CN109594044A - 氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法 - Google Patents

氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法 Download PDF

Info

Publication number
CN109594044A
CN109594044A CN201811522818.4A CN201811522818A CN109594044A CN 109594044 A CN109594044 A CN 109594044A CN 201811522818 A CN201811522818 A CN 201811522818A CN 109594044 A CN109594044 A CN 109594044A
Authority
CN
China
Prior art keywords
porous silicon
solution
wolframic acid
tungsten oxide
gas sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811522818.4A
Other languages
English (en)
Inventor
胡明
秦岳
强晓永
周立伟
赵博硕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201811522818.4A priority Critical patent/CN109594044A/zh
Publication of CN109594044A publication Critical patent/CN109594044A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • C23C18/1208Oxides, e.g. ceramics
    • C23C18/1216Metal oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/04Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1254Sol or sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Nanotechnology (AREA)
  • Electrochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明公开了一种氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法,依顺序利用钨酸钠和盐酸反应生成钨酸溶胶,利用热退火工艺在多孔硅顶部形成氧化钨纳米颗粒结构,利用半导体异质结效应实现多孔硅对二氧化氮气体灵敏度和选择性的提升,从而制备有良好二氧化氮探测能力的气敏传感器。本发明气敏传感器利用氧化钨与多孔硅间异质结的影响,提升了多孔硅的气敏性能,在室温下对二氧化氮气体具有较高的灵敏度和较好的选择性,适宜应用在气敏传感器的进一步开发中。同时,这种多孔硅氧化钨复合结构气敏传感器的制备工艺重复性高,具有大规模生产的潜力。

Description

氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法
技术领域
本发明涉及一种气敏传感器,具体涉及一种氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法。
背景技术
由于长期以来对发展中的环境因素考虑不足等因素,以及城市规模的不断扩大,我国空气质量明显恶化,常出现极端大气污染事件。我国空气环境的主要污染物包括PM2.5、PM10、臭氧(O3)、二氧化氮(NO2)、一氧化碳(CO)和二氧化硫(SO2)等。二氧化氮空气污染已被证实与人的健康有着密切相关的影响,长时间生活在二氧化氮污染物超标环境中会增加人罹患呼吸道、心血管等疾病的风险。近年来,人们对于空气质量的改善有强烈意愿,对于二氧化氮等有害气体的检测越发引起重视。因此,对二氧化氮气体具有良好选择性和灵敏度的气敏传感器有良好的发展前景。
多孔硅是一种硅基气敏材料,属于低维微米-纳米材料,具有极大的比表面积,能够在室温下探测多种气体,同时兼容集成电路工艺,被视为极具应用前景的气敏材料。当前多孔硅气敏材料的问题集中在其灵敏度不高、选择性较差这两方面。
多孔硅对二氧化氮的气敏响应机理在于:空气中的二氧化氮分子吸附在多孔硅表面,与多孔硅之间发生电子转移,使多孔硅表面电子浓度下降,从而引起多孔硅电阻的变化。传感器器件在空气中的电阻值定义为Ra,器件在二氧化氮环境中的电阻定义为Rg。半导体的载流子为半导体中可以自由移动的带有电荷的物质微粒,包括电子和空穴。载流子中较多的载流子多子为电子的多孔硅称为N型多孔硅,对二氧化氮响应时电阻上升,使得Rg>Ra;载流子多子为空穴的多孔硅为P型多孔硅,对二氧化氮响应时电阻下降,使得Rg<Ra。
氧化钨是一种金属氧化物半导体材料,可由对钨酸胶体进行高温热处理制备得来。
半导体异质结是指不同种类的半导体材料间形成电学接触后形成的一种结构。形成异质结的材料间会产生载流子迁移,使材料载流子浓度发生变化。
发明内容
为了解决现有技术中的问题,本发明提供一种氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法,解决现有技术中多孔硅对二氧化氮气体的灵敏度和选择性差的问题。
本发明的技术方案是:
一种氧化钨纳米颗粒和多孔硅复合结构气敏传感器,由以下方法制得:
(1)清洗硅基片:
将硅基片依次浸入以下清洗液中清洗:浓硫酸和双氧水混合溶液;氢氟酸溶液;丙酮;乙醇;清洗后的硅基片放入乙醇中备用;
(2)制备多孔硅:
采用双槽电化学腐蚀法对步骤(1)中硅基片进行腐蚀,以制备多孔硅层;腐蚀电源为恒流稳压电源,腐蚀中电流保持不变;腐蚀液为氢氟酸水溶液;
(3)制备钨酸:
将钨酸钠粉末溶于去离子水中,形成浓度为0.05mol/L的钨酸钠溶液;在钨酸钠溶液中滴加浓度为6mol/L的盐酸溶液,盐酸溶液与钨酸钠溶液的体积比为3-5:100,将溶液离心,形成黄色钨酸沉淀;
(4)制备钨酸溶胶:
将步骤(3)中钨酸沉淀中加入30%过氧化氢溶液,再加入80%乙醇溶液,搅拌生成钨酸溶胶;
(5)在多孔硅上旋涂钨酸:
在步骤(2)的样品基础上,通过匀胶机在多孔硅上旋涂钨酸;将步骤(4)中钨酸溶胶涂于步骤(2)的多孔硅表面,然后将多孔硅层朝上置于匀胶机上,调节转速,匀胶20-40秒;重复涂钨酸和匀胶一至多次;
(6)制备氧化钨纳米颗粒:
将步骤(5)中样品多孔硅层朝上置于马弗炉中,调节热处理温度、升温速率,温度保持时间;
(7)制备铂电极:
将步骤(6)中样品置于电极模版中,放置于磁控溅射机真空室内,多孔硅层朝外;调节磁控溅射机参数,设置所需的本体真空度、氩气流量、工作压强、溅射功率与溅射时间。
所述步骤(1)中硅基片为N型单面硅抛光片,电阻率0.01-0.02Ω·cm,晶向为<1 00>,厚度为390-410μm,尺寸为23-25mm×7-9mm。
所述步骤(2)腐蚀时间为2-10min。
所述步骤(3)离心条件为在5000ppm下离心15-60分钟。
所述步骤(4)钨酸与过氧化氢溶液的比例范围为:0.05mol钨酸:2-4ml过氧化氢溶液;每0.05mol钨酸溶于过氧化氢后,加入乙醇溶液配至50ml。
所述步骤(7)中磁控溅射机为JCP-200高真空磁控溅射镀膜机。
一种氧化钨纳米颗粒和多孔硅复合结构气敏传感器的制备方法,包括以下步骤:
(1)清洗硅基片:
将硅基片依次浸入以下清洗液中清洗:浓硫酸和双氧水混合溶液;氢氟酸溶液;丙酮;乙醇;清洗后的硅基片放入乙醇中备用;
(2)制备多孔硅:
采用双槽电化学腐蚀法对步骤(1)中硅基片进行腐蚀,以制备多孔硅层;腐蚀电源为恒流稳压电源,腐蚀中电流保持不变;腐蚀液为氢氟酸水溶液;
(3)制备钨酸:
将钨酸钠粉末溶于去离子水中,形成浓度为0.05mol/L的钨酸钠溶液;在钨酸钠溶液中滴加浓度为6mol/L的盐酸溶液,盐酸溶液与钨酸钠溶液的体积比为3-5:100,将溶液离心,形成黄色钨酸沉淀;
(4)制备钨酸溶胶:
将步骤(3)中钨酸沉淀中加入30%过氧化氢溶液,再加入80%乙醇溶液,搅拌生成钨酸溶胶;
(5)在多孔硅上旋涂钨酸:
在步骤(2)的样品基础上,通过匀胶机在多孔硅上旋涂钨酸;将步骤(4)中钨酸溶胶涂于步骤(2)的多孔硅表面,然后将多孔硅层朝上置于匀胶机上,调节转速,匀胶20-40秒;重复涂钨酸和匀胶一至多次;
(6)制备氧化钨纳米颗粒:
将步骤(5)中样品多孔硅层朝上置于马弗炉中,调节热处理温度、升温速率、温度保持时间;
(7)制备铂电极:
将步骤(6)中样品置于电极模版中,放置于磁控溅射机真空室内,多孔硅层朝外;调节磁控溅射机参数,设置所需的本体真空度、氩气流量、工作压强、溅射功率和溅射时间。
本发明的有益效果是:
(1)通过氧化钨纳米颗粒复合结构,使本发明中的氧化钨多孔硅复合结构传感器对高浓度二氧化氮表现反型的P型响应,对低浓度二氧化氮表现N型响应,形成复合结构前为N型响应。
(2)与多孔硅气敏传感器相比,本发明中的氧化钨纳米颗粒多孔硅复合结构传感器对二氧化氮有更高的灵敏度和更好的选择性。
(3)本发明中应用的双槽电化学腐蚀法、匀胶法和热处理工艺,具有可重复性好、适宜大规模生产的优势。
本发明方法依顺序利用钨酸钠和盐酸反应生成钨酸溶胶,利用热退火工艺在多孔硅顶部形成氧化钨纳米颗粒结构,利用半导体异质结效应实现多孔硅对二氧化氮气体灵敏度和选择性的提升,从而制备有良好二氧化氮探测能力的气敏传感器。本发明在室温工作的多孔硅氧化钨复合结构气敏传感器利用氧化钨与多孔硅间异质结的影响,提升了多孔硅的气敏性能,在室温下对二氧化氮气体具有较高的灵敏度和较好的选择性,适宜应用在气敏传感器的进一步开发中。同时,这种多孔硅氧化钨复合结构气敏传感器的制备工艺重复性高,具有大规模生产的潜力。
附图说明
图1为通过双槽电化学腐蚀法制备的多孔硅的形貌SEM图;(A)平面图(B)断面图;
图2为经过溅射热氧化制备的氧化钨纳米颗粒/多孔硅复合结构SEM图;
图3为氧化钨纳米颗粒/多孔硅复合结构EDS能谱;
图4氧化钨纳米颗粒/多孔硅复合结构传感器对不同浓度二氧化氮气体的室温动态响应恢复曲线图;
图5氧化钨纳米线/多孔硅传感器对不同气体选择性图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明,但本发明的实施方式不限于此。
本发明所用原料均采用市售材料,并确定的最佳实施方案如下:
(1)清洗硅基片
所用硅片为2吋直径,电阻率0.01-0.02Ω·cm,厚度390-410μm,晶向<1 0 0>的N型单面硅抛光片。将硅基片依次浸入以下溶液进行清洗:于浓硫酸和双氧水混合溶液(浓硫酸与双氧水体积比例3:1)中浸泡清洗30分钟,于氢氟酸溶液(氢氟酸与去离子水体积比例1:1)中浸泡清洗20分钟,于丙酮中超声清洗5分钟,于无水乙醇中超声清洗5分钟。清洗后的硅基片放入无水乙醇中浸泡备用。
(2)制备多孔硅
采用双槽电化学腐蚀法对步骤(1)中硅基片进行腐蚀,腐蚀电源为恒流稳压电源。腐蚀在室温无外加光源环境下进行。腐蚀液为氢氟酸水溶液,氢氟酸与去离子水的体积比例为1:5。腐蚀时间为2min,腐蚀电流密度控制为恒定的64mA/cm2
(3)制备钨酸:
将钨酸钠粉末溶于去离子水中,形成钨酸钠溶液。在钨酸钠溶液中滴加盐酸,将溶液在5000ppm下离心30分钟,形成黄色钨酸沉淀。钨酸钠溶液浓度为0.05mol/L。所用盐酸为6mol/L的盐酸溶液。盐酸与钨酸钠溶液的体积比为3:100。
(4)制备钨酸溶胶:
将步骤(3)中钨酸沉淀中加入过氧化氢溶液,再加入乙醇溶液,搅拌生成钨酸溶胶。过氧化氢溶液浓度为30%。钨酸与过氧化氢溶液的比例为0.005mol钨酸:2ml过氧化氢溶液。乙醇溶液浓度为80%。0.005mol钨酸溶于2ml过氧化氢溶液后,加入乙醇溶液配至50ml。
(5)在多孔硅上旋涂钨酸:
在步骤(2)的样品基础上,通过匀胶机在多孔硅上旋涂钨酸。将步骤(4)中钨酸溶胶涂于步骤(2)的多孔硅表面,然后将多孔硅层朝上置于匀胶机上,调节转速1500rpm,匀胶30秒。涂钨酸和匀胶次数为一次。
(6)制备氧化钨纳米颗粒:
将步骤(5)中样品多孔硅层朝上置于马弗炉中,调节热处理温度450℃、升温速率2℃每分钟,温度保持时间1h。
(7)制备铂电极:
将步骤(6)中样品置于电极模版中,放置于磁控溅射机真空室内,多孔硅层朝外。调节磁控溅射机参数,设置所需的本体真空度为4×10-4Pa、氩气流量为24sccm、工作压强为2Pa、溅射功率为100W,溅射时间为2min。通过溅射在样品上沉积一对尺寸为2mm×2mm的方型铂电极,两电极间距为8mm。
如图4所示,传感器在室温下对0.25ppm,0.5ppm,1ppm浓度下表现N型响应,灵敏度分别为1.44,1.52,1.86。传感器在室温下对1.5ppm,2ppm,4ppm表现P型响应,灵敏度分别为2.10,4.00,9.75。本传感器相较多孔硅,对二氧化氮的响应有较大提升,本传感器对浓度为4ppm的二氧化氮气体灵敏度达到了多孔硅的6.02倍。
如图5所示,传感器(深灰色)对二氧化氮(4ppm)的灵敏度为对其他气体(200ppm氨气、200ppm甲烷、200ppm乙醇、200ppm丙酮)的两倍以上,表现出对二氧化氮的良好选择性。
以上所述仅为本发明的优选实施方式,凡是利用本发明说明书及附图内容所作的若干改进或变形,或直接或间接运用在其他相关的技术领域,也应视为在本发明的专利保护范围内。

Claims (7)

1.一种氧化钨纳米颗粒和多孔硅复合结构气敏传感器,其特征在于,由以下方法制得:
(1)清洗硅基片:
将硅基片依次浸入以下清洗液中清洗:浓硫酸和双氧水混合溶液;氢氟酸溶液;丙酮;乙醇;清洗后的硅基片放入乙醇中备用;
(2)制备多孔硅:
采用双槽电化学腐蚀法对步骤(1)中硅基片进行腐蚀,以制备多孔硅层;腐蚀电源为恒流稳压电源,腐蚀中电流保持不变;腐蚀液为氢氟酸水溶液;
(3)制备钨酸:
将钨酸钠粉末溶于去离子水中,形成浓度为0.05mol/L的钨酸钠溶液;在钨酸钠溶液中滴加浓度为6mol/L的盐酸溶液,盐酸溶液与钨酸钠溶液的体积比为3-5:100,将溶液离心,形成黄色钨酸沉淀;
(4)制备钨酸溶胶:
将步骤(3)中钨酸沉淀中加入30%过氧化氢溶液,再加入80%乙醇溶液,搅拌生成钨酸溶胶;
(5)在多孔硅上旋涂钨酸:
在步骤(2)的样品基础上,通过匀胶机在多孔硅上旋涂钨酸;将步骤(4)中钨酸溶胶涂于步骤(2)的多孔硅表面,然后将多孔硅层朝上置于匀胶机上,调节转速,匀胶20-40秒;重复涂钨酸和匀胶一至多次;
(6)制备氧化钨纳米颗粒:
将步骤(5)中样品多孔硅层朝上置于马弗炉中,调节热处理温度、升温速率,温度保持时间;
(7)制备铂电极:
将步骤(6)中样品置于电极模版中,放置于磁控溅射机真空室内,多孔硅层朝外;调节磁控溅射机参数,设置所需的本体真空度、氩气流量、工作压强、溅射功率与溅射时间。
2.根据权利要求1所述氧化钨纳米颗粒和多孔硅复合结构气敏传感器,其特征在于,所述步骤(1)中硅基片为N型单面硅抛光片,电阻率0.01-0.02Ω·cm,晶向为<1 0 0>,厚度为390-410μm,尺寸为23-25mm×7-9mm。
3.根据权利要求1所述氧化钨纳米颗粒和多孔硅复合结构气敏传感器,其特征在于,所述步骤(2)腐蚀时间为2-10min。
4.根据权利要求1所述氧化钨纳米颗粒和多孔硅复合结构气敏传感器,其特征在于,所述步骤(3)离心条件为在5000ppm下离心15-60分钟。
5.根据权利要求1所述氧化钨纳米颗粒和多孔硅复合结构气敏传感器,其特征在于,所述步骤(4)钨酸与过氧化氢溶液的比例范围为:0.05mol钨酸:2-4ml过氧化氢溶液;每0.05mol钨酸溶于过氧化氢后,加入乙醇溶液配至50ml。
6.根据权利要求1所述氧化钨纳米颗粒和多孔硅复合结构气敏传感器,其特征在于,所述步骤(7)中磁控溅射机为JCP-200高真空磁控溅射镀膜机。
7.一种权利要求1-6任意一项权利要求所述氧化钨纳米颗粒和多孔硅复合结构气敏传感器的制备方法,其特征在于,包括以下步骤:
(1)清洗硅基片:
将硅基片依次浸入以下清洗液中清洗:浓硫酸和双氧水混合溶液;氢氟酸溶液;丙酮;乙醇;清洗后的硅基片放入乙醇中备用;
(2)制备多孔硅:
采用双槽电化学腐蚀法对步骤(1)中硅基片进行腐蚀,以制备多孔硅层;腐蚀电源为恒流稳压电源,腐蚀中电流保持不变;腐蚀液为氢氟酸水溶液;
(3)制备钨酸:
将钨酸钠粉末溶于去离子水中,形成浓度为0.05mol/L的钨酸钠溶液;在钨酸钠溶液中滴加浓度为6mol/L的盐酸溶液,盐酸溶液与钨酸钠溶液的体积比为3-5:100,将溶液离心,形成黄色钨酸沉淀;
(4)制备钨酸溶胶:
将步骤(3)中钨酸沉淀中加入30%过氧化氢溶液,再加入80%乙醇溶液,搅拌生成钨酸溶胶;
(5)在多孔硅上旋涂钨酸:
在步骤(2)的样品基础上,通过匀胶机在多孔硅上旋涂钨酸;将步骤(4)中钨酸溶胶涂于步骤(2)的多孔硅表面,然后将多孔硅层朝上置于匀胶机上,调节转速,匀胶20-40秒;重复涂钨酸和匀胶一至多次;
(6)制备氧化钨纳米颗粒:
将步骤(5)中样品多孔硅层朝上置于马弗炉中,调节热处理温度、升温速率、温度保持时间;
(7)制备铂电极:
将步骤(6)中样品置于电极模版中,放置于磁控溅射机真空室内,多孔硅层朝外;调节磁控溅射机参数,设置所需的本体真空度、氩气流量、工作压强、溅射功率和溅射时间。
CN201811522818.4A 2018-12-13 2018-12-13 氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法 Pending CN109594044A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811522818.4A CN109594044A (zh) 2018-12-13 2018-12-13 氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811522818.4A CN109594044A (zh) 2018-12-13 2018-12-13 氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法

Publications (1)

Publication Number Publication Date
CN109594044A true CN109594044A (zh) 2019-04-09

Family

ID=65961935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811522818.4A Pending CN109594044A (zh) 2018-12-13 2018-12-13 氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法

Country Status (1)

Country Link
CN (1) CN109594044A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441599A (zh) * 2020-10-30 2022-05-06 天津大学 多孔硅基vo2纳米颗粒复合结构气敏传感元件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495109A (zh) * 2011-12-07 2012-06-13 天津大学 一种基于wo3单晶颗粒的氮氧化物传感器元件的制备方法
JP6115905B1 (ja) * 2016-07-14 2017-04-19 株式会社アンディーン 可視光活性光触媒酸化タングステン化合物
KR101741308B1 (ko) * 2015-02-16 2017-05-30 강릉원주대학교산학협력단 산화텅스텐 및 그 제조방법
CN108982599A (zh) * 2017-06-05 2018-12-11 天津师范大学 多孔硅基氧化钨薄膜复合材料气敏传感器及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102495109A (zh) * 2011-12-07 2012-06-13 天津大学 一种基于wo3单晶颗粒的氮氧化物传感器元件的制备方法
KR101741308B1 (ko) * 2015-02-16 2017-05-30 강릉원주대학교산학협력단 산화텅스텐 및 그 제조방법
JP6115905B1 (ja) * 2016-07-14 2017-04-19 株式会社アンディーン 可視光活性光触媒酸化タングステン化合物
CN108982599A (zh) * 2017-06-05 2018-12-11 天津师范大学 多孔硅基氧化钨薄膜复合材料气敏传感器及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
尹艳红等: "超细氧化钨的制备及其光催化性能研究", 《有色金属科学与工程》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114441599A (zh) * 2020-10-30 2022-05-06 天津大学 多孔硅基vo2纳米颗粒复合结构气敏传感元件的制备方法

Similar Documents

Publication Publication Date Title
CN109342522B (zh) 一种基于聚吡咯/石墨烯复合材料的电阻型nh3传感器、制备方法及其应用
CN203519539U (zh) 基于三氧化钨薄膜的室温气体传感器元件
CN108872325A (zh) 一种基于SnSe2/SnO2异质结的二氧化氮气体传感器、制备工艺及应用
CN110161084B (zh) 微传感芯片及其制备方法、气体检测方法和应用
WO2021228016A1 (zh) 一种基于金属修饰多孔掺硼金刚石电极的非酶生物传感器及其制备方法和应用
CN109342523B (zh) 一种电阻型no2传感器、制备方法及其应用
CN101793855A (zh) 硅微纳米结构气体传感器及其制作方法
CN108508062A (zh) 一种基于MoO3纳米敏感材料的三乙胺传感器、制备方法及其应用
CN106395739A (zh) 一种纳米多孔二氧化锡薄膜气敏材料及其制备方法和应用
CN101419179A (zh) 纳米硅气敏材料及气敏元件
CN101303322B (zh) Wo3厚膜气敏传感器的表面改性方法
CN112611788A (zh) 一种半导体硫化氢气体传感器
CN109594044A (zh) 氧化钨纳米颗粒和多孔硅复合结构气敏传感器及制备方法
CN113049646B (zh) 一种基于Cu7S4-CuO分等级结构微米花敏感材料的硫化氢传感器及其制备方法
Li et al. Low concentration CO gas sensor based on pulsed-heating and wafer-level fabricated MEMS hotplate
CN108490038A (zh) 氧化钨纳米线/多孔硅复合结构气敏传感器的制备方法
CN118032873A (zh) 一种硫化氢气体传感器及其制备工艺
KR101130084B1 (ko) 수소 센서 및 그 제조방법
KR20180119151A (ko) 수소가스센서 및 이의 제조방법
CN117783230A (zh) 一种柔性高灵敏度重金属离子传感器及其制备方法和应用
CN115015335A (zh) SnSe/SnO2/Gr复合材料的制备方法、MEMS氨气传感器及其应用
Guha et al. Zinc oxide nanowire based hydrogen sensor on SOI CMOS platform
CN108303494B (zh) 立杆式大气环境监测装置
KR20120126977A (ko) 탄소나노튜브 기반 3전극 시스템, 그 제조방법 및 이를 이용한 전기화학 바이오센서
Niu et al. H 2 S Sensor Based on MEMS Hotplate and on-Chip Growth of CuO-SnO 2 Nanosheets for High Response, Fast Recovery and Low Power Consumption

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20190409