CN104022163A - Improved radiating GaAs-based terahertz frequency doubling Schottky diode - Google Patents

Improved radiating GaAs-based terahertz frequency doubling Schottky diode Download PDF

Info

Publication number
CN104022163A
CN104022163A CN201410246415.7A CN201410246415A CN104022163A CN 104022163 A CN104022163 A CN 104022163A CN 201410246415 A CN201410246415 A CN 201410246415A CN 104022163 A CN104022163 A CN 104022163A
Authority
CN
China
Prior art keywords
layer
gaas
schottky diode
frequency doubling
schottky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410246415.7A
Other languages
Chinese (zh)
Inventor
王俊龙
王晶晶
邢东
梁士雄
张立森
杨大宝
赵向阳
冯志红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 13 Research Institute
Original Assignee
CETC 13 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 13 Research Institute filed Critical CETC 13 Research Institute
Priority to CN201410246415.7A priority Critical patent/CN104022163A/en
Publication of CN104022163A publication Critical patent/CN104022163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D8/00Diodes
    • H10D8/60Schottky-barrier diodes 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/298Semiconductor material, e.g. amorphous silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

本发明公开了一种散热改进型GaAs基太赫兹倍频肖特基二极管,涉及太赫兹频段肖特基二极管技术领域,包括半绝缘GaAs衬底、半绝缘GaAs衬底上的重掺杂GaAs层、重掺杂GaAs层上的低掺杂GaAs层、二氧化硅层、欧姆接触金属层和钝化层,其特征在于所述钝化层均为金刚石。采用高热导率的金刚石作为太赫兹肖特基倍频二极管的钝化层,大大改善了肖特基二极管的散热性能,提高了肖特基二极管的倍频效率。

The invention discloses a GaAs-based terahertz frequency multiplier Schottky diode with improved heat dissipation, which relates to the technical field of Schottky diodes in the terahertz frequency band, including a semi-insulating GaAs substrate and a heavily doped GaAs layer on the semi-insulating GaAs substrate 1. A low-doped GaAs layer on a heavily-doped GaAs layer, a silicon dioxide layer, an ohmic contact metal layer and a passivation layer, wherein the passivation layer is all diamond. Diamond with high thermal conductivity is used as the passivation layer of the terahertz Schottky frequency doubling diode, which greatly improves the heat dissipation performance of the Schottky diode and improves the frequency doubling efficiency of the Schottky diode.

Description

一种散热改进型GaAs基太赫兹倍频肖特基二极管A thermally improved GaAs-based terahertz frequency-doubling Schottky diode

技术领域 technical field

本发明涉及太赫兹频段肖特基二极管技术领域。 The invention relates to the technical field of Schottky diodes in the terahertz frequency band.

背景技术 Background technique

在太赫兹(THz)频率低端范围内,通常采用半导体器件倍频方法获得固态源。该方法是将毫米波通过非线性半导体器件倍频至THz频段,具有结构紧凑、易于调节、寿命长,波形可控,常温工作等优点。目前短波长亚毫米波、THz固态源主要依靠倍频的方式获得。利用肖特基二极管器件实现高效倍频不仅电路结构简单、倍频效率较高,还兼有振荡源具有的较高输出功率、倍频放大链高频率稳定度、低相位噪声的优点;同时肖特基二极管器件可稳定工作于30GHz~3000GHz整个毫米波及亚毫米波频段。目前先进的变容二极管(RAL和VDI等研究机构生产)已经可以工作于3.1THz,具有良好的连续波功率和效率。因此肖特基二极管高效倍频技术非常适于高性能的毫米波、亚毫米波、THz系统,是一种极具研究、应用价值的THz频率源技术。由于具有极小的结电容和串联电阻,高的电子漂移速度,平面GaAs肖特基二极管已经在THz频段上得到了广泛的应用,是THz技术领域中核心的固态电子器件。 In the low-end range of terahertz (THz) frequencies, solid-state sources are usually obtained by frequency doubling of semiconductor devices. This method doubles the frequency of the millimeter wave to the THz frequency band through a nonlinear semiconductor device, and has the advantages of compact structure, easy adjustment, long life, controllable waveform, and normal temperature operation. At present, short-wavelength submillimeter wave and THz solid-state sources are mainly obtained by frequency doubling. The use of Schottky diode devices to achieve high-efficiency frequency multiplication not only has a simple circuit structure and high frequency multiplication efficiency, but also has the advantages of high output power of the oscillation source, high frequency stability of the frequency multiplication amplifier chain, and low phase noise; at the same time, Xiao Tertyl diode devices can work stably in the entire millimeter-wave and sub-millimeter-wave frequency bands from 30GHz to 3000GHz. At present, advanced varactor diodes (produced by research institutions such as RAL and VDI) can already work at 3.1THz, and have good continuous wave power and efficiency. Therefore, Schottky diode high-efficiency frequency multiplication technology is very suitable for high-performance millimeter wave, submillimeter wave, and THz systems, and is a THz frequency source technology with great research and application value. Due to its extremely small junction capacitance and series resistance, and high electron drift speed, planar GaAs Schottky diodes have been widely used in the THz frequency band and are the core solid-state electronic devices in the THz technology field.

对于太赫兹频段,由于频段高,输入倍频器的基波功率有限,为了得到更大的输出功率,因此有必要提高倍频器的倍频效率。已有研究表明,当肖特基二极管用于倍频时,散热对其效率有很大影响。温度升高,肖特基倍频二极管的效率降低。因此十分有必要降低倍频器件的工作温度,也就是起到核心非线性作用的肖特基二极管的工作温度。现有技术采用二氧化硅作为钝化层,其散热效果不佳,导致肖特基二极管倍频效率低下。 For the terahertz frequency band, due to the high frequency band, the fundamental power input to the frequency multiplier is limited. In order to obtain greater output power, it is necessary to improve the frequency multiplication efficiency of the frequency multiplier. Studies have shown that when Schottky diodes are used for frequency doubling, heat dissipation has a great impact on their efficiency. As the temperature rises, the efficiency of the Schottky doubler diode decreases. Therefore, it is very necessary to reduce the operating temperature of the frequency doubling device, that is, the operating temperature of the Schottky diode that plays a core nonlinear role. In the prior art, silicon dioxide is used as a passivation layer, and its heat dissipation effect is poor, resulting in low frequency doubling efficiency of the Schottky diode.

发明内容 Contents of the invention

本发明所要解决的技术问题是提供一种散热改进型GaAs基太赫兹倍频肖特基二极管,采用高热导率的金刚石作为倍频二极管的钝化层,有效的改进了太赫兹倍频肖特基二极管的散热,提高了太赫兹倍频肖特基二极管的倍频效率。 The technical problem to be solved by the present invention is to provide a GaAs-based terahertz frequency doubling Schottky diode with improved heat dissipation. Diamond with high thermal conductivity is used as the passivation layer of the frequency doubling diode, which effectively improves the terahertz frequency doubling Schottky diode. The heat dissipation of the base diode improves the frequency doubling efficiency of the terahertz frequency doubling Schottky diode.

为解决上述技术问题,本发明所采取的技术方案是:一种散热改进型GaAs基太赫兹倍频肖特基二极管,包括半绝缘GaAs衬底、半绝缘GaAs衬底上的重掺杂GaAs层、重掺杂GaAs层上的低掺杂GaAs层、二氧化硅层、欧姆接触金属层和钝化层,其特征在于所述钝化层均为金刚石。 In order to solve the above technical problems, the technical solution adopted by the present invention is: a GaAs-based terahertz frequency-multiplier Schottky diode with improved heat dissipation, including a semi-insulating GaAs substrate, a heavily doped GaAs layer on the semi-insulating GaAs substrate 1. A low-doped GaAs layer on a heavily-doped GaAs layer, a silicon dioxide layer, an ohmic contact metal layer and a passivation layer, wherein the passivation layer is all diamond.

进一步的技术方案,所述金刚石的厚度为20nm~500nm。 In a further technical solution, the thickness of the diamond is 20nm-500nm.

进一步的技术方案,所述金刚石是在半绝缘GaAs衬底和二氧化硅层上采用低温方式生长而成的。 In a further technical solution, the diamond is grown on a semi-insulating GaAs substrate and a silicon dioxide layer at a low temperature.

进一步的技术方案,所述太赫兹倍频肖特基二极管还包括金属加厚层和肖特基接触金属层。 In a further technical solution, the terahertz frequency doubling Schottky diode further includes a thickened metal layer and a Schottky contact metal layer.

采用上述技术方案所产生的有益效果在于:金刚石热导率是二氧化硅的14倍,采用高热导率的金刚石作为太赫兹肖特基倍频二极管的钝化层,与采用二氧化硅为钝化层的肖特基二极管相比,在肖特基二极管用于倍频时,注入基波功率一般较大,肖特基二极管结温升高,由于金刚石优异的散热特性,将减缓肖特基二极管结温的升高。在同样的基波注入功率下,采用金刚石为钝化层的肖特基二极管其二极管结温工作温度低,二极管的串联电阻低,基波耗散在串联电阻上的功率降低,增加了注入基波功率的利用率,最终提高了肖特基二极管的倍频效率。采用金刚石作为钝化层的肖特基二极管与采用二氧化硅作为钝化层的肖特基二极管相比,其倍频效率预测能够提高约10%。 The beneficial effect of adopting the above technical scheme is that the thermal conductivity of diamond is 14 times that of silicon dioxide, and the use of diamond with high thermal conductivity as the passivation layer of the terahertz Schottky frequency doubler diode is different from the use of silicon dioxide as the passivation layer. Compared with the Schottky diode of the layer, when the Schottky diode is used for frequency doubling, the injected fundamental wave power is generally larger, and the junction temperature of the Schottky diode rises. Due to the excellent heat dissipation characteristics of diamond, the Schottky diode will be slowed down. rise in diode junction temperature. Under the same fundamental wave injection power, the Schottky diode with diamond as the passivation layer has a low diode junction temperature and low series resistance of the diode, and the power dissipated by the fundamental wave on the series resistance is reduced, increasing the injection base. The utilization rate of the wave power finally improves the frequency doubling efficiency of the Schottky diode. The frequency doubling efficiency of Schottky diodes using diamond as a passivation layer is predicted to increase by about 10% compared to Schottky diodes using silicon dioxide as a passivation layer.

附图说明 Description of drawings

图1是本发明的结构示意图; Fig. 1 is a structural representation of the present invention;

图2是图1中A-A’方向的截面示意图; Fig. 2 is a schematic cross-sectional view of A-A' direction in Fig. 1;

在附图中:1、金刚石,2、二氧化硅层,3、欧姆接触金属层,4、金属加厚层,5、半绝缘GaAs衬底,6、重掺杂GaAs层,7、低掺杂GaAs层,8、肖特基接触金属层。 In the drawings: 1. Diamond, 2. Silicon dioxide layer, 3. Ohmic contact metal layer, 4. Metal thickening layer, 5. Semi-insulating GaAs substrate, 6. Heavily doped GaAs layer, 7. Low doping Doped GaAs layer, 8, Schottky contact metal layer.

具体实施方式 Detailed ways

下面结合附图和具体实施方式对本发明作进一步详细的说明。 The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.

如图1、2所示,一种散热改进型GaAs基太赫兹倍频肖特基二极管, As shown in Figures 1 and 2, a thermally improved GaAs-based terahertz frequency doubling Schottky diode,

包括半绝缘GaAs衬底5、半绝缘GaAs衬底5上的重掺杂GaAs层6,重掺杂GaAs层6上的低掺杂GaAs层7,以及二氧化硅层2、欧姆接触金属层3和钝化层1。半绝缘GaAs衬底5处在太赫兹倍频肖特基二极管的最下方,用以支撑整个太赫兹倍频肖特基二极管。在半绝缘GaAs衬底5上有外延生长的重掺杂GaAs层6,在重掺杂GaAs层6上有外延生长的低掺杂GaAs层7,低掺杂GaAs层7上有肖特基接触金属层8,肖特基接触金属层8自下而上为Ti/Pt/Au。欧姆接触金属层3自下而上为Ni/Au/ Ge//Ni/Au,制作在重掺杂GaAs层6之上。金属加厚层4的成分为Au,制作在欧姆接触金属层3之上,并和肖特基接触金属层8通过空气桥相连。二氧化硅层2在低掺杂GaAs层7上方;所述钝化层1为金刚石,在整个半绝缘衬底5之上。所述金刚石的厚度为20nm~500nm。所述金刚石在半绝缘GaAs衬底5或二氧化硅层2上采用低温方式生长而成;重掺杂GaAs,掺杂浓度为10^18cm-3量级。低掺杂GaAs,浓度为1e16 cm-3~5e17 cm-3It includes a semi-insulating GaAs substrate 5, a heavily doped GaAs layer 6 on the semi-insulating GaAs substrate 5, a low-doped GaAs layer 7 on the heavily doped GaAs layer 6, a silicon dioxide layer 2, and an ohmic contact metal layer 3 and passivation layer 1. The semi-insulating GaAs substrate 5 is located at the bottom of the terahertz frequency doubling Schottky diode to support the entire terahertz frequency doubling Schottky diode. On the semi-insulating GaAs substrate 5, there is an epitaxially grown heavily doped GaAs layer 6, on the heavily doped GaAs layer 6 there is an epitaxially grown lowly doped GaAs layer 7, and there is a Schottky contact on the lowly doped GaAs layer 7 Metal layer 8, Schottky contact metal layer 8 is Ti/Pt/Au from bottom to top. The ohmic contact metal layer 3 is Ni/Au/Ge//Ni/Au from bottom to top, and is fabricated on the heavily doped GaAs layer 6 . The metal thickening layer 4 is composed of Au, is fabricated on the ohmic contact metal layer 3, and is connected with the Schottky contact metal layer 8 through an air bridge. The silicon dioxide layer 2 is above the low-doped GaAs layer 7 ; the passivation layer 1 is diamond, and is on the entire semi-insulating substrate 5 . The thickness of the diamond is 20nm-500nm. The diamond is grown on a semi-insulating GaAs substrate 5 or a silicon dioxide layer 2 at a low temperature; heavily doped with GaAs, the doping concentration is on the order of 10^18cm -3 . Low-doped GaAs, the concentration is 1e16 cm -3 ~5e17 cm -3 .

本发明所述的太赫兹倍频肖特基二极管能够通过成熟的肖特基二极管加工工艺实现,目前肖特基二极管的制造技术在国内外均已成熟,包括阴极欧姆接触、阳极肖特基金属蒸发,空气桥连接以及隔离槽腐蚀,制作钝化层。正面加工工艺完成后,进行背面的减薄及分片,制作出太赫兹倍频肖特基二极管。 The terahertz frequency multiplier Schottky diode described in the present invention can be realized through mature Schottky diode processing technology. At present, the manufacturing technology of Schottky diode is mature at home and abroad, including cathode ohmic contact, anode Schottky metal Evaporation, air bridge connection and isolation trench etch, make passivation layer. After the front processing is completed, the back is thinned and sliced to produce a terahertz double frequency Schottky diode.

本发明主要是引入了金刚石作为太赫兹倍频二极管的钝化层,由附图可以看到金刚石覆盖了大部分面积的肖特基二极管,能够有效改善用作倍频器件时的散热,提高其倍频效率。 The present invention mainly introduces diamond as the passivation layer of the terahertz frequency doubling diode. It can be seen from the accompanying drawings that the diamond covers most of the area of the Schottky diode, which can effectively improve the heat dissipation when used as a frequency doubling device and improve its performance. Frequency doubling efficiency.

考虑到GaAs器件的可靠性,本发明所采用的金刚石须采用低温方式生长。 Considering the reliability of GaAs devices, the diamond used in the present invention must be grown in a low temperature method.

金刚石被称为新一代宽禁带半导体,是一种宽禁带材料,是已知的具有最高热导率的材料,最高达120W/cm·K(-190℃),一般可达20W/cm·K(20℃),约为二氧化硅的14倍。将金刚石材料用于太赫兹肖特基倍频二极管,能够改善太赫兹倍频肖特基二极管的散热性能,提高其倍频效率。  Diamond is known as a new generation of wide-bandgap semiconductors. It is a wide-bandgap material and the material with the highest thermal conductivity known, up to 120W/cm K (-190°C), generally up to 20W/cm · K (20°C), about 14 times that of silicon dioxide. The use of diamond materials in terahertz Schottky frequency doubling diodes can improve the heat dissipation performance of terahertz frequency doubling Schottky diodes and increase their frequency doubling efficiency. the

Claims (4)

1.一种散热改进型GaAs基太赫兹倍频肖特基二极管,包括半绝缘GaAs衬底(5)、半绝缘GaAs衬底(5)上的重掺杂GaAs层(6)、重掺杂GaAs层(6)上的低掺杂GaAs层(7)、二氧化硅层(2)、欧姆接触金属层(3)和钝化层(1),其特征在于所述钝化层(1)均为金刚石。 1. A heat-dissipating improved GaAs-based terahertz frequency doubling Schottky diode, including a semi-insulating GaAs substrate (5), a heavily doped GaAs layer (6) on a semi-insulating GaAs substrate (5), a heavily doped A low-doped GaAs layer (7), a silicon dioxide layer (2), an ohmic contact metal layer (3) and a passivation layer (1) on the GaAs layer (6), characterized in that the passivation layer (1) All are diamonds. 2.根据权利要求1所述的一种散热改进型GaAs基太赫兹倍频肖特基二极管,其特征在于所述金刚石的厚度为20nm~500nm。 2. A heat dissipation improved GaAs-based terahertz frequency doubling Schottky diode according to claim 1, characterized in that the thickness of the diamond is 20nm~500nm. 3.根据权利要求1所述的一种散热改进型GaAs基太赫兹倍频肖特基二极管,其特征在于所述金刚石是在半绝缘GaAs衬底(5)和二氧化硅层(2)上采用低温方式生长而成的。 3. A heat dissipation improved GaAs-based terahertz frequency doubling Schottky diode according to claim 1, characterized in that the diamond is on a semi-insulating GaAs substrate (5) and a silicon dioxide layer (2) grown at low temperature. 4.根据权利要求1所述的一种散热改进型GaAs基太赫兹倍频肖特基二极管,其特征在于所述太赫兹倍频肖特基二极管还包括金属加厚层(4)和肖特基接触金属层(8)。 4. A heat dissipation improved GaAs-based terahertz frequency doubling Schottky diode according to claim 1, characterized in that the terahertz frequency doubling Schottky diode also includes a metal thickening layer (4) and Schottky base contact metal layer (8).
CN201410246415.7A 2014-06-05 2014-06-05 Improved radiating GaAs-based terahertz frequency doubling Schottky diode Pending CN104022163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410246415.7A CN104022163A (en) 2014-06-05 2014-06-05 Improved radiating GaAs-based terahertz frequency doubling Schottky diode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410246415.7A CN104022163A (en) 2014-06-05 2014-06-05 Improved radiating GaAs-based terahertz frequency doubling Schottky diode

Publications (1)

Publication Number Publication Date
CN104022163A true CN104022163A (en) 2014-09-03

Family

ID=51438826

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410246415.7A Pending CN104022163A (en) 2014-06-05 2014-06-05 Improved radiating GaAs-based terahertz frequency doubling Schottky diode

Country Status (1)

Country Link
CN (1) CN104022163A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465796A (en) * 2014-11-25 2015-03-25 中国电子科技集团公司第十三研究所 Kind mixing GaAs terahertz schottky third harmonic generation diode
CN104795453A (en) * 2015-04-24 2015-07-22 中国电子科技集团公司第十三研究所 Gallium arsenide-based Schottky frequency-doubling diode with multi-beam leads
CN104867968A (en) * 2015-06-12 2015-08-26 四川迈格酷科技有限公司 Terahertz low-frequency GaAs based high-power schottky frequency multiplication diode
CN111048596A (en) * 2019-12-06 2020-04-21 中山大学 A kind of Schottky diode and preparation method thereof
CN111509051A (en) * 2020-04-30 2020-08-07 北京国联万众半导体科技有限公司 New Millimeter-Wave Ga2O3 Schottky Diode
CN112289865A (en) * 2020-10-12 2021-01-29 中国电子科技集团公司第十三研究所 Biasable frequency mixing Schottky diode structure and semiconductor device
CN112435919A (en) * 2020-10-27 2021-03-02 中国电子科技集团公司第五十五研究所 Method for integrating diamond and GaAs terahertz Schottky diode
CN113345953A (en) * 2021-06-04 2021-09-03 厦门芯辰微电子有限公司 Millimeter wave schottky diode with reverse isolation trench

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041881A (en) * 1987-05-18 1991-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Whiskerless Schottky diode
CN103367463A (en) * 2013-07-23 2013-10-23 中国工程物理研究院电子工程研究所 Terahertz transverse Schottky diode and manufacturing method thereof
WO2013190997A1 (en) * 2012-06-20 2013-12-27 独立行政法人産業技術総合研究所 Semiconductor device
CN203859185U (en) * 2014-04-28 2014-10-01 山东康洋电源有限公司 Automatic adjusting device for drying temperature of storage battery polar plate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5041881A (en) * 1987-05-18 1991-08-20 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Whiskerless Schottky diode
WO2013190997A1 (en) * 2012-06-20 2013-12-27 独立行政法人産業技術総合研究所 Semiconductor device
CN103367463A (en) * 2013-07-23 2013-10-23 中国工程物理研究院电子工程研究所 Terahertz transverse Schottky diode and manufacturing method thereof
CN203859185U (en) * 2014-04-28 2014-10-01 山东康洋电源有限公司 Automatic adjusting device for drying temperature of storage battery polar plate

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465796A (en) * 2014-11-25 2015-03-25 中国电子科技集团公司第十三研究所 Kind mixing GaAs terahertz schottky third harmonic generation diode
CN104795453A (en) * 2015-04-24 2015-07-22 中国电子科技集团公司第十三研究所 Gallium arsenide-based Schottky frequency-doubling diode with multi-beam leads
CN104795453B (en) * 2015-04-24 2018-06-12 中国电子科技集团公司第十三研究所 A kind of more beam lead GaAs base schottky frequency doubled diodes
CN104867968A (en) * 2015-06-12 2015-08-26 四川迈格酷科技有限公司 Terahertz low-frequency GaAs based high-power schottky frequency multiplication diode
CN111048596A (en) * 2019-12-06 2020-04-21 中山大学 A kind of Schottky diode and preparation method thereof
CN111509051A (en) * 2020-04-30 2020-08-07 北京国联万众半导体科技有限公司 New Millimeter-Wave Ga2O3 Schottky Diode
CN112289865A (en) * 2020-10-12 2021-01-29 中国电子科技集团公司第十三研究所 Biasable frequency mixing Schottky diode structure and semiconductor device
CN112289865B (en) * 2020-10-12 2022-12-13 中国电子科技集团公司第十三研究所 Biased mixing Schottky diode structure and semiconductor device
CN112435919A (en) * 2020-10-27 2021-03-02 中国电子科技集团公司第五十五研究所 Method for integrating diamond and GaAs terahertz Schottky diode
CN112435919B (en) * 2020-10-27 2022-08-12 中国电子科技集团公司第五十五研究所 A method of integrating diamond and GaAs terahertz Schottky diodes
CN113345953A (en) * 2021-06-04 2021-09-03 厦门芯辰微电子有限公司 Millimeter wave schottky diode with reverse isolation trench

Similar Documents

Publication Publication Date Title
CN104022163A (en) Improved radiating GaAs-based terahertz frequency doubling Schottky diode
CN104867968B (en) For Terahertz low-frequency range GaAs based high-power Schottky frequency doubled diodes
CN104795453B (en) A kind of more beam lead GaAs base schottky frequency doubled diodes
Eisele et al. Two-terminal millimeter-wave sources
CN104465796A (en) Kind mixing GaAs terahertz schottky third harmonic generation diode
Eisele State of the art and future of electronic sources at terahertz frequencies
CN105826400A (en) Terahertz frequency-doubling Schottky diode with anode junctions of different sizes
CN109616513B (en) Terahertz Schottky diode based on multi-split anode to improve current crowding effect
CN103904134A (en) Diode structure based on GaN-based heterostructure and manufacturing method
CN109616526B (en) Terahertz Schottky diode based on trapezoidal anode to improve current crowding effect
CN203760501U (en) GaN-based plasmon detector
CN105826401B (en) The different Terahertz frequency multiplication Schottky diode of air bridges size
CN104835859A (en) Deflectable frequency mixing GaAs-based terahertz Schottky diode
Dong et al. High-efficiency GaN frequency doubler based on thermal resistance analysis for continuous wave input
CN204204868U (en) Class mixing GaAs Terahertz Schottky frequency tripling diode
CN101964363A (en) Metal-semiconductor field effect transistor with stepped buffer layer structure
CN203859118U (en) Heat-dissipation-improved GaAs-based terahertz frequency multiplication Schottky diode
CN103956637B (en) High-frequency BSCCO-THz source
CN105845742B (en) Beam lead terahertz Schottky diode
CN112382664A (en) Flip MOSFET device and manufacturing method thereof
CN103474460B (en) A kind of HEMT
CN103400864A (en) Polarization doping-based GaN transverse Schottky diode
CN112289866B (en) High-power broadband terahertz frequency multiplication Schottky diode structure
CN204348720U (en) A kind of composite channel MHEMT microwave oscillator
CN205657060U (en) Beam lead terahertz is schottky diode now

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20140903