CN109586646B - 一种永磁同步电机角度误差自适应的方法 - Google Patents

一种永磁同步电机角度误差自适应的方法 Download PDF

Info

Publication number
CN109586646B
CN109586646B CN201811497176.7A CN201811497176A CN109586646B CN 109586646 B CN109586646 B CN 109586646B CN 201811497176 A CN201811497176 A CN 201811497176A CN 109586646 B CN109586646 B CN 109586646B
Authority
CN
China
Prior art keywords
compensation
motor
threshold
torque current
regulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811497176.7A
Other languages
English (en)
Other versions
CN109586646A (zh
Inventor
陈华进
洪洁
张航
王胜勇
卢家斌
王傲能
王闻宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wisdri Wuhan Automation Co Ltd
Original Assignee
Wisdri Wuhan Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wisdri Wuhan Automation Co Ltd filed Critical Wisdri Wuhan Automation Co Ltd
Priority to CN201811497176.7A priority Critical patent/CN109586646B/zh
Publication of CN109586646A publication Critical patent/CN109586646A/zh
Application granted granted Critical
Publication of CN109586646B publication Critical patent/CN109586646B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/14Estimation or adaptation of motor parameters, e.g. rotor time constant, flux, speed, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2203/00Indexing scheme relating to controlling arrangements characterised by the means for detecting the position of the rotor
    • H02P2203/09Motor speed determination based on the current and/or voltage without using a tachogenerator or a physical encoder

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本发明公开一种永磁同步电机角度误差自适应的方法。该角度误差自适应方法针对永磁同步电机在运行过程中由于角度偏差带来的不稳定性实现自动调节。其方法是在高速弱磁区域采用iq补偿的方式,使调制系数控制在预期范围内。补偿的条件以及补偿量的限值都可以根据实际情况进行设置,且在补偿与不补偿之间采用平滑过渡策略,实现电机在全速范围内的稳定运行。实测结果表明了该方法的有效性和稳定性。

Description

一种永磁同步电机角度误差自适应的方法
技术领域
本发明涉及永磁同步电机应对角度偏差的策略研究,具体涉及一种永磁同步 电机角度误差自适应的方法。
背景技术
在电动汽车行驶过程中,永磁同步电机的初始位置角容易出现偏差,对电机 的动态性能和稳态性能产生较大影响,导致电机调制系数超出可控范围,甚至失 控,这时需要采取应对策略,目前主要存在两种处理方式:从减小角度偏差入手, 设计角度偏差自动校准策略,或者是对角度偏差进行算法上的补偿。减小角度误 差在一定程度上能保证角度误差在一个较小的范围之内,改善角度误差对控制系 统带来的不良影响,但是控制精度不高,而且不易实现;从减小角度误差带来的 影响入手,对id、iq进行补偿修正。id、iq补偿可以保证调制系数可控,具体 实现方式有多种。
采用iq补偿的方式,不仅原理和计算过程简单,而且响应快,精度高,稳 定性高。
发明内容
本发明需要解决的问题是在永磁同步电机角度偏差的情况下,如何实现调制 系数误差自适应,确保调制系数在可控范围之内。
为解决该问题,本发明提出了一种永磁同步电机角度误差自适应的方法,具 体步骤为:
步骤1:设计补偿方式及补偿量的获取和计算方法;
步骤2:设置补偿条件,并依据当前电流指令判断是否满足补偿条件;
步骤3:依据补偿条件设置补偿与不补偿切换之间的平滑过渡策略;
步骤4:设计PI调节器;
作为优选,步骤1中所述补偿方式是采用电压反馈法对转矩电流iq进行修 正,具体为:
Figure BDA0001897176450000011
其中,iq *(Udq_exp)为修正之后的转矩电流,对应的电机电压为基准电压udq_exp; iq *(Udq_blk)是修正前的转矩电流指令,对应的电机电压为udq_blk;Δiq是转矩电流 修正量。
电机电压Udq是由电机交直轴电压计算得到,具体为:
Figure BDA0001897176450000021
其中,ud是电机直轴电压,uq是电机交轴电压;
PI调节器的输入是基准电压udq_exp以及反馈电压udq_blk,两者的差值通 过不带耦合的PI调节器输出转矩电流修正量Δiq
作为优选,步骤2中所述补偿条件为:
最大转矩电流比区域不补偿,弱磁区域在转矩电流大于设置的转矩电流阈值 iq_threshold时补偿,小于设置的转矩电流阈值iq_threshold时不补偿;
步骤2中所述依据当前电流指令判断是否满足补偿条件为:
根据当前的转速指令n与电机额定转速nN的大小关系,判断电机运行在最 大转矩电流比区域还是弱磁区域:
当n<nN时,电机运行在最大转矩电流比区域;
当n≥nN时,电机运行在弱磁区域;
若运行在最大转矩电流比区域,则不满足补偿条件,不进行补偿;
若运行在弱磁区域,则需要根据当前的转矩电流指令iq与设置的转矩电流 阈值iq_threshold的大小关系,判断是否需要补偿:
当iq<iq_threshold时,不满足补偿条件,不进行补偿;
当iq≥iq_threshold时,满足补偿条件,进行补偿。
对补偿状态设置补偿标志位,若满足补偿条件则补偿标志位置1,若不满足 补偿条件则补偿标志位置0;
作为优选,步骤3中所述依据补偿条件设置补偿与不补偿切换之间的平滑过 渡策略为:
根据给出的补偿策略,考虑转矩电流iq在阀值iq_threshold处切换,为了 实现在阀值处切换的平滑过渡,设置补偿系数p,p∈[0,1],p的表达式为:
p=0 iq<iq_threshold
p=1 iq_threshold+15<iq
Figure BDA0001897176450000022
PI调节器输出的限值乘上补偿系数p,即可完成平滑切换过程;
作为优选,步骤4中所述设计PI调节器为:
采用电压反馈的方式进行补偿修正,PI调节器的设定值是基准电压udq_exp, 反馈值是反馈电压udq_blk;
计算PI调节器的输入输出限幅值:
根据反馈电压udq_blk与基准电压udq_exp之间的差值ΔUdq,确定PI调节 器的输入限幅;
在保证调制系数能调节回来的基础上确定补偿量Δiq的最大最小值,从而得 到PI的输出限幅值为:
InLowerLimit=-max(ΔUdq)
InUpperlimit=max(ΔUdq)
OutLowerLimit=-max(Δiq)
OutUpperLimit=max(Δiq)
其中,max(ΔUdq)为ΔUdq的最大值,max(Δiq)为Δiq的最大值,-max(Δ Udq)为ΔUdq的最小值,-max(Δiq)为Δiq的最小值;
从补偿切换到不补偿时,将PI调节器积分输出清零,电机在各种工况下进 行切换时,每次进入不补偿区域就将PI调节器清零,可以消除切换时补偿量波 形的尖波。
本发明优点在于无需要测量估计角度偏差方向以及偏差值的大小,此外,该 方法不需要对id、iq同时进行调节,只需要对iq进行补偿就能保证调制系数稳 定可控。
附图说明
图1:为iq补偿电流控制结构图;
图2:为角度偏差+5度iq补偿测试波形;
图3:为角度偏差-5度iq补偿测试波形;
图4:为角度偏差iq补偿测试结果;
图5:为本发明方法流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、 完整地描述,显然,所描述的实施例仅为本发明一部分实施例,而不是全部的实 施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其它实施例,都属于本发明保护的范围。
下面结合图1至图5介绍本发明的实施方式,具体步骤为:
步骤1:设计补偿方式及补偿量的获取和计算方法;
步骤1中所述补偿方式是采用电压反馈法对转矩电流iq进行修正,具体为:
Figure BDA0001897176450000041
其中,iq *(Udq_exp)为修正之后的转矩电流,对应的电机电压为基准电压udq_exp; iq *(Udq_blk)是修正前的转矩电流指令,对应的电机电压为udq_blk;Δiq是转矩电流 修正量。
电机电压Udq是由电机交直轴电压计算得到,具体为:
Figure BDA0001897176450000042
其中,ud是电机直轴电压,uq是电机交轴电压;
PI调节器的输入是基准电压udq_exp以及反馈电压udq_blk,两者的差值通 过不带耦合的PI调节器输出转矩电流修正量Δiq
步骤2:设置补偿条件,并依据当前电流指令判断是否满足补偿条件;
步骤2中所述补偿条件为:
最大转矩电流比区域不补偿,弱磁区域在转矩电流大于设置的转矩电流阈值 iq_threshold=15A时补偿,小于设置的转矩电流阈值iq_threshold=15A时不补 偿;
步骤2中所述依据当前电流指令判断是否满足补偿条件为:
根据当前的转速指令n与电机额定转速nN的大小关系,判断电机运行在最 大转矩电流比区域还是弱磁区域:
当n<nN时,电机运行在最大转矩电流比区域;
当n≥nN时,电机运行在弱磁区域;
若运行在最大转矩电流比区域,则不满足补偿条件,不进行补偿;
若运行在弱磁区域,则需要根据当前的转矩电流指令iq与设置的转矩电流 阈值iq_threshold=15A的大小关系,判断是否需要补偿:
当iq<iq_threshold时,不满足补偿条件,不进行补偿;
当iq≥iq_threshold时,满足补偿条件,进行补偿。
对补偿状态设置补偿标志位,若满足补偿条件则补偿标志位置1,若不满足 补偿条件则补偿标志位置0;
步骤3:依据补偿条件设置补偿与不补偿切换之间的平滑过渡策略;
步骤3中所述依据补偿条件设置补偿与不补偿切换之间的平滑过渡策略为:
根据给出的补偿策略,考虑转矩电流iq在阀值iq_threshold=15A处切换, 为了实现在阀值处切换的平滑过渡,设置补偿系数p,p∈[0,1],p的表达式为:
p=0 iq<iq_threshold
p=1 iq_threshold+15<iq
Figure BDA0001897176450000051
PI调节器输出的限值乘上补偿系数p,即可完成平滑切换过程;
步骤4:设计PI调节器;
步骤4中所述设计PI调节器为:
采用电压反馈的方式进行补偿修正,PI调节器的设定值是基准电压udq_exp, 反馈值是反馈电压udq_blk;
计算PI调节器的输入输出限幅值:
根据反馈电压udq_blk与基准电压udq_exp之间的差值ΔUdq,确定PI调节 器的输入限幅;
在保证调制系数能调节回来的基础上确定补偿量Δiq的最大最小值,从而得 到PI的输出限幅值为:
InLowerLimit=-max(ΔUdq)
InUpperlimit=max(ΔUdq)
OutLowerLimit=-max(Δiq)
OutUpperLimit=max(Δiq)
其中,max(ΔUdq)为ΔUdq的最大值,max(Δiq)为Δiq的最大值,-max(Δ Udq)为ΔUdq的最小值,-max(Δiq)为Δiq的最小值;
从补偿切换到不补偿时,将PI调节器积分输出清零,电机在各种工况下进 行切换时,每次进入不补偿区域就将PI调节器清零,可以消除切换时补偿量波 形的尖波。
如图1所示,为本发明的iq补偿电流控制结构图。采用iq补偿的方式进行 某型永磁同步电机角度偏差自适应实验的具体结果如图2、图3和图4所示。电 机的最大功率为60KW。测试时,角度偏差+5度,转速给定5000r,转矩给定 22Nm-44Nm-66Nm,测试波形如图2;角度偏差-5度,转速给定5000r,转矩给定 22Nm-44Nm-66Nm,测试波形如图3。测试结果表明,iq补偿策实现了永磁同步电 机角度误差自适应,确保调制系数在可控范围内。
以上对本发明的具体实施进行了描述。需要理解的是,本发明并不局限于上 述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改, 这并不影响本发明的实质内容。

Claims (1)

1.一种永磁同步电机角度误差自适应的方法,其特征在于,包括以下步骤:
步骤1:设计补偿方式及补偿量的获取和计算方法;
步骤2:设置补偿条件,并依据当前电流指令判断是否满足补偿条件;
步骤3:依据补偿条件设置补偿与不补偿切换之间的平滑过渡策略;
步骤4:设计PI调节器;
步骤1中所述补偿方式是采用电压反馈法对转矩电流iq进行修正,具体为:
Figure FDA0003241014060000011
其中,iq *(Udq_exp)为修正之后的转矩电流,对应的电机电压为基准电压udq_exp;iq *(Udq_blk)是修正前的转矩电流指令,对应的电机电压为udq_blk;Δiq是转矩电流修正量;
电机电压Udq是由电机交直轴电压计算得到,具体为:
Figure FDA0003241014060000012
其中,ud是电机直轴电压,uq是电机交轴电压;
PI调节器的输入是基准电压udq_exp以及反馈电压udq_blk,两者的差值通过不带耦合的PI调节器输出转矩电流修正量Δiq
步骤2中所述补偿条件为:
最大转矩电流比区域不补偿,弱磁区域在转矩电流大于设置的转矩电流阈值iq_threshold时补偿,小于设置的转矩电流阈值iq_threshold时不补偿;
步骤2中所述依据当前电流指令判断是否满足补偿条件为:
根据当前的转速指令n与电机额定转速nN的大小关系,判断电机运行在最大转矩电流比区域还是弱磁区域:
当n<nN时,电机运行在最大转矩电流比区域;
当n≥nN时,电机运行在弱磁区域;
若运行在最大转矩电流比区域,则不满足补偿条件,不进行补偿;
若运行在弱磁区域,则需要根据当前的转矩电流指令iq与设置的转矩电流阈值iq_threshold的大小关系,判断是否需要补偿:
当iq<iq_threshold时,不满足补偿条件,不进行补偿;
当iq≥iq_threshold时,满足补偿条件,进行补偿;
对补偿状态设置补偿标志位,若满足补偿条件则补偿标志位置1,若不满足补偿条件则补偿标志位置0;
步骤3中所述依据补偿条件设置补偿与不补偿切换之间的平滑过渡策略为:
根据给出的补偿策略,考虑转矩电流iq在阀值iq_threshold处切换,为了实现在阀值处切换的平滑过渡,设置补偿系数p,p∈[0,1],p的表达式为:
p=0 iq<iq_threshold
p=1 iq_threshold+15<iq
Figure FDA0003241014060000021
PI调节器输出的限值乘上补偿系数p,即可完成平滑切换过程;
步骤4中所述设计PI调节器为:
采用电压反馈的方式进行补偿修正,PI调节器的设定值是基准电压udq_exp,反馈值是反馈电压udq_blk;
计算PI调节器的输入输出限幅值:
根据反馈电压udq_blk与基准电压udq_exp之间的差值ΔUdq,确定PI调节器的输入限幅;
在保证调制系数能调节回来的基础上确定补偿量Δiq的最大最小值,从而得到PI的输出限幅值为:
InLowerLimit=-max(ΔUdq)
InUpperlimit=max(ΔUdq)
OutLowerLimit=-max(Δiq)
OutUpperLimit=max(Δiq)
其中,max(ΔUdq)为ΔUdq的最大值,max(Δiq)为Δiq的最大值,-max(ΔUdq)为ΔUdq的最小值,-max(Δiq)为Δiq的最小值;
从补偿切换到不补偿时,将PI调节器积分输出清零,电机在各种工况下进行切换时,每次进入不补偿区域就将PI调节器清零,可以消除切换时补偿量波形的尖波。
CN201811497176.7A 2018-12-07 2018-12-07 一种永磁同步电机角度误差自适应的方法 Active CN109586646B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811497176.7A CN109586646B (zh) 2018-12-07 2018-12-07 一种永磁同步电机角度误差自适应的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811497176.7A CN109586646B (zh) 2018-12-07 2018-12-07 一种永磁同步电机角度误差自适应的方法

Publications (2)

Publication Number Publication Date
CN109586646A CN109586646A (zh) 2019-04-05
CN109586646B true CN109586646B (zh) 2021-11-19

Family

ID=65927783

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811497176.7A Active CN109586646B (zh) 2018-12-07 2018-12-07 一种永磁同步电机角度误差自适应的方法

Country Status (1)

Country Link
CN (1) CN109586646B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112965439B (zh) * 2021-02-01 2022-06-14 华侨大学 一种电子凸轮的控制方法、装置、设备、存储设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701384A (zh) * 2013-12-30 2014-04-02 中冶南方(武汉)自动化有限公司 内置式永磁同步电机弱磁控制方法
CN104734592A (zh) * 2015-04-01 2015-06-24 南车株洲电力机车研究所有限公司 一种永磁同步电机的控制方法及系统
CN106627251A (zh) * 2017-01-22 2017-05-10 北京新能源汽车股份有限公司 一种电机控制方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9379655B2 (en) * 2013-11-12 2016-06-28 Canrig Drilling Technology Method of field weakening control of permanent magnet motor drivers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701384A (zh) * 2013-12-30 2014-04-02 中冶南方(武汉)自动化有限公司 内置式永磁同步电机弱磁控制方法
CN104734592A (zh) * 2015-04-01 2015-06-24 南车株洲电力机车研究所有限公司 一种永磁同步电机的控制方法及系统
CN106627251A (zh) * 2017-01-22 2017-05-10 北京新能源汽车股份有限公司 一种电机控制方法及装置

Also Published As

Publication number Publication date
CN109586646A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
CN107968611B (zh) 同步电机控制电路及控制方法
CN107359834B (zh) 一种高速列车异步牵引电机方波单环弱磁控制方法
WO2005093943A1 (ja) 永久磁石式同期モータの制御装置
JP2007288888A (ja) 多相回転電機の制御装置
CN107395085B (zh) 一种永磁同步电机的弱磁控制方法及控制器
CN112671300B (zh) 一种基于直流功率的车用永磁同步电机矢量控制方法
CN112688610B (zh) 一种车用永磁同步电机矢量弱磁控制方法
CN111277182A (zh) 一种车用永磁同步电机深度弱磁系统及其控制方法
US20210214000A1 (en) Motor control device, electrically driven actuator product, and electrically driven power steering device
JP5412820B2 (ja) 交流電動機の制御装置及び制御方法
KR20200092171A (ko) 영구자석 동기기의 V/f 운전 시 MTPA 제어 장치 및 방법
CN109586646B (zh) 一种永磁同步电机角度误差自适应的方法
JP2003348899A (ja) モ−タの制御方法及び制御装置
JP2018085840A (ja) モータ制御装置
CN109831138B (zh) 永磁同步电机最大效率转矩比控制方法及控制器
JP7183740B2 (ja) インバータ装置
JP5233685B2 (ja) 回転機の制御装置及び制御システム
US20220306133A1 (en) Method for Online Direct Estimation and Compensation of Flux and Torque Errors in Electric Drives
WO2021153050A1 (ja) 制御装置
CN113067519B (zh) 基于残差的无位置传感器注入自适应永磁电机控制方法
CN112564563B (zh) 一种控制方法、控制装置及控制器
JP5862499B2 (ja) モータ制御装置
CN113315434A (zh) 一种基于机械功率预估的车用永磁同步电机矢量控制系统
CN112234896B (zh) 一种驱永磁同步电机mtpv补偿方法及系统
JP2016100961A (ja) モータ制御装置、モータ制御方法及びプログラム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant