmonic generation diode | |
CN109616526B (en) | Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect | |
CN105826400A (en) | Terahertz frequency-doubling Schottky diode with anode junctions of different sizes | |
CN104795453B (en) | A kind of more beam lead GaAs base schottky frequency doubled diodes | |
CN104022163A (en) | Improved radiating GaAs-based terahertz frequency doubling Schottky diode | |
CN104835859B (en) | Class mixing GaAs base Terahertz Schottky diodes can be biased | |
CN105826401B (en) | The different Terahertz frequency multiplication Schottky diode of air bridges size | |
CN102904528B (en) | Terahertz quasi-optical frequency multiplier | |
CN204204868U (en) | Class mixing GaAs Terahertz Schottky frequency tripling diode | |
CN110600448A (en) | Terahertz schottky diode | |
CN111048583B (en) | Planar Schottky diode with multi-finger structure | |
CN111180528B (en) | A Termination Structure of a SiC Schottky Diode with a Three-Order Slanted Mesa Junction | |
CN112289865A (en) | Biasable frequency mixing Schottky diode structure and semiconductor device | |
CN105845742B (en) | Beam lead terahertz Schottky diode | |
CN112289866B (en) | High-power broadband terahertz frequency multiplication Schottky diode structure | |
CN205657060U (en) | Beam lead terahertz is schottky diode now | |
CN203859118U (en) | Heat-dissipation-improved GaAs-based terahertz frequency multiplication Schottky diode | |
CN111244190A (en) | Double-barrier Schottky diode | |
CN205657059U (en) | Terahertz that air bridge size differed from each other is doubling of frequency schottky diode now | |
CN204348720U (en) | A kind of composite channel MHEMT microwave oscillator | |
CN204668311U (en) | A kind of for Terahertz low-frequency range GaAs based high-power Schottky frequency doubled diode | |
CN205645826U (en) | Different terahertz of size doubling of frequency schottky diode is now tied to positive pole | |
CN110993686B (en) | Diode suitable for odd-order frequency multiplication |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |