CN109585887A - 一种染料@金属有机框架材料及其制备方法和用途 - Google Patents

一种染料@金属有机框架材料及其制备方法和用途 Download PDF

Info

Publication number
CN109585887A
CN109585887A CN201811480814.4A CN201811480814A CN109585887A CN 109585887 A CN109585887 A CN 109585887A CN 201811480814 A CN201811480814 A CN 201811480814A CN 109585887 A CN109585887 A CN 109585887A
Authority
CN
China
Prior art keywords
metal
dyestuff
organic framework
framework material
organic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811480814.4A
Other languages
English (en)
Other versions
CN109585887B (zh
Inventor
张章静
刘丽贞
姚梓竹
项生昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN201811480814.4A priority Critical patent/CN109585887B/zh
Publication of CN109585887A publication Critical patent/CN109585887A/zh
Application granted granted Critical
Publication of CN109585887B publication Critical patent/CN109585887B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种染料@金属有机框架材料,其分子式为{[In3O L1.5(H2O)3](NO3)0.7(C16H7O10S3)0.1}·(C4H9NO)3·(CH3CN)6·(H2O)25,其中,C4H9NO为N,N'‑二甲基乙酰胺,C16H7O10S3为8‑羟基芘‑1,3,6‑三磺酸三钠盐,CH3CN为乙腈,该染料@金属有机框架材料的晶体结构属于立方晶系,空间群为晶胞参数为α=β=γ=90°,晶胞体积为本发明具有如下的有益效果:1、本发明通过选择合适的带质子载体的染料分子引入金属有机框架的孔中,制备出染料@金属有机框架材料作为作为质子传导材料和荧光检测器,同时提高质子导电率以及检测有机小分子的灵敏度。

Description

一种染料@金属有机框架材料及其制备方法和用途
技术领域
本发明涉及一种具有染料@金属有机框架材料及其制备方法和用途,属于金属有机框架材料技术领域。
背景技术
质子交换膜燃料电池(Proton Exchange Membrane Fuel Cell,PEMFC)是一种不经燃烧直接将燃料的化学能转化为电能的发电装置,能量转化率高,且环境友好无污染,被认为是21世纪首选的高效清洁发电技术。质子交换膜(PEM)是PEMFC的关键材料之一,具有传导质子、隔离燃料和氧化剂的作用。目前研究和应用最多的是以Nafion为代表的全氟磺酸膜(PFSA),其在60~80℃温度范围及98%高湿度下质子导电性可高达10-1~10-2S·cm-1。然而随着研究不断的深入,PFSA的缺陷越来越明显,不仅对湿度有很大的依赖性,而且昂贵的铂基催化剂是必要品,更重要的一点是燃料渗透严重造成燃料的浪费及催化剂中毒,这些因素在很大程度上阻碍了燃料电池产业化进程。因此,开发新型的高性能质子交换膜已成为相关技术人员关注的焦点。
苯胺作为典型的芳香胺是不可缺少的化学前体,广泛应用于橡胶工业,染料中间体,医药等领域。然而,由于其严重的毒性和易致癌性质,即使在非常低的浓度下泄漏也会危害环境安全和人类健康,因此,快速有效地检测苯胺对于公共安全和环境保护来说是非常紧迫的。
发明内容
针对目前质子交换膜高湿度依赖性和运行温度范围窄等问题以及检测苯胺小分子灵敏度低等问题,本发明利用金属有机框架的多孔性及染料分子的光敏性,提供一种同时实现低湿度依赖性、宽温域高质子导电率和灵敏检测苯胺的染料@金属有机材料。
本发明是通过以下技术方案实现的:
本发明提供一种染料@金属有机框架材料,其分子式为{[In3O L1.5(H2O)3](NO3)0.7(C16H7O10S3)0.1}·(C4H9NO)3·(CH3CN)6·(H2O)25,其中,C4H9NO为N,N'-二甲基乙酰胺,C16H7O10S3为8-羟基芘-1,3,6-三磺酸三钠盐,CH3CN为乙腈,L为金属有机配体,结构式为该染料@金属有机框架材料的晶体结构属于立方晶系,空间群为晶胞参数为α=β=γ=90°,晶胞体积为其中每个铟离子通过四个不同配体的羧酸氧原子、一个水分子的氧原子以及一个μ3-O原子配位形成一个八面体的结构;三个金属离子和一个μ3-O原子以及来自不同配体的六个羧酸氧原子、三个水分子的氧原子形成一个三核金属的次级结构单元[In3O(COO)6],每个次级结构单元通过四齿的金属有机配体(L4-)连接形成三维结构,该染料@金属有机框架存在两种类型的孔道,孔的尺寸分别是孔中存在无序的染料分子以及其他的客体分子。具体结构如图2所示。
一种如前述的染料@金属有机框架材料的制备方法,其包括如下步骤:
将8-羟基芘-1,3,6-三磺酸三钠盐,硝酸铟和4,4',4”,4”’-[1,4-亚苯双(吡啶-4,2,6-三取代)]四苯甲酸加入到N,N-二甲基乙酰胺和乙腈的混合溶剂中,超声分散10~20min后,加入稀硝酸;
密封后,在80~120℃下反应24~48h,将产物进行过滤、洗涤后,得到所述染料@金属有机框架材料。
作为优选方案,所述N,N-二甲基乙酰胺和乙腈的体积比为1:1~1:1.5。
作为优选方案,所述4,4',4”,4”’-[1,4-亚苯双(吡啶-4,2,6-三取代)]四苯甲酸、硝酸铟和8-羟基芘-1,3,6-三磺酸三钠盐摩尔比为3:10:0.1~3:10:5。
一种如前述的染料@金属有机框架材料在质子传导材料中的用途。
作为优选方案,所述质子传导材料包括第一电极、中间层和第二电极,所述中间层由染料@金属有机框架材料成型。
一种如前述的染料@金属有机框架材料在检测苯胺的荧光检测器中的用途。
与现有技术相比,本发明具有如下的有益效果:
1、本发明通过选择合适的带质子载体的染料分子引入金属有机框架的孔中,制备出染料@金属有机框架材料作为质子传导材料和荧光检测器,同时提高质子导电率以及检测有机小分子的灵敏度;
2、本发明合成的染料@金属有机框架材料,制备工艺简单,成本低,极大地满足实际应用中低湿度条件下高的质子导电率以及对苯胺小分子检测的敏感性,具有广阔的应用前景。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1是本发明合成的染料@金属有机框架材料的示意图;
图2是本发明中的In-MOF和HPTS@In-MOF材料的制备方法流程示意图;
图3是根据本发明中对比例1得到的In-MOF材料在不同温度下的尼奎斯特图;
图4是根据本发明中实施例1得到的HPTS@In-MOF材料在不同温度下的尼奎斯特图;
图5是根据本发明中实施例1得到的In-MOF和HPTS@In-MOF不同温度下导电率对比图;
图6是根据本发明中对比例1得到In-MOF在不同浓度的苯胺的I0/I曲线;
图7是根据本发明中实施例1得到HPTS@In-MOF在不同浓度的苯胺的的I0/I曲线。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例涉及一种染料@金属有机框架材料的制备方法有机配体的制备方法,如图2所示,具体包括如下步骤:将0.1mmol硝酸铟,0.01mmol 8-羟基芘-1,3,6-三磺酸三钠盐(HPTS)和0.03mmol 4,4',4”,4”’-(1,4-亚苯双(吡啶-4,2,6-三取代))四苯甲酸加入到2mL1:1的N,N-二甲基乙酰胺和乙腈的混合溶剂,超声10~20分钟,加入少量稀硝酸;将上述溶液用玻璃容器密封,放置在烘箱,温度从室温加热到85℃;在上述温度85℃保温48h,取出玻璃瓶,冷却至室温;将玻璃瓶中的晶体过滤,用N,N-二甲基乙酰胺洗涤产品,产品在室温空气氛围干燥,得到干燥的紫红色的块状晶体(命名为HPTS@In-MOF)。
实施例2
本实施例涉及一种染料@金属有机框架材料的制备方法有机配体的制备方法,具体包括如下步骤:将0.1mmol硝酸铟,0.01mmol 8-羟基芘-1,3,6-三磺酸三钠盐(HPTS)和0.03mmol 4,4',4”,4”'-(1,4-亚苯双(吡啶-4,2,6-三取代))四苯甲酸加入到2mL 1:1的N,N-二甲基乙酰胺和乙腈的混合溶剂,超声10~20分钟,加入少量稀硝酸;将上述溶液用玻璃容器密封,放置在烘箱,温度从室温加热到90℃;在上述温度90℃保温24h,取出玻璃瓶,冷却至室温;将玻璃瓶中的晶体过滤,用N,N-二甲基乙酰胺洗涤产品,产品在室温空气氛围干燥,得到干燥的紫红色的块状晶体(命名为HPTS@In-MOF)。
实施例3
本实施例涉及一种染料@金属有机框架材料的制备方法有机配体的制备方法,具体包括如下步骤:将0.1mmol硝酸铟,0.01mmol 8-羟基芘-1,3,6-三磺酸三钠盐(HPTS)和0.03mmol 4,4',4”,4”'-(1,4-亚苯双(吡啶-4,2,6-三取代))四苯甲酸加入到2mL 1:1的N,N-二甲基乙酰胺和乙腈的混合溶剂,超声10~20分钟,加入少量稀硝酸;将上述溶液用玻璃容器密封,放置在烘箱,温度从室温加热到100℃;在上述温度100℃保温24h,取出玻璃瓶,冷却至室温;将玻璃瓶中的晶体过滤,用N,N-二甲基乙酰胺洗涤产品,产品在室温空气氛围干燥,得到干燥的紫红色的块状晶体(命名为HPTS@In-MOF)。
对比例1
本实施例涉及一种金属有机框架材料的制备方法有机配体的制备方法,具体包括如下步骤:将0.1mmol硝酸铟和0.03mmol 4,4',4”,4”'-(1,4-亚苯双(吡啶-4,2,6-三取代))四苯甲酸加入到2mL 1:1的N,N-二甲基乙酰胺和乙腈的混合溶剂,超声10~20分钟,加入少量稀硝酸;将上述溶液用玻璃容器密封,放置在烘箱,温度从室温加热到85℃;在上述温度85℃保温48h,取出玻璃瓶,冷却至室温;将玻璃瓶中的晶体过滤,用N,N-二甲基乙酰胺洗涤产品,产品在室温空气氛围干燥,得到干燥的黄色产品(命名为In-MOF)。
对比例2
本实施方案与实施例1的区别仅在于反应温度的从85℃变为80℃,得到该染料@金属有机框架的微晶样品。
对比例3
本实施方案与实施例1的区别仅在于反应温度的从85℃变为120℃,得到该染料@金属有机框架的粉末样品。
对比例4
本实施方案与实施例1的区别仅在于HPTS的物质的量从0.01mmol变为0.001mmol,得到该染料未负载的金属有机框架黄色样品。
对比例5
本实施方案与实施例1的区别仅在于HPTS的物质的量从0.01mmol变为0.05mmol,得到该染料@金属有机框架的紫红色粉末样品。
本发明利用SolartronAnalytical ModuLab 126阻抗仪测试In-MOF和HPTS@In-MOF的本进行无额外湿度条件下本征态质子传导测试,测试中观察到较好的半环出现(如图3和图4所示),两个产品在-40℃到90℃的温度范围内都具有较好的本征导电率。但染料分子进入MOF孔道的HPTS@In-MOF材料在整个温度范围具有更好的质子导率,并且在90℃电导率达到将近7.5×10-3S cm-1,接近同温度条件下是原始MOF材料质子导电率的五倍(图5),因此,染料分子进入MOF孔道能提高材料的质子导电率。
本发明利用Horiba FluoroMax-4fluorescence spectrometer荧光仪测试In-MOF和HPTS@In-MOF加入不同量的苯胺的荧光强度变化,从图6和图7可知,随着苯胺浓度逐渐增大,In-MOF和HPTS@In-MOF两个材料的相对荧光强度(I0/I)是逐渐增加的,说明两个材料对苯胺都响应,但从淬灭常数我们可知,染料分子进入MOF孔道的HPTS@In-MOF对苯胺的灵敏度比原始的In-MOF材料高,其Ksv常数达到5.82×104M-1。说明染料分子进入MOF的孔道能有效的提高检测苯胺的灵敏度。
本发明利用MOFs作为母版材料将染料分子封装进入孔道中形成染料@MOF材料,具有许多独特的优势1.MOFs材料具有结构规整的孔道能产生各种有趣的结构,为染料分子提供合适的平台;2.可自下而上,从分子水平上实现不同质子载体的染料分子进入不同孔道,达到结构与性能调控的关系;3.通过染料分子进入MOF的孔道能实现材料多功能应用,如荧光传感、质子导电等。4.制备工业简单,成本低,能有效解决常规路径无法决定的合成难题。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (7)

1.一种染料@金属有机框架材料,其特征在于,分子式为{[In3O L1.5(H2O)3](NO3)0.7(C16H7O10S3)0.1}·(C4H9NO)3·(CH3CN)6·(H2O)25,其中,C4H9NO为N,N'-二甲基乙酰胺,C16H7O10S3为8-羟基芘-1,3,6-三磺酸三钠盐,CH3CN为乙腈,L为金属有机配体,结构式为该染料@金属有机框架材料的晶体结构属于立方晶系,空间群为晶胞参数为α=β=γ=90°,晶胞体积为其中每个铟离子通过四个不同配体的羧酸氧原子、一个水分子的氧原子以及一个μ3-O原子配位形成一个八面体的结构;三个金属离子和一个μ3-O原子以及来自不同配体的六个羧酸氧原子、三个水分子的氧原子形成一个三核金属的次级结构单元[In3O(COO)6],每个次级结构单元通过四齿的金属有机配体连接形成三维结构,该染料@金属有机框架存在两种类型的孔道,孔的尺寸分别是孔中存在无序的染料分子以及其他的客体分子。
2.一种如权利要求1所述的染料@金属有机框架材料的制备方法,其特征在于,包括如下步骤:
将8-羟基芘-1,3,6-三磺酸三钠盐,硝酸铟和4,4',4”,4”’-[1,4-亚苯双(吡啶-4,2,6-三取代)]四苯甲酸加入到N,N-二甲基乙酰胺和乙腈的混合溶剂中,超声分散10~20min后,加入稀硝酸;
密封后,在80~120℃下反应24~48h,将产物进行过滤、洗涤后,得到所述染料@金属有机框架材料。
3.如权利要求2所述的染料@金属有机框架材料的制备方法,其特征在于,所述N,N-二甲基乙酰胺和乙腈的体积比为1:1~1:1.5。
4.如权利要求2所述的染料@金属有机框架材料的制备方法,其特征在于,所述4,4',4”,4”’-[1,4-亚苯双(吡啶-4,2,6-三取代)]四苯甲酸、硝酸铟和8-羟基芘-1,3,6-三磺酸三钠盐摩尔比为3:10:0.1~3:10:5。
5.一种如权利要求1所述的染料@金属有机框架材料在质子传导材料中的用途。
6.如权利要求5所述的用途,其特征在于,所述质子传导材料包括第一电极、中间层和第二电极,所述中间层由染料@金属有机框架材料成型。
7.一种如权利要求1所述的染料@金属有机框架材料在检测苯胺的荧光检测器中的用途。
CN201811480814.4A 2018-12-05 2018-12-05 一种染料@金属有机框架材料及其制备方法和用途 Expired - Fee Related CN109585887B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811480814.4A CN109585887B (zh) 2018-12-05 2018-12-05 一种染料@金属有机框架材料及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811480814.4A CN109585887B (zh) 2018-12-05 2018-12-05 一种染料@金属有机框架材料及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN109585887A true CN109585887A (zh) 2019-04-05
CN109585887B CN109585887B (zh) 2022-02-01

Family

ID=65926027

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811480814.4A Expired - Fee Related CN109585887B (zh) 2018-12-05 2018-12-05 一种染料@金属有机框架材料及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN109585887B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205673A (zh) * 2019-12-04 2020-05-29 山西大学 一种新型有机颜料及其制备方法
CN111562230A (zh) * 2020-05-18 2020-08-21 南京邮电大学 一种测量染料/金属有机框架复合材料中染料含量的方法
CN112552524A (zh) * 2020-12-11 2021-03-26 陕西科技大学 一种离子型氢键有机框架材料及其制备方法和应用
CN113791057A (zh) * 2021-09-15 2021-12-14 南京大学 一种基于荧光传感器阵列的全氟化合物高通量筛查方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032658A1 (en) * 2002-08-17 2004-02-19 Fleming Robert James Enhanced heat mirror films
US20050107870A1 (en) * 2003-04-08 2005-05-19 Xingwu Wang Medical device with multiple coating layers
US20070014318A1 (en) * 2005-04-01 2007-01-18 Hajjar Roger A Display screens having optical fluorescent materials
CN104803818A (zh) * 2015-03-27 2015-07-29 中国石油大学(北京) 在金属有机骨架材料存在下进行液相乙烯齐聚和聚合的方法
CN104031638B (zh) * 2014-06-24 2016-01-20 浙江大学 一种用于生理温度探测的染料/稀土有机框架复合材料及其制备方法
CN105664893A (zh) * 2016-01-20 2016-06-15 北京工业大学 一种稳定的In金属-有机骨架材料、制备方法及其应用
KR20170043138A (ko) * 2015-10-12 2017-04-21 한양대학교 에리카산학협력단 MOF(Metal Organic Framework) 기반의 코발트 황화물의 제조 방법, 및 이를 이용한 염료감응형 태양전지
CN106588751A (zh) * 2016-07-01 2017-04-26 北京工业大学 一种基于多羧酸咔唑配体的铟‑有机骨架材料及其制备方法
CN107001859A (zh) * 2014-12-12 2017-08-01 埃克森美孚研究工程公司 使用有机二氧化硅(organosilica)材料的涂布方法及其用途
EP3225590A1 (en) * 2016-03-31 2017-10-04 Université de Strasbourg Highly selective artificial neurotransmitter receptors
CN104718214B (zh) * 2012-05-31 2017-12-29 国立科学研究中心 具有改性外表面的改善的有机‑无机杂化固体
CN107638572A (zh) * 2017-08-16 2018-01-30 西安电子科技大学 一种pH响应型超灵敏纳米荧光探针及制备方法
WO2018197715A1 (en) * 2017-04-28 2018-11-01 Cambridge Enterprise Limited Composite metal organic framework materials, processes for their manufacture and uses thereof
CN108933202A (zh) * 2018-08-21 2018-12-04 南京邮电大学 一种四基色oled材料及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040032658A1 (en) * 2002-08-17 2004-02-19 Fleming Robert James Enhanced heat mirror films
US20050107870A1 (en) * 2003-04-08 2005-05-19 Xingwu Wang Medical device with multiple coating layers
US20070014318A1 (en) * 2005-04-01 2007-01-18 Hajjar Roger A Display screens having optical fluorescent materials
CN104718214B (zh) * 2012-05-31 2017-12-29 国立科学研究中心 具有改性外表面的改善的有机‑无机杂化固体
CN104031638B (zh) * 2014-06-24 2016-01-20 浙江大学 一种用于生理温度探测的染料/稀土有机框架复合材料及其制备方法
CN107001859A (zh) * 2014-12-12 2017-08-01 埃克森美孚研究工程公司 使用有机二氧化硅(organosilica)材料的涂布方法及其用途
CN104803818A (zh) * 2015-03-27 2015-07-29 中国石油大学(北京) 在金属有机骨架材料存在下进行液相乙烯齐聚和聚合的方法
KR20170043138A (ko) * 2015-10-12 2017-04-21 한양대학교 에리카산학협력단 MOF(Metal Organic Framework) 기반의 코발트 황화물의 제조 방법, 및 이를 이용한 염료감응형 태양전지
CN105664893A (zh) * 2016-01-20 2016-06-15 北京工业大学 一种稳定的In金属-有机骨架材料、制备方法及其应用
EP3225590A1 (en) * 2016-03-31 2017-10-04 Université de Strasbourg Highly selective artificial neurotransmitter receptors
CN106588751A (zh) * 2016-07-01 2017-04-26 北京工业大学 一种基于多羧酸咔唑配体的铟‑有机骨架材料及其制备方法
WO2018197715A1 (en) * 2017-04-28 2018-11-01 Cambridge Enterprise Limited Composite metal organic framework materials, processes for their manufacture and uses thereof
CN107638572A (zh) * 2017-08-16 2018-01-30 西安电子科技大学 一种pH响应型超灵敏纳米荧光探针及制备方法
CN108933202A (zh) * 2018-08-21 2018-12-04 南京邮电大学 一种四基色oled材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIZHEN LIU 等: "Enhanced Intrinsic Proton Conductivity of Metal−Organic Frameworks by Tuning the Degree of Interpenetration"", 《CRYST. GROWTH DES.》 *
SANJOG S. NAGARKAR 等: "Enhanced and Optically Switchable Proton Conductivity in a Melting Coordination Polymer Crystal", 《ANGEWANDTE CHEMIE》 *
刘丽贞: "半刚性配体基金属有机框架的构建与吸附、传感性能研究", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111205673A (zh) * 2019-12-04 2020-05-29 山西大学 一种新型有机颜料及其制备方法
CN111562230A (zh) * 2020-05-18 2020-08-21 南京邮电大学 一种测量染料/金属有机框架复合材料中染料含量的方法
CN112552524A (zh) * 2020-12-11 2021-03-26 陕西科技大学 一种离子型氢键有机框架材料及其制备方法和应用
CN112552524B (zh) * 2020-12-11 2022-02-08 陕西科技大学 一种离子型氢键有机框架材料及其制备方法和应用
CN113791057A (zh) * 2021-09-15 2021-12-14 南京大学 一种基于荧光传感器阵列的全氟化合物高通量筛查方法

Also Published As

Publication number Publication date
CN109585887B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN109585887A (zh) 一种染料@金属有机框架材料及其制备方法和用途
Wang et al. Improved photoreduction of CO2 with water by tuning the valence band of covalent organic frameworks
CN109216712B (zh) 基于金属有机框架的非贵金属/碳复合材料的制备方法、非贵金属/碳复合材料及其应用
Zhong et al. In-situ growth of COF on BiOBr 2D material with excellent visible-light-responsive activity for U (VI) photocatalytic reduction
Chen et al. One-pot preparation of double S-scheme Bi2S3/MoO3/C3N4 heterojunctions with enhanced photocatalytic activity originated from the effective charge pairs partition and migration
CN107335458B (zh) 一种氮掺杂碳或铁氮磷共掺杂碳电催化材料的制备方法
Wang et al. X‐Shaped α‐FeOOH with enhanced charge separation for visible‐light‐driven photocatalytic overall water splitting
Kim et al. Anhydrous proton-conducting properties of Nafion–1, 2, 4-triazole and Nafion–benzimidazole membranes for polymer electrolyte fuel cells
Ding et al. Nano-MOF@ defected film C 3 N 4 Z-scheme composite for visible-light photocatalytic nitrogen fixation
CN106442642A (zh) 一种氧化锌/石墨烯复合材料的制备方法、电阻型气体传感器
CN111905817B (zh) 一种还原CO2为甲酸的高效光催化材料PCN-222-Zn的制备方法及应用
Yin et al. Constructing an all zero-dimensional CsPbBr 3/CdSe heterojunction for highly efficient photocatalytic CO 2 reduction
Hou et al. Photocatalytic Application of 4f–5f Inorganic–Organic Frameworks: Influence of Lanthanide Contraction on the Structure and Functional Properties of a Series of Uranyl–Lanthanide Complexes
Wu et al. Converting water impurity in organic solvent into hydrogen and hydrogen peroxide by organic semiconductor photocatalyst
Wang et al. Two novel Co (II)‐coordination polymers as bifunctional materials for efficient photocatalytic degradation of dyes and electrocatalytic water oxidation
Yang et al. Theoretical and experimental studies on three water-stable, isostructural, paddlewheel based semiconducting metal–organic frameworks
CN112557592A (zh) 用于甲醛检测的气敏材料的制备方法及其产品和应用
Zheng et al. Perylene-3, 4, 9, 10-tetracarboxylic acid accelerated light-driven water oxidation on ultrathin indium oxide porous sheets
Song et al. Photocatalytic active silver organic framework: Ag (I)‐MOF and its hybrids with silver cyanamide
CN113318794A (zh) 等离激元复合光催化剂Pd/DUT-67的制备方法及应用
Qin et al. Photoresponsive proton conduction in Zr-based metal–organic frameworks using the photothermal effect
Li et al. Theoretical and experimental studies of highly efficient all-solid Z-scheme TiO 2–TiC/gC 3 N 4 for photocatalytic CO 2 reduction via dry reforming of methane
Wang et al. Visible photocatalytic hydrogen production from CH3OH over CuO/WO3: The effect of electron transfer behavior of the adsorbed CH3OH
CN103831121B (zh) 一种氮掺杂介孔石墨烯微球及其制备与应用
Sun et al. A multifunctional anionic metal–organic framework for high proton conductivity and photoreduction of CO 2 induced by cation exchange

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220201