CN204204868U - Class mixing GaAs Terahertz Schottky frequency tripling diode - Google Patents

Class mixing GaAs Terahertz Schottky frequency tripling diode Download PDF

Info

Publication number
CN204204868U
CN204204868U CN201420714337.4U CN201420714337U CN204204868U CN 204204868 U CN204204868 U CN 204204868U CN 201420714337 U CN201420714337 U CN 201420714337U CN 204204868 U CN204204868 U CN 204204868U
Authority
CN
China
Prior art keywords
layer
metal electrode
metal
diode
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201420714337.4U
Other languages
Chinese (zh)
Inventor
王俊龙
邢东
梁士雄
张立森
杨大宝
赵向阳
冯志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN201420714337.4U priority Critical patent/CN204204868U/en
Application granted granted Critical
Publication of CN204204868U publication Critical patent/CN204204868U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

The utility model discloses a kind mixing GaAs Terahertz Schottky frequency tripling diode, the first metal electrode layer on first metal electrode assembly is connected with the second Schottky contact metal layer on the first diode assembly by metal-air bridge, the first Schottky contact metal layer on the second metal electrode layer on first diode assembly and the second metal electrode assembly is connect by metal-air bridging, the first metal electrode layer on second metal electrode assembly is connected with the second Schottky contact metal layer on the second diode assembly by metal-air bridge, the second metal electrode layer on second diode assembly is connected with the first Schottky contact metal layer on the first metal electrode assembly by metal-air bridge.Described diode is supplementing of existing frequency tripling diode type, during as frequency tripling, effectively can suppress second harmonic, promotes shg efficiency.Meanwhile, described diode adopts two tube cores first to connect the form of reverse parallel connection again, effectively can promote the resistance to power-performance of diode, improve power output.

Description

Class mixing GaAs Terahertz Schottky frequency tripling diode
Technical field
The utility model relates to diode technologies field, particularly relates to a kind mixing GaAs Terahertz Schottky frequency tripling diode.
Background technology
Terahertz (THz) ripple refers to the electromagnetic wave of frequency within the scope of 0.3-3THz, and the THz wave frequency range of broad sense is 100GHz-10THz, wherein 1THz=1000GHz.THz ripple occupies very special position in electromagnetic spectrum, and THz technology is the very important intersection Disciplinary Frontiers that International Technology circle is generally acknowledged.
In THz frequency low end range, semiconductor device frequency-doubling method is usually adopted to obtain Solid Source.The method be by millimeter wave by non-linear semiconductor device frequency multiplication to THz frequency range, there is compact conformation, be easy to regulate, the life-span is long, the advantages such as waveform is controlled, normal temperature work.Current short wavelength's submillimeter wave, THz Solid Source mainly rely on the mode of frequency multiplication to obtain.Not only circuit structure is simple, shg efficiency is higher to utilize schottky diode device to realize efficient frequency multiplication, also has the advantage of higher output power that oscillation source has, frequency multiplication amplifier chain high frequency stability, low phase noise concurrently; Simultaneously schottky diode device Absorbable organic halogens works in the whole millimeter of 30GHz-3000GHz and involves submillimeter wave frequency range.The variable capacitance diode of current advanced person research institutions such as (produce) RAL and VDI can work in 3.1THz, has good continuous wave power and efficiency.Therefore the efficient frequency doubling technology of Schottky diode is very suitable for high performance millimeter wave, submillimeter wave, THz system, is a kind of THz frequency source technology having research, using value.Owing to having minimum junction capacitance and series resistance, high electron drift velocity, planar GaAs Schottky diode is widely used in THz frequency range, is the solid electronic device of core in THz technical field.
For Terahertz frequency range, the major way that current frequency source is expanded realizes two frequencys multiplication and frequency tripling by GaAs based schottky diode, two frequencys multiplication are relative to frequency tripling, its efficiency is generally higher than the latter, output frequency is two times of input fundamental frequency, and the output frequency of frequency tripling is three times of input first-harmonic, frequency tripling is relative to two frequencys multiplication, and frequency upgrading is faster.At present conventional frequency tripling diode be mostly multiple die series together, point-blank, object is to increase power capacity, and Schottky diode is directly welded on metallic cavity simultaneously.But in fact, the Schottky diode of reverse parallel connection, is namely usually used in the mixer diode version of frequency mixer at present, in for frequency tripling, effectively can suppress second harmonic, improve the efficiency of three frequencys multiplication.Make several anode knot if more, then can promote the resistance to power-performance of Schottky diode.
Utility model content
Technical problem to be solved in the utility model is to provide a kind mixing GaAs Terahertz Schottky frequency tripling diode, described diode is supplementing of existing frequency tripling diode type, during as frequency tripling, effectively can suppress second harmonic, promote shg efficiency.Meanwhile, described diode adopts two tube cores first to connect the form of reverse parallel connection again, effectively can promote the resistance to power-performance of diode, improve power output.
For solving the problems of the technologies described above, technical solution adopted in the utility model is: a kind mixing GaAs Terahertz Schottky frequency tripling diode, it is characterized in that: described diode comprises the first metal electrode assembly be positioned on substrate, second metal electrode assembly, first diode assembly and the second diode assembly, described first diode assembly and the second diode assembly are between the first metal electrode assembly and the second metal electrode assembly, described first metal electrode assembly and the second metal electrode assembly are the first heavy doping GaAs layer from top to bottom, first low-doped GaAs, first silicon dioxide layer and the first metal electrode layer, described first metal electrode layer is embedded in described first heavy doping GaAs layer, first low-doped GaAs layer and the first silicon dioxide layer, and the height of the first metal electrode layer upper surface is greater than the height of the first silicon dioxide layer upper surface, first Schottky contact metal layer is embedded in described first silicon dioxide layer, and the first Schottky contact metal layer contacts with the first low-doped GaAs layer, described first diode assembly and the second diode assembly are the second heavy doping GaAs layer, the second low-doped GaAs, the second silicon dioxide layer and the second metal electrode layer from top to bottom, described second metal electrode layer is embedded in described second heavy doping GaAs layer, the second low-doped GaAs layer and the second silicon dioxide layer, and the height of the second metal electrode layer upper surface is greater than the height of the second silicon dioxide layer upper surface, second Schottky contact metal layer is embedded in described second silicon dioxide layer, and the second Schottky contact metal layer contacts with the second low-doped GaAs layer,
The first metal electrode layer on described first metal electrode assembly is connected with the second Schottky contact metal layer on the first diode assembly by metal-air bridge, the first Schottky contact metal layer on the second metal electrode layer on described first diode assembly and the second metal electrode assembly is connect by metal-air bridging, the first metal electrode layer on described second metal electrode assembly is connected with the second Schottky contact metal layer on the second diode assembly by metal-air bridge, the second metal electrode layer on described second diode assembly is connected with the first Schottky contact metal layer on the first metal electrode assembly by metal-air bridge.
Further technical scheme is: the surrounding of described first heavy doping GaAs layer and the second heavy doping GaAs layer is provided with passivation layer, and the height of described passivation layer is lower than the height of the first and second heavy doping GaAs layers.
Further technical scheme is: described first metal electrode layer and the second metal electrode layer comprise the ohmic contact layer being positioned at lower floor and the metal thickening layer being positioned at upper strata.
Further technical scheme is: described ohmic contact layer is sandwich construction, is Ni layer, Au layer, Ge layer, Ni layer, Au layer from bottom to top.
Further technical scheme is: described first Schottky contact metal layer and the second Schottky contact metal layer are sandwich construction, is Ti layer, Pt layer, Au layer from bottom to top.
The beneficial effect adopting technique scheme to produce is: described diode is supplementing of existing frequency tripling diode type, during as frequency tripling, effectively can suppress second harmonic, promotes shg efficiency.Meanwhile, described diode adopts two tube cores first to connect the form of reverse parallel connection again, effectively can promote the resistance to power-performance of diode, improve power output.
Accompanying drawing explanation
Below in conjunction with the drawings and specific embodiments, the utility model is described in further detail.
Fig. 1 is plan structure schematic diagram of the present utility model;
Fig. 2 be in Fig. 1 A-A to sectional structure schematic diagram;
Wherein: 1, substrate 2, first metal electrode assembly 3, second metal electrode assembly 4, first diode assembly 5, second diode assembly 6, first heavy doping GaAs layer 7, first low-doped GaAs 8, first silicon dioxide layer 9, first metal electrode layer 10, first Schottky contact metal layer 11, second heavy doping GaAs layer 12, second low-doped GaAs 13, second silicon dioxide layer 14, second metal electrode layer 15, second Schottky contact metal layer 16, metal-air bridge 17, passivation layer 18, ohmic contact layer 19, metal thickening layer.
Embodiment
Below in conjunction with the accompanying drawing in the utility model embodiment, be clearly and completely described the technical scheme in the utility model embodiment, obviously, described embodiment is only a part of embodiment of the present utility model, instead of whole embodiments.Based on the embodiment in the utility model, those of ordinary skill in the art are not making the every other embodiment obtained under creative work prerequisite, all belong to the scope of the utility model protection.
Set forth a lot of detail in the following description so that fully understand the utility model, but the utility model can also adopt other to be different from alternate manner described here to implement, those skilled in the art can when doing similar popularization without prejudice to when the utility model intension, and therefore the utility model is by the restriction of following public specific embodiment.
As illustrated in fig. 1 and 2, the utility model discloses a kind mixing GaAs Terahertz Schottky frequency tripling diode, described diode comprises the first metal electrode assembly 2, second metal electrode assembly 3, first diode assembly 4 and the second diode assembly 5 be positioned on substrate 1, described first diode assembly 4 and the second diode assembly 5 are between the first metal electrode assembly 2 and the second metal electrode assembly 3, and the first diode assembly 4 and the second diode assembly 5 are also that interval is arranged.Described first metal electrode assembly 2 and the second metal electrode assembly 3 are the low-doped GaAs7 of the first heavy doping GaAs layer 6, first, the first silicon dioxide layer 8 and the first metal electrode layer 9 from top to bottom; Described first metal electrode layer 9 is embedded in described first heavy doping GaAs layer 6, first low-doped GaAs layer 7 and the first silicon dioxide layer 8, and the height of the first metal electrode layer 9 upper surface is greater than the height of the first silicon dioxide layer 8 upper surface, first Schottky contact metal layer 10 is embedded in described first silicon dioxide layer 8, and the first Schottky contact metal layer 10 contacts with the first low-doped GaAs layer 7.
As shown in Figure 2, described first diode assembly 4 and the second diode assembly 5 are the second heavy doping GaAs layer 11 from top to bottom, second low-doped GaAs12, second silicon dioxide layer 13 and the second metal electrode layer 14, described second metal electrode layer 14 is embedded in described second heavy doping GaAs layer 11, second low-doped GaAs layer 12 and the second silicon dioxide layer 13, and the height of the second metal electrode layer 14 upper surface is greater than the height of the second silicon dioxide layer 13 upper surface, second Schottky contact metal layer 15 is embedded in described second silicon dioxide layer 13, and the second Schottky contact metal layer 15 contacts with the second low-doped GaAs layer 12.
The surrounding of described first heavy doping GaAs layer 6 and the second heavy doping GaAs layer 11 is provided with passivation layer 17, and the height of described passivation layer 17 is lower than the height of the first and second heavy doping GaAs layers.Described first metal electrode layer 9 and the second metal electrode layer 14 comprise the ohmic contact layer 18 being positioned at lower floor and the metal thickening layer 19 being positioned at upper strata.Described ohmic contact layer 18 is sandwich construction, is Ni layer, Au layer, Ge layer, Ni layer, Au layer from bottom to top.Described first Schottky contact metal layer 10 and the second Schottky contact metal layer 15 are sandwich construction, are Ti layer, Pt layer, Au layer from bottom to top.
The doped chemical of low-doped GaAs layer and heavy doping GaAs layer is IV race's element, and heavy doping GaAs doping content is generally 10 18cm -3magnitude, low-doped GaAs, concentration is 1 × 10 16cm -3to 5 × 10 17cm -3.
The first metal electrode layer 9 on described first metal electrode assembly 2 is connected with the second Schottky contact metal layer 15 on the first diode assembly 4 by metal-air bridge 16, the second metal electrode layer 14 on described first diode assembly 4 is connected by metal-air bridge 16 with the first Schottky contact metal layer 10 on the second metal electrode assembly 3, the first metal electrode layer 9 on described second metal electrode assembly 3 is connected with the second Schottky contact metal layer 15 on the second diode assembly 5 by metal-air bridge 16, the second metal electrode layer 14 on described second diode assembly 5 is connected with the first Schottky contact metal layer 10 on the first metal electrode assembly 2 by metal-air bridge 16.
Diode processing technology described in the utility model realizes, the manufacturing technology of current Schottky diode is all ripe at home and abroad, comprise cathode ohmic contact, anode Schottky evaporation of metal, air bridges (metal-air bridge) connects and isolation channel corrosion, makes passivation layer.After front processing technology completes, carry out the thinning of the back side and burst, produce Terahertz Schottky diode.Described diode is supplementing of existing frequency tripling diode type, during as frequency tripling, effectively can suppress second harmonic, promotes shg efficiency.Meanwhile, described diode adopts two tube cores first to connect the form of reverse parallel connection again, effectively can promote the resistance to power-performance of diode, improve power output.

Claims (5)

1. a kind mixing GaAs Terahertz Schottky frequency tripling diode, it is characterized in that: described diode comprises the first metal electrode assembly (2) be positioned on substrate (1), second metal electrode assembly (3), first diode assembly (4) and the second diode assembly (5), described first diode assembly (4) and the second diode assembly (5) are positioned between the first metal electrode assembly (2) and the second metal electrode assembly (3), described first metal electrode assembly (2) and the second metal electrode assembly (3) are the first heavy doping GaAs layer (6) from top to bottom, first low-doped GaAs(7), first silicon dioxide layer (8) and the first metal electrode layer (9), described first metal electrode layer (9) is embedded in described first heavy doping GaAs layer (6), first low-doped GaAs layer (7) and the first silicon dioxide layer (8), and the height of the first metal electrode layer (9) upper surface is greater than the height of the first silicon dioxide layer (8) upper surface, first Schottky contact metal layer (10) is embedded in described first silicon dioxide layer (8), and the first Schottky contact metal layer (10) contacts with the first low-doped GaAs layer (7), described first diode assembly (4) and the second diode assembly (5) are the second heavy doping GaAs layer (11) from top to bottom, second low-doped GaAs(12), second silicon dioxide layer (13) and the second metal electrode layer (14), described second metal electrode layer (14) is embedded in described second heavy doping GaAs layer (11), second low-doped GaAs layer (12) and the second silicon dioxide layer (13), and the height of the second metal electrode layer (14) upper surface is greater than the height of the second silicon dioxide layer (13) upper surface, second Schottky contact metal layer (15) is embedded in described second silicon dioxide layer (13), and the second Schottky contact metal layer (15) contacts with the second low-doped GaAs layer (12),
The first metal electrode layer (9) on described first metal electrode assembly (2) is connected with the second Schottky contact metal layer (15) on the first diode assembly (4) by metal-air bridge (16), the second metal electrode layer (14) on described first diode assembly (4) is connected by metal-air bridge (16) with the first Schottky contact metal layer (10) on the second metal electrode assembly (3), the first metal electrode layer (9) on described second metal electrode assembly (3) is connected with the second Schottky contact metal layer (15) on the second diode assembly (5) by metal-air bridge (16), the second metal electrode layer (14) on described second diode assembly (5) is connected with the first Schottky contact metal layer (10) on the first metal electrode assembly (2) by metal-air bridge (16).
2. class mixing GaAs Terahertz Schottky frequency tripling diode according to claim 1, it is characterized in that: the surrounding of described first heavy doping GaAs layer (6) and the second heavy doping GaAs layer (11) is provided with passivation layer (17), the height of described passivation layer (17) is lower than the height of the first and second heavy doping GaAs layers.
3. class mixing GaAs Terahertz Schottky frequency tripling diode according to claim 1, is characterized in that: described first metal electrode layer (9) and the second metal electrode layer (14) comprise the ohmic contact layer (18) being positioned at lower floor and the metal thickening layer (19) being positioned at upper strata.
4. class mixing GaAs Terahertz Schottky frequency tripling diode according to claim 3, it is characterized in that: described ohmic contact layer (18) is sandwich construction, is Ni layer, Au layer, Ge layer, Ni layer, Au layer from bottom to top.
5. class mixing GaAs Terahertz Schottky frequency tripling diode according to claim 1, it is characterized in that: described first Schottky contact metal layer (10) and the second Schottky contact metal layer (15) are sandwich construction, is Ti layer, Pt layer, Au layer from bottom to top.
CN201420714337.4U 2014-11-25 2014-11-25 Class mixing GaAs Terahertz Schottky frequency tripling diode Active CN204204868U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420714337.4U CN204204868U (en) 2014-11-25 2014-11-25 Class mixing GaAs Terahertz Schottky frequency tripling diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420714337.4U CN204204868U (en) 2014-11-25 2014-11-25 Class mixing GaAs Terahertz Schottky frequency tripling diode

Publications (1)

Publication Number Publication Date
CN204204868U true CN204204868U (en) 2015-03-11

Family

ID=52662793

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420714337.4U Active CN204204868U (en) 2014-11-25 2014-11-25 Class mixing GaAs Terahertz Schottky frequency tripling diode

Country Status (1)

Country Link
CN (1) CN204204868U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465796A (en) * 2014-11-25 2015-03-25 中国电子科技集团公司第十三研究所 Kind mixing GaAs terahertz schottky third harmonic generation diode
CN109813958A (en) * 2019-01-23 2019-05-28 嘉兴腓特烈太赫科技有限公司 Reverse parallel connection structure zero offset detection tube
US11482628B2 (en) * 2020-01-13 2022-10-25 University Of Electronic Science And Technology Of China Double Schottky-barrier diode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465796A (en) * 2014-11-25 2015-03-25 中国电子科技集团公司第十三研究所 Kind mixing GaAs terahertz schottky third harmonic generation diode
CN109813958A (en) * 2019-01-23 2019-05-28 嘉兴腓特烈太赫科技有限公司 Reverse parallel connection structure zero offset detection tube
US11482628B2 (en) * 2020-01-13 2022-10-25 University Of Electronic Science And Technology Of China Double Schottky-barrier diode

Similar Documents

Publication Publication Date Title
CN104465796A (en) Kind mixing GaAs terahertz schottky third harmonic generation diode
CN104867968A (en) Terahertz low-frequency GaAs based high-power schottky frequency multiplication diode
CN104835859B (en) Class mixing GaAs base Terahertz Schottky diodes can be biased
CN105826400B (en) The different Terahertz frequency multiplication Schottky diode of anode knot size
CN109616513A (en) Improve the Terahertz Schottky diode of current-crowding effect based on more seperated anodes
CN106026927B (en) Two frequency multiplication unbalanced circuit of the Terahertz of resistance to power
CN204204868U (en) Class mixing GaAs Terahertz Schottky frequency tripling diode
CN104022163A (en) Improved radiating GaAs-based terahertz frequency doubling Schottky diode
CN109616526A (en) Improve the Terahertz Schottky diode of current-crowding effect based on trapezoidal anode
CN204596797U (en) Class mixing GaAs base Terahertz Schottky diode can be biased
CN103367463A (en) Terahertz transverse Schottky diode and manufacturing method thereof
CN105826401A (en) Terahertz frequency-doubling Schottky diode with air bridges of different sizes
CN102904528B (en) Terahertz quasi-optical frequency multiplier
CN112289865B (en) Biased mixing Schottky diode structure and semiconductor device
CN204668311U (en) A kind of for Terahertz low-frequency range GaAs based high-power Schottky frequency doubled diode
CN205657060U (en) Beam lead terahertz is schottky diode now
CN106653868A (en) Self-balanced terahertz Schottky barrier diode
CN205657059U (en) Terahertz that air bridge size differed from each other is doubling of frequency schottky diode now
CN205645826U (en) Different terahertz of size doubling of frequency schottky diode is now tied to positive pole
CN203859118U (en) Heat-dissipation-improved GaAs-based terahertz frequency multiplication Schottky diode
CN103152944B (en) Light-emitting diode (LED) driving circuit
CN105656459A (en) Method and device for improving rising and falling edges of secondary radar pulse signals
CN205692840U (en) Back side band markd Terahertz Schottky diode
CN112289866B (en) High-power broadband terahertz frequency multiplication Schottky diode structure
CN105845742A (en) Beam lead type terahertz schottky diode

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant