CN204204868U - Class mixing GaAs Terahertz Schottky frequency tripling diode - Google Patents
Class mixing GaAs Terahertz Schottky frequency tripling diode Download PDFInfo
- Publication number
- CN204204868U CN204204868U CN201420714337.4U CN201420714337U CN204204868U CN 204204868 U CN204204868 U CN 204204868U CN 201420714337 U CN201420714337 U CN 201420714337U CN 204204868 U CN204204868 U CN 204204868U
- Authority
- CN
- China
- Prior art keywords
- layer
- metal
- metal electrode
- diode
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229910001218 Gallium arsenide Inorganic materials 0.000 title claims abstract description 59
- 229910052751 metal Inorganic materials 0.000 claims abstract description 121
- 239000002184 metal Substances 0.000 claims abstract description 121
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 51
- 235000012239 silicon dioxide Nutrition 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 25
- 238000002161 passivation Methods 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 4
- 230000008719 thickening Effects 0.000 claims description 3
- 239000013589 supplement Substances 0.000 abstract description 4
- 238000005516 engineering process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001883 metal evaporation Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
Abstract
本实用新型公开了一种类混频GaAs太赫兹肖特基三倍频二极管,第一金属电极组件上的第一金属电极层通过金属空气桥与第一二极管组件上的第二肖特基接触金属层连接,第一二极管组件上的第二金属电极层与第二金属电极组件上的第一肖特基接触金属层通过金属空气桥连接,第二金属电极组件上的第一金属电极层通过金属空气桥与第二二极管组件上的第二肖特基接触金属层连接,第二二极管组件上的第二金属电极层通过金属空气桥与第一金属电极组件上的第一肖特基接触金属层连接。所述二极管是现有三倍频二极管类型的补充,用作三倍频时,可以有效抑制二次谐波,提升倍频效率。同时,所述二极管采用两管芯先串联再反向并联的形式,可以有效提升二极管的耐功率性能,提高输出功率。
The utility model discloses a frequency-mixing GaAs terahertz Schottky triple frequency diode. The first metal electrode layer on the first metal electrode assembly connects with the second Schottky on the first diode assembly through a metal-air bridge. The contact metal layer is connected, the second metal electrode layer on the first diode assembly is connected to the first Schottky contact metal layer on the second metal electrode assembly through a metal-air bridge, and the first metal electrode layer on the second metal electrode assembly The electrode layer is connected to the second Schottky contact metal layer on the second diode assembly through the metal-air bridge, and the second metal electrode layer on the second diode assembly is connected to the second metal electrode layer on the first metal electrode assembly through the metal-air bridge. The first Schottky contact metal layer is connected. The diode is a supplement to the existing frequency tripler diode type, and when used as a frequency tripler, it can effectively suppress the second harmonic and improve the frequency doubler efficiency. At the same time, the diode adopts the form of two tube cores connected in series first and then connected in reverse parallel, which can effectively improve the power resistance performance of the diode and increase the output power.
Description
技术领域 technical field
本实用新型涉及二极管技术领域,尤其涉及一种类混频GaAs太赫兹肖特基三倍频二极管。 The utility model relates to the technical field of diodes, in particular to a frequency-mixing GaAs terahertz Schottky triple frequency diode.
背景技术 Background technique
太赫兹(THz)波是指频率在 0.3-3THz范围内的电磁波,广义的太赫兹波频率范围是100GHz-10THz,其中 1THz=1000GHz。THz波在电磁波频谱中占有很特殊的位置,THz技术是国际科技界公认的一个非常重要的交叉前沿领域。 Terahertz (THz) waves refer to electromagnetic waves with a frequency in the range of 0.3-3THz. The broad frequency range of THz waves is 100GHz-10THz, where 1THz=1000GHz. THz waves occupy a very special position in the electromagnetic spectrum, and THz technology is recognized as a very important cross-frontier field by the international scientific and technological community.
在THz频率低端范围内,通常采用半导体器件倍频方法获得固态源。该方法是将毫米波通过非线性半导体器件倍频至THz频段,具有结构紧凑、易于调节、寿命长,波形可控,常温工作等优点。目前短波长亚毫米波、THz固态源主要依靠倍频的方式获得。利用肖特基二极管器件实现高效倍频不仅电路结构简单、倍频效率较高,还兼有振荡源具有的较高输出功率、倍频放大链高频率稳定度、低相位噪声的优点;同时肖特基二极管器件可稳定工作于30GHz-3000GHz整个毫米波及亚毫米波频段。目前先进的变容二极管(RAL和VDI等研究机构生产)已经可以工作于3.1THz,具有良好的连续波功率和效率。因此肖特基二极管高效倍频技术非常适于高性能的毫米波、亚毫米波、THz系统,是一种极具研究、应用价值的THz频率源技术。由于具有极小的结电容和串联电阻,高的电子漂移速度,平面GaAs肖特基二极管已经在THz频段上得到了广泛的应用,是THz技术领域中核心的固态电子器件。 In the low-end range of THz frequency, the solid-state source is usually obtained by frequency doubling of semiconductor devices. This method doubles the frequency of the millimeter wave to the THz frequency band through a nonlinear semiconductor device, and has the advantages of compact structure, easy adjustment, long life, controllable waveform, and normal temperature operation. At present, short-wavelength submillimeter wave and THz solid-state sources are mainly obtained by frequency doubling. The use of Schottky diode devices to achieve high-efficiency frequency multiplication not only has a simple circuit structure and high frequency multiplication efficiency, but also has the advantages of high output power of the oscillation source, high frequency stability of the frequency multiplication amplifier chain, and low phase noise; at the same time, Xiao Tertyl diode devices can work stably in the entire millimeter wave and submillimeter wave frequency bands from 30GHz to 3000GHz. At present, advanced varactor diodes (produced by research institutions such as RAL and VDI) can already work at 3.1THz, and have good continuous wave power and efficiency. Therefore, Schottky diode high-efficiency frequency multiplication technology is very suitable for high-performance millimeter wave, submillimeter wave, and THz systems, and is a THz frequency source technology with great research and application value. Due to its extremely small junction capacitance and series resistance, and high electron drift speed, planar GaAs Schottky diodes have been widely used in the THz frequency band and are the core solid-state electronic devices in the THz technology field.
对于太赫兹频段,目前频率源拓展的主要方式是通过GaAs基肖特基二极管实现二倍频和三倍频,二倍频相对于三倍频来讲,其效率一般高于后者,输出频率是输入基波频率的二倍,而三倍频的输出频率是输入基波的三倍,三倍频相对于二倍频,频率提升更快。目前常用的三倍频二极管大多是多个管芯串联在一起,在一条直线上,目的是为了增加功率容量,同时肖特基二极管直接焊接在金属腔体之上。但是实际上,反向并联的肖特基二极管,也就是目前常用于混频器的混频二极管结构形式,在用于三倍频的时候,可以有效抑制二次谐波,提高三次倍频的效率。如果再多制作几个阳极结,则可以提升肖特基二极管的耐功率性能。 For the terahertz frequency band, the current main way to expand the frequency source is to achieve double and triple frequency through GaAs-based Schottky diodes. Compared with triple frequency, the efficiency of double frequency is generally higher than that of the latter, and the output frequency It is twice the frequency of the input fundamental wave, and the output frequency of the triple frequency is three times that of the input fundamental wave. Compared with the double frequency, the frequency of the triple frequency increases faster. Most of the frequency tripler diodes commonly used at present are multiple tube cores connected in series in a straight line, the purpose is to increase the power capacity, and the Schottky diode is directly welded on the metal cavity. But in fact, anti-parallel Schottky diodes, that is, the structure of mixing diodes commonly used in mixers at present, can effectively suppress the second harmonic when used for triple frequency multiplication and improve the efficiency of third frequency multiplication. efficiency. If a few more anode junctions are made, the power withstand performance of the Schottky diode can be improved.
实用新型内容 Utility model content
本实用新型所要解决的技术问题是提供一种类混频GaAs太赫兹肖特基三倍频二极管,所述二极管是现有三倍频二极管类型的补充,用作三倍频时,可以有效抑制二次谐波,提升倍频效率。同时,所述二极管采用两管芯先串联再反向并联的形式,可以有效提升二极管的耐功率性能,提高输出功率。 The technical problem to be solved by the utility model is to provide a frequency-mixing GaAs terahertz Schottky frequency tripler diode. The diode is a supplement to the existing frequency tripler diode type. Harmonics, improve frequency multiplication efficiency. At the same time, the diode adopts the form of two tube cores connected in series first and then connected in reverse parallel, which can effectively improve the power resistance performance of the diode and increase the output power.
为解决上述技术问题,本实用新型所采取的技术方案是:一种类混频GaAs太赫兹肖特基三倍频二极管,其特征在于:所述二级管包括位于衬底上的第一金属电极组件、第二金属电极组件、第一二极管组件和第二二极管组件,所述第一二极管组件和第二二极管组件位于第一金属电极组件和第二金属电极组件之间,所述第一金属电极组件和第二金属电极组件从下到上为第一重掺杂GaAs层、第一低掺杂GaAs、第一二氧化硅层和第一金属电极层,所述第一金属电极层内嵌于所述第一重掺杂GaAs层、第一低掺杂GaAs层和第一二氧化硅层,且第一金属电极层上表面的高度大于第一二氧化硅层上表面的高度,第一肖特基接触金属层内嵌于所述第一二氧化硅层,且第一肖特基接触金属层与第一低掺杂GaAs层相接触;所述第一二极管组件和第二二极管组件从下到上为第二重掺杂GaAs层、第二低掺杂GaAs、第二二氧化硅层和第二金属电极层,所述第二金属电极层内嵌于所述第二重掺杂GaAs层、第二低掺杂GaAs层和第二二氧化硅层,且第二金属电极层上表面的高度大于第二二氧化硅层上表面的高度,第二肖特基接触金属层内嵌于所述第二二氧化硅层,且第二肖特基接触金属层与第二低掺杂GaAs层相接触; In order to solve the above-mentioned technical problems, the technical solution adopted by the utility model is: a kind of frequency-mixing GaAs terahertz Schottky frequency tripler diode, characterized in that: the second diode includes a first metal electrode located on the substrate assembly, a second metal electrode assembly, a first diode assembly and a second diode assembly, the first diode assembly and the second diode assembly being located between the first metal electrode assembly and the second metal electrode assembly Between, the first metal electrode assembly and the second metal electrode assembly are the first heavily doped GaAs layer, the first low doped GaAs layer, the first silicon dioxide layer and the first metal electrode layer from bottom to top, the The first metal electrode layer is embedded in the first heavily doped GaAs layer, the first lowly doped GaAs layer and the first silicon dioxide layer, and the height of the upper surface of the first metal electrode layer is greater than that of the first silicon dioxide layer The height of the upper surface, the first Schottky contact metal layer is embedded in the first silicon dioxide layer, and the first Schottky contact metal layer is in contact with the first low-doped GaAs layer; the first two The pole tube component and the second diode component are the second heavily doped GaAs layer, the second low doped GaAs layer, the second silicon dioxide layer and the second metal electrode layer from bottom to top, and the second metal electrode layer embedded in the second heavily doped GaAs layer, the second lowly doped GaAs layer and the second silicon dioxide layer, and the height of the upper surface of the second metal electrode layer is greater than the height of the upper surface of the second silicon dioxide layer, A second Schottky contact metal layer is embedded in the second silicon dioxide layer, and the second Schottky contact metal layer is in contact with the second low-doped GaAs layer;
所述第一金属电极组件上的第一金属电极层通过金属空气桥与第一二极管组件上的第二肖特基接触金属层连接,所述第一二极管组件上的第二金属电极层与第二金属电极组件上的第一肖特基接触金属层通过金属空气桥连接,所述第二金属电极组件上的第一金属电极层通过金属空气桥与第二二极管组件上的第二肖特基接触金属层连接,所述第二二极管组件上的第二金属电极层通过金属空气桥与第一金属电极组件上的第一肖特基接触金属层连接。 The first metal electrode layer on the first metal electrode assembly is connected to the second Schottky contact metal layer on the first diode assembly through a metal-air bridge, and the second metal electrode layer on the first diode assembly The electrode layer is connected to the first Schottky contact metal layer on the second metal electrode assembly through a metal-air bridge, and the first metal electrode layer on the second metal electrode assembly is connected to the second diode assembly through a metal-air bridge. The second Schottky contact metal layer on the second diode assembly is connected to the first Schottky contact metal layer on the first metal electrode assembly through a metal-air bridge.
进一步的技术方案在于:所述第一重掺杂GaAs层和第二重掺杂GaAs层的四周设有钝化层,所述钝化层的高度低于第一和第二重掺杂GaAs层的高度。 A further technical solution is: a passivation layer is provided around the first heavily doped GaAs layer and the second heavily doped GaAs layer, and the height of the passivation layer is lower than that of the first and second heavily doped GaAs layers the height of.
进一步的技术方案在于:所述第一金属电极层和第二金属电极层包括位于下层的欧姆接触层和位于上层的金属加厚层。 A further technical solution is that: the first metal electrode layer and the second metal electrode layer include an ohmic contact layer on the lower layer and a metal thickening layer on the upper layer.
进一步的技术方案在于:所述欧姆接触层为多层结构,自下到上为Ni层、Au层、Ge层、Ni层、Au层。 A further technical solution is: the ohmic contact layer is a multi-layer structure, consisting of a Ni layer, an Au layer, a Ge layer, a Ni layer, and an Au layer from bottom to top.
进一步的技术方案在于:所述第一肖特基接触金属层和第二肖特基接触金属层为多层结构,自下到上为Ti层、Pt层、Au层。 A further technical solution is that: the first Schottky contact metal layer and the second Schottky contact metal layer are multi-layer structures, including a Ti layer, a Pt layer, and an Au layer from bottom to top.
采用上述技术方案所产生的有益效果在于:所述二极管是现有三倍频二极管类型的补充,用作三倍频时,可以有效抑制二次谐波,提升倍频效率。同时,所述二极管采用两管芯先串联再反向并联的形式,可以有效提升二极管的耐功率性能,提高输出功率。 The beneficial effect of adopting the above technical solution is that the diode is a supplement to the existing frequency tripler diode type, and when used for frequency tripler, it can effectively suppress the second harmonic and improve the frequency doubler efficiency. At the same time, the diode adopts the form of two tube cores connected in series first and then connected in reverse parallel, which can effectively improve the power resistance performance of the diode and increase the output power.
附图说明 Description of drawings
下面结合附图和具体实施方式对本实用新型作进一步详细的说明。 Below in conjunction with accompanying drawing and specific embodiment, the utility model is described in further detail.
图1是本实用新型的俯视结构示意图; Fig. 1 is the top view structural representation of the utility model;
图2是图1中A-A向的剖视结构示意图; Fig. 2 is a schematic cross-sectional structure diagram of A-A direction in Fig. 1;
其中:1、衬底 2、第一金属电极组件 3、第二金属电极组件 4、第一二极管组件 5、第二二极管组件 6、第一重掺杂GaAs层 7、第一低掺杂GaAs 8、第一二氧化硅层 9、第一金属电极层 10、第一肖特基接触金属层 11、第二重掺杂GaAs层 12、第二低掺杂GaAs 13、第二二氧化硅层 14、第二金属电极层 15、第二肖特基接触金属层 16、金属空气桥 17、钝化层 18、欧姆接触层 19、金属加厚层。 Among them: 1. Substrate 2. First metal electrode assembly 3. Second metal electrode assembly 4. First diode assembly 5. Second diode assembly 6. First heavily doped GaAs layer 7. First low Doped GaAs 8, the first silicon dioxide layer 9, the first metal electrode layer 10, the first Schottky contact metal layer 11, the second heavily doped GaAs layer 12, the second low-doped GaAs 13, the second two Silicon oxide layer 14, second metal electrode layer 15, second Schottky contact metal layer 16, metal air bridge 17, passivation layer 18, ohmic contact layer 19, metal thickening layer.
具体实施方式 Detailed ways
下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型的一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。 Below in conjunction with the accompanying drawings in the utility model embodiment, the technical solution in the utility model embodiment is clearly and completely described, obviously, the described embodiment is only a part of the utility model embodiment, rather than all implementation example. Based on the embodiments of the present utility model, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the scope of protection of the present utility model.
在下面的描述中阐述了很多具体细节以便于充分理解本实用新型,但是本实用新型还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下做类似推广,因此本实用新型不受下面公开的具体实施例的限制。 In the following description, a lot of specific details have been set forth in order to fully understand the utility model, but the utility model can also be implemented in other ways that are different from those described here, and those skilled in the art can do so without violating the connotation of the utility model. Under the circumstances, similar promotion is done, so the utility model is not limited by the specific embodiments disclosed below.
如图1和2所示,本实用新型公开了一种类混频GaAs太赫兹肖特基三倍频二极管,所述二级管包括位于衬底1上的第一金属电极组件2、第二金属电极组件3、第一二极管组件4和第二二极管组件5,所述第一二极管组件4和第二二极管组件5位于第一金属电极组件2和第二金属电极组件3之间,第一二极管组件4和第二二极管组件5也是间隔设置。所述第一金属电极组件2和第二金属电极组件3从下到上为第一重掺杂GaAs层6、第一低掺杂GaAs7、第一二氧化硅层8和第一金属电极层9;所述第一金属电极层9内嵌于所述第一重掺杂GaAs层6、第一低掺杂GaAs层7和第一二氧化硅层8,且第一金属电极层9上表面的高度大于第一二氧化硅层8上表面的高度,第一肖特基接触金属层10内嵌于所述第一二氧化硅层8,且第一肖特基接触金属层10与第一低掺杂GaAs层7相接触。 As shown in Figures 1 and 2, the utility model discloses a frequency-mixing GaAs terahertz Schottky frequency tripler diode. The diode includes a first metal electrode assembly 2 on a substrate 1, a second metal electrode assembly The electrode assembly 3, the first diode assembly 4 and the second diode assembly 5, the first diode assembly 4 and the second diode assembly 5 are located at the first metal electrode assembly 2 and the second metal electrode assembly 3, the first diode assembly 4 and the second diode assembly 5 are also arranged at intervals. The first metal electrode assembly 2 and the second metal electrode assembly 3 are the first heavily doped GaAs layer 6, the first low doped GaAs7, the first silicon dioxide layer 8 and the first metal electrode layer 9 from bottom to top. ; the first metal electrode layer 9 is embedded in the first heavily doped GaAs layer 6, the first lowly doped GaAs layer 7 and the first silicon dioxide layer 8, and the upper surface of the first metal electrode layer 9 The height is greater than the height of the upper surface of the first silicon dioxide layer 8, the first Schottky contact metal layer 10 is embedded in the first silicon dioxide layer 8, and the first Schottky contact metal layer 10 and the first low The doped GaAs layer 7 is in contact.
如图2所示,所述第一二极管组件4和第二二极管组件5从下到上为第二重掺杂GaAs层11、第二低掺杂GaAs12、第二二氧化硅层13和第二金属电极层14,所述第二金属电极层14内嵌于所述第二重掺杂GaAs层11、第二低掺杂GaAs层12和第二二氧化硅层13,且第二金属电极层14上表面的高度大于第二二氧化硅层13上表面的高度,第二肖特基接触金属层15内嵌于所述第二二氧化硅层13,且第二肖特基接触金属层15与第二低掺杂GaAs层12相接触。 As shown in FIG. 2, the first diode assembly 4 and the second diode assembly 5 are, from bottom to top, a second heavily doped GaAs layer 11, a second lowly doped GaAs 12, and a second silicon dioxide layer. 13 and a second metal electrode layer 14, the second metal electrode layer 14 is embedded in the second heavily doped GaAs layer 11, the second lowly doped GaAs layer 12 and the second silicon dioxide layer 13, and the second The height of the upper surface of the second metal electrode layer 14 is greater than the height of the upper surface of the second silicon dioxide layer 13, the second Schottky contact metal layer 15 is embedded in the second silicon dioxide layer 13, and the second Schottky The contact metal layer 15 is in contact with the second low-doped GaAs layer 12 .
所述第一重掺杂GaAs层6和第二重掺杂GaAs层11的四周设有钝化层17,所述钝化层17的高度低于第一和第二重掺杂GaAs层的高度。所述第一金属电极层9和第二金属电极层14包括位于下层的欧姆接触层18和位于上层的金属加厚层19。所述欧姆接触层18为多层结构,自下到上为Ni层、Au层、Ge层、Ni层、Au层。所述第一肖特基接触金属层10和第二肖特基接触金属层15为多层结构,自下到上为Ti层、Pt层、Au层。 A passivation layer 17 is provided around the first heavily doped GaAs layer 6 and the second heavily doped GaAs layer 11, and the height of the passivation layer 17 is lower than that of the first and second heavily doped GaAs layers . The first metal electrode layer 9 and the second metal electrode layer 14 include an ohmic contact layer 18 on the lower layer and a thickened metal layer 19 on the upper layer. The ohmic contact layer 18 is a multi-layer structure, from bottom to top is Ni layer, Au layer, Ge layer, Ni layer, Au layer. The first Schottky contact metal layer 10 and the second Schottky contact metal layer 15 are multi-layer structures, including Ti layer, Pt layer and Au layer from bottom to top.
低掺杂GaAs层和重掺杂GaAs层的掺杂元素为Ⅳ族元素,重掺杂GaAs掺杂浓度一般为1018cm-3量级,低掺杂GaAs,浓度为1×1016 cm-3到5×1017cm-3。 The doping elements of the low-doped GaAs layer and the heavily-doped GaAs layer are group IV elements, and the doping concentration of heavily-doped GaAs is generally on the order of 10 18 cm -3 , and the concentration of low-doped GaAs is 1×10 16 cm -3 3 to 5×10 17 cm -3 .
所述第一金属电极组件2上的第一金属电极层9通过金属空气桥16与第一二极管组件4上的第二肖特基接触金属层15连接,所述第一二极管组件4上的第二金属电极层14与第二金属电极组件3上的第一肖特基接触金属层10通过金属空气桥16连接,所述第二金属电极组件3上的第一金属电极层9通过金属空气桥16与第二二极管组件5上的第二肖特基接触金属层15连接,所述第二二极管组件5上的第二金属电极层14通过金属空气桥16与第一金属电极组件2上的第一肖特基接触金属层10连接。 The first metal electrode layer 9 on the first metal electrode assembly 2 is connected to the second Schottky contact metal layer 15 on the first diode assembly 4 through a metal-air bridge 16, and the first diode assembly The second metal electrode layer 14 on the second metal electrode assembly 3 is connected to the first Schottky contact metal layer 10 on the second metal electrode assembly 3 through a metal-air bridge 16, and the first metal electrode layer 9 on the second metal electrode assembly 3 The metal-air bridge 16 is connected to the second Schottky contact metal layer 15 on the second diode assembly 5, and the second metal electrode layer 14 on the second diode assembly 5 is connected to the second metal-air bridge 16 through the metal-air bridge 16. A metal electrode assembly 2 is connected to the first Schottky contact metal layer 10 .
本实用新型所述二极管加工工艺实现,目前肖特基二极管的制造技术在国内外均已成熟,包括阴极欧姆接触、阳极肖特基金属蒸发,空气桥(金属空气桥)连接以及隔离槽腐蚀,制作钝化层。正面加工工艺完成后,进行背面的减薄及分片,制作出太赫兹肖特基二极管。所述二极管是现有三倍频二极管类型的补充,用作三倍频时,可以有效抑制二次谐波,提升倍频效率。同时,所述二极管采用两管芯先串联再反向并联的形式,可以有效提升二极管的耐功率性能,提高输出功率。 The diode processing technology described in the utility model is realized. At present, the manufacturing technology of Schottky diodes is mature at home and abroad, including cathode ohmic contact, anode Schottky metal evaporation, air bridge (metal-air bridge) connection and isolation tank corrosion, Make a passivation layer. After the front processing is completed, the back is thinned and sliced to produce a terahertz Schottky diode. The diode is a supplement to the existing frequency tripler diode type, and when used as a frequency tripler, it can effectively suppress the second harmonic and improve the frequency doubler efficiency. At the same time, the diode adopts the form of two tube cores connected in series first and then connected in reverse parallel, which can effectively improve the power resistance performance of the diode and increase the output power.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420714337.4U CN204204868U (en) | 2014-11-25 | 2014-11-25 | Class mixing GaAs Terahertz Schottky frequency tripling diode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420714337.4U CN204204868U (en) | 2014-11-25 | 2014-11-25 | Class mixing GaAs Terahertz Schottky frequency tripling diode |
Publications (1)
Publication Number | Publication Date |
---|---|
CN204204868U true CN204204868U (en) | 2015-03-11 |
Family
ID=52662793
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201420714337.4U Expired - Lifetime CN204204868U (en) | 2014-11-25 | 2014-11-25 | Class mixing GaAs Terahertz Schottky frequency tripling diode |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN204204868U (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104465796A (en) * | 2014-11-25 | 2015-03-25 | 中国电子科技集团公司第十三研究所 | Kind mixing GaAs terahertz schottky third harmonic generation diode |
CN109813958A (en) * | 2019-01-23 | 2019-05-28 | 嘉兴腓特烈太赫科技有限公司 | Reverse parallel connection structure zero offset detection tube |
US11482628B2 (en) * | 2020-01-13 | 2022-10-25 | University Of Electronic Science And Technology Of China | Double Schottky-barrier diode |
-
2014
- 2014-11-25 CN CN201420714337.4U patent/CN204204868U/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104465796A (en) * | 2014-11-25 | 2015-03-25 | 中国电子科技集团公司第十三研究所 | Kind mixing GaAs terahertz schottky third harmonic generation diode |
CN109813958A (en) * | 2019-01-23 | 2019-05-28 | 嘉兴腓特烈太赫科技有限公司 | Reverse parallel connection structure zero offset detection tube |
US11482628B2 (en) * | 2020-01-13 | 2022-10-25 | University Of Electronic Science And Technology Of China | Double Schottky-barrier diode |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104465796A (en) | Kind mixing GaAs terahertz schottky third harmonic generation diode | |
CN104867968B (en) | For Terahertz low-frequency range GaAs based high-power Schottky frequency doubled diodes | |
CN104835859B (en) | Class mixing GaAs base Terahertz Schottky diodes can be biased | |
CN106601809A (en) | Gallium-nitride field effect transistor and manufacturing method therefor | |
CN109616513B (en) | Terahertz Schottky diode based on multi-split anode to improve current crowding effect | |
WO2018019311A1 (en) | High power capacity thz-scale frequency doubling unbalanced circuit | |
CN105826400A (en) | Terahertz frequency-doubling Schottky diode with anode junctions of different sizes | |
CN104795453B (en) | A kind of more beam lead GaAs base schottky frequency doubled diodes | |
CN104022163A (en) | Improved radiating GaAs-based terahertz frequency doubling Schottky diode | |
CN204204868U (en) | Class mixing GaAs Terahertz Schottky frequency tripling diode | |
CN109616526B (en) | Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect | |
CN104935254A (en) | Novel F band frequency tripler | |
CN105826401B (en) | The different Terahertz frequency multiplication Schottky diode of air bridges size | |
CN102904528B (en) | Terahertz quasi-optical frequency multiplier | |
CN112289865B (en) | Biased mixing Schottky diode structure and semiconductor device | |
CN106653868B (en) | Self-balancing terahertz Schottky barrier diode | |
CN112289866B (en) | High-power broadband terahertz frequency multiplication Schottky diode structure | |
CN111244190B (en) | A double barrier Schottky diode | |
CN204596797U (en) | Class mixing GaAs base Terahertz Schottky diode can be biased | |
CN105845742B (en) | Beam lead terahertz Schottky diode | |
CN205657060U (en) | Beam lead terahertz is schottky diode now | |
CN205657059U (en) | Terahertz that air bridge size differed from each other is doubling of frequency schottky diode now | |
CN205645826U (en) | Different terahertz of size doubling of frequency schottky diode is now tied to positive pole | |
CN203859118U (en) | Heat-dissipation-improved GaAs-based terahertz frequency multiplication Schottky diode | |
CN102570977B (en) | Microwave frequency multiplier circuit of right-handed nonlinear transmission line and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20150311 |
|
CX01 | Expiry of patent term |