CN109583054B - 一种非线性自适应信号采样重构方法 - Google Patents

一种非线性自适应信号采样重构方法 Download PDF

Info

Publication number
CN109583054B
CN109583054B CN201811362355.XA CN201811362355A CN109583054B CN 109583054 B CN109583054 B CN 109583054B CN 201811362355 A CN201811362355 A CN 201811362355A CN 109583054 B CN109583054 B CN 109583054B
Authority
CN
China
Prior art keywords
signal
eigenfunction
sampling
band
eigenfunctions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811362355.XA
Other languages
English (en)
Other versions
CN109583054A (zh
Inventor
杨楚琪
凌永权
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201811362355.XA priority Critical patent/CN109583054B/zh
Publication of CN109583054A publication Critical patent/CN109583054A/zh
Application granted granted Critical
Publication of CN109583054B publication Critical patent/CN109583054B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

本发明公开一种非线性自适应信号采样重构方法,包括:S1:构造目标函数寻找信号的每一个本征函数的带通范围,得到在保证能量损失在预设范围内,冗余最少的频段;S2:利用频段的上下边界,计算出每一个本征函数对应的采样率;S3:利用计算出的采样率对对应的本征函数进行下采样;S4:对下采样后的本征函数进行上采样,再通过线性时不变滤波器;S5:通过叠加滤波后的本征函数,重构信号,若重构信号与原始信号小于阈值,则为最优解;否则更新频段的上下边界,返回步骤S2。本发明对比现有方法,具有更低的过采样率和更低的重构误差,减少了本征函数之间的冗余。

Description

一种非线性自适应信号采样重构方法
技术领域
本发明涉及非线性自适应信号分解领域,更具体地,涉及一种非线性自适应信号采样重构方法。
背景技术
经验模态分解(Empirical Mode Decomposition,EMD)是把信号分解为多个本征模函数(IMF)的叠加。而每个本征模函数都需要满足以下两个条件:(1)函数在整个时间范围内,局部极值点和过零点的数目必须相等,或最多相差一个;(2)在任意时刻点,局部最大值的包络(上包络线)和局部最小值的包络(下包络线)平均必须为零。
对于离散时间信号,本征模函数的长度等于输入信号的长度。由于本征模函数通常不止一个,所有本征模函数的离散点总数通常大于输入信号的长度。换句话说,经验模式分解会带来过采样问题。对于一些压缩应用来说,超抽样表示不是首选。
发明内容
本发明为克服上述现有技术所述的至少一种缺陷,提供一种非线性自适应信号采样重构方法。
本发明旨在至少在一定程度上解决上述技术问题。
本发明的首要目的是在得到更小混叠效应及降低过采样率的前提下,准确恢复原信号。
为解决上述技术问题,本发明的技术方案如下:
一种非线性自适应信号采样重构方法,包括以下步骤:
S1:构造目标函数寻找原始信号的每一个本征函数的带通范围,得到在保证能量损失在预设范围内,冗余最少的频段;
S2:利用频段的上下边界,计算出每一个本征函数对应的采样率;
S3:利用计算出的采样率对对应的本征函数进行下采样;
S4:对下采样后的本征函数进行上采样,再通过线性时不变滤波器,得到去除镜像分量后的本征函数;
S5:通过叠加滤波后的本征函数,重构信号,若重构信号与原始信号小于阈值,则为最优解;否则更新频段的上下边界,返回步骤S2。
通过利用计算出的采样率对本征函数进行下采样,使得下采样后的本征函数和小于未采样的本征函数和,从而减小本征函数间的冗余,用于上采样会在频段引入镜像分量,因此需要一组线性时不变滤波器对上采样后的本征函数进行处理,去除镜像分量。
优选地,步骤S1包括以下步骤:
S1.1:对第i个本征函数,其对应的带通范围定义为
Figure GDA0001947776930000021
对应的阻带范围:
Figure GDA0001947776930000022
式中,Δ为过渡带带宽,
Figure GDA0001947776930000023
代表第i个本征函数的带通下边界,
Figure GDA0001947776930000024
代表第i个本征函数的带通上边界;
S1.2:
Figure GDA0001947776930000025
满足以下条件:
Figure GDA0001947776930000026
式中,Ci(ω)为第i个本征函数对应的离散时间傅里叶变换,
Figure GDA0001947776930000027
Figure GDA0001947776930000028
k是第k次迭代,
Figure GDA0001947776930000029
优选地,步骤S2中计算出每一个本征函数对应的采样率,具体计算方法为:
Figure GDA00019477769300000210
其中Ni为第i个本征函数的采样率。
优选地,步骤S3处理后的信号为:
Figure GDA00019477769300000211
式中,M为本征函数的个数,
Figure GDA0001947776930000031
为下采样后的信号。
优选地,步骤S4处理后的信号为:
上采样后:
Figure GDA0001947776930000032
式中,
Figure GDA0001947776930000033
是上采样后的信号;
通过自适应线性时不变滤波器后:
Figure GDA0001947776930000034
式中,Fi(ω)为第i个本征函数对应的线性时不变滤波器,
Figure GDA0001947776930000035
是滤波后的信号。
优选地,步骤S1中的目标函数为:
Figure GDA0001947776930000036
Figure GDA0001947776930000037
Figure GDA0001947776930000038
式中,
Figure GDA0001947776930000039
是理想滤波器,
Figure GDA00019477769300000310
Figure GDA00019477769300000311
ι是一个1×M的全1向量,ε是允许误差,Im(x)代表x的虚部,Re(x)代表x的实部。
优选地,步骤S5中重构信号与原始信号小于阈值,则为最优解,具体为:
Figure GDA00019477769300000312
其中,
Figure GDA00019477769300000313
为设计出来的目标函数:
Figure GDA00019477769300000314
优选地,步骤S5中更新频段的上下边界,具体为:
利用梯度下降法,更新上下边界:
Figure GDA0001947776930000041
Figure GDA0001947776930000042
式中,tk代表第k次的步长。
与现有技术相比,本发明技术方案的有益效果是:
通过利用计算出的采样率对本征函数进行下采样,使得下采样后的本征函数和小于未采样的本征函数和,从而减小本征函数间的冗余,用于上采样会在频段引入镜像分量,因此需要一组线性时不变滤波器对上采样后的本征函数进行处理,去除镜像分量,同时具有更低的过采样率和更低的重构误差。
附图说明
图1为本发明的一种非线性自适应信号采样重构方法流程图。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
本实施例提供一种非线性自适应信号采样重构方法,如图1,包括以下步骤:
S1:构造目标函数寻找信号的每一个本征函数的带通范围,得到在保证能量损失在预设范围内,冗余最少的频段;
S2:利用频段的上下边界,计算出每一个本征函数对应的采样率;
S3:利用计算出的采样率对对应的本征函数进行下采样;
S4:对下采样后的本征函数进行上采样,再通过一线性时不变滤波器;
S5:通过叠加滤波后的本征函数,重构信号,若重构信号与原始信号小于阈值,则为最优解;否则更新频段的上下边界,返回步骤S2。
在具体实施过程中,x[n]为时域信号,X(ω)为频域信号,Ci(ω)为第i个本征函数对应的离散时间傅里叶变换;
对每一个本征函数,对应的其对应的带通范围:
Figure GDA0001947776930000051
对应的阻带范围:
Figure GDA0001947776930000052
式中,Δ为过渡带范围,
Figure GDA0001947776930000053
代表第i个本征函数的带通下边界,
Figure GDA0001947776930000054
代表第i个本征函数的带通上边界;
为了保证去除的冗余不会损失太多信号能量,要求
Figure GDA0001947776930000055
满足:
Figure GDA0001947776930000056
式中,Ci(ω)为第i个本征函数对应的离散时间傅里叶变换,
Figure GDA0001947776930000057
Figure GDA0001947776930000058
k是第k次迭代,
Figure GDA0001947776930000059
根据带宽的范围来计算采样率,保证信息不丢失,计算出每一个本征函数对应的采样率:
Figure GDA00019477769300000510
其中Ni为第i个本征函数的采样率;
下采样后的信号为:
Figure GDA00019477769300000511
式中,M为本征函数的个数,
Figure GDA0001947776930000061
为下采样后的信号;
上采样后的信号为:
Figure GDA0001947776930000062
式中,
Figure GDA0001947776930000063
是上采样后的信号;
去除镜像分量后的信号为:
Figure GDA0001947776930000064
式中,Fi(ω)为第i个本征函数对应的线性时不变滤波器,
Figure GDA0001947776930000065
是滤波后的信号;
重构后的信号为:
Figure GDA0001947776930000066
根据原信号公式
Figure GDA0001947776930000067
把目标函数设为:
Figure GDA0001947776930000068
Figure GDA0001947776930000069
Figure GDA00019477769300000610
式中,
Figure GDA00019477769300000611
是理想滤波器,
Figure GDA00019477769300000612
Figure GDA00019477769300000613
ι是一个1×M的全1向量,ε是允许误差,Im(x)代表x的虚部,Re(x)代表x的实部;
计算
Figure GDA00019477769300000614
如果成立,跳出循环,得到最优解,否则继续执行,式中
Figure GDA00019477769300000615
为设计出来的目标函数:
Figure GDA00019477769300000616
利用梯度下降法思想,更新上下边界:
Figure GDA0001947776930000071
Figure GDA0001947776930000072
其中tk代表第k次的步长。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用语仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (6)

1.一种非线性自适应信号采样重构方法,其特征在于,包括以下步骤:
S1:构造目标函数寻找原始信号的每一个本征函数的带通范围,得到在保证能量损失在预设范围内,冗余最少的频段;
S2:利用频段的上下边界,计算出每一个本征函数对应的采样率;
S3:利用计算出的采样率对对应的本征函数进行下采样;
S4:对下采样后的本征函数进行上采样,再通过线性时不变滤波器,得到去除镜像分量后的本征函数;
S5:通过叠加滤波后的本征函数,重构信号,若重构信号与原始信号小于阈值,则为最优解;否则更新频段的上下边界,返回步骤S2;
所述步骤S1包括以下步骤:
S1.1:对第i个本征函数,其对应的带通范围定义为
Figure FDA0003668385340000011
对应的阻带范围:
Figure FDA0003668385340000012
式中,Δ为过渡带带宽,
Figure FDA00036683853400000110
代表第i个本征函数的带通下边界,
Figure FDA0003668385340000013
代表第i个本征函数的带通上边界;
S1.2:
Figure FDA0003668385340000014
满足以下条件:
Figure FDA0003668385340000015
式中,Ci(ω)为第i个本征函数对应的离散时间傅里叶变换,
Figure FDA0003668385340000016
Figure FDA0003668385340000017
k是第k次迭代,
Figure FDA0003668385340000019
Figure FDA0003668385340000018
所述步骤S2中计算出每一个本征函数对应的采样率,具体计算方法为:
Figure FDA0003668385340000021
其中Ni为第i个本征函数的采样率。
2.根据权利要求1所述的非线性自适应信号采样重构方法,其特征在于,通过所述步骤S3处理后的信号为:
Figure FDA0003668385340000022
式中,M为本征函数的个数,
Figure FDA0003668385340000023
为下采样后的信号。
3.根据权利要求2所述的非线性自适应信号采样重构方法,其特征在于,通过所述步骤S4处理的信号为:
上采样后:
Figure FDA0003668385340000024
式中,
Figure FDA0003668385340000025
是上采样后的信号;
通过线性时不变滤波器后:
Figure FDA0003668385340000026
式中,Fi(ω)为第i个本征函数对应的线性时不变滤波器,
Figure FDA0003668385340000027
是滤波后的信号。
4.根据权利要求3所述的非线性自适应信号采样重构方法,其特征在于,所述步骤S1中的第一目标函数J(f)为:
Figure FDA0003668385340000028
Figure FDA0003668385340000029
Figure FDA00036683853400000210
式中,
Figure FDA00036683853400000211
是理想滤波器,
Figure FDA00036683853400000212
Figure FDA00036683853400000213
n=0,1,…,M-1;ι是一个1×M的全1向量,ε是误差,Im(x)代表x的虚部,Re(x)代表x的实部。
5.根据权利要求4所述的非线性自适应信号采样重构方法,其特征在于,所述步骤S5中重构信号与原始信号小于阈值,则为最优解,具体为:
Figure FDA0003668385340000031
其中,
Figure FDA0003668385340000032
为设计出来的第二目标函数:
Figure FDA0003668385340000033
6.根据权利要求5所述的非线性自适应信号采样重构方法,其特征在于,所述步骤S5中更新频段的上下边界,具体为:
利用梯度下降法,更新上下边界:
Figure FDA0003668385340000034
Figure FDA0003668385340000035
Figure FDA0003668385340000036
式中,tk代表第k次的步长。
CN201811362355.XA 2018-11-15 2018-11-15 一种非线性自适应信号采样重构方法 Active CN109583054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811362355.XA CN109583054B (zh) 2018-11-15 2018-11-15 一种非线性自适应信号采样重构方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811362355.XA CN109583054B (zh) 2018-11-15 2018-11-15 一种非线性自适应信号采样重构方法

Publications (2)

Publication Number Publication Date
CN109583054A CN109583054A (zh) 2019-04-05
CN109583054B true CN109583054B (zh) 2022-07-12

Family

ID=65922856

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811362355.XA Active CN109583054B (zh) 2018-11-15 2018-11-15 一种非线性自适应信号采样重构方法

Country Status (1)

Country Link
CN (1) CN109583054B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114145757B (zh) * 2022-02-08 2022-05-10 广东工业大学 一种基于非对称合成滤波器组的脑电信号重构方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1462966A3 (en) * 1999-06-10 2004-10-20 Interuniversitair Microelektronica Centrum Vzw A method of determining signals in mixed signal systems
EP1473965A2 (en) * 2003-04-17 2004-11-03 Matsushita Electric Industrial Co., Ltd. Acoustic signal-processing apparatus and method
CN102254103B (zh) * 2011-07-27 2013-08-28 西安交通大学 自适应总体平均经验模式分解eemd筛选次数确定方法
US20160164721A1 (en) * 2013-03-14 2016-06-09 Google Inc. Anomaly detection in time series data using post-processing
US9503733B2 (en) * 2013-04-10 2016-11-22 ARRIS Enterprises, LLC Re-sampling with phase offset adjustment for luma and chroma to signal adaptive filters in scalable video coding
CN103257296B (zh) * 2013-05-08 2015-08-05 西南交通大学 一种电力系统低频振荡在线分析及预警方法
CN107908863A (zh) * 2017-11-14 2018-04-13 哈尔滨理工大学 一种基于emd理论与hht变换的水轮机运转状态判定方法
CN108763113B (zh) * 2018-05-23 2020-10-09 广东水利电力职业技术学院(广东省水利电力技工学校) 一种总线嵌入式工业控制系统及控制方法、信息处理终端

Also Published As

Publication number Publication date
CN109583054A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
Manju et al. ECG denoising using wiener filter and kalman filter
Holtzman Convexity and the maximum principle for discrete systems
CN109583054B (zh) 一种非线性自适应信号采样重构方法
Stošić et al. Design of new selective CIC filter functions with passband‐droop compensation
Agrawal et al. A new design method for stable IIR filters with nearly linear-phase response based on fractional derivative and swarm intelligence
DE102017203804A1 (de) Umwandlung digitaler Abtastrate
CN104714076A (zh) 一种电流信号平滑处理方法及装置
WO2018022942A1 (en) Fractional scaling digital signal processing
CN107239623B (zh) 基于凸优化的m通道过采样图滤波器组的优化设计方法
CN110866344B (zh) 基于提升结构的非下采样图滤波器组的设计方法
Khanna et al. Design and analysis of higher order fractional step Butterworth filters
Strintzis Optimal filters for the generation of multiresolution sequences
Medlin et al. A new design technique for maximally linear differentiators
CN107241082B (zh) 基于凸优化松弛的dft调制滤波器组的设计方法
CN107171665B (zh) 带通信号的双通道tiadc非线性系统参数估计方法
CN111697927A (zh) 宽带带通滤波器系统及方法
Medlin A design technique for high order digital differentiators
Sagar Implementation of CIC Filter for Multirate Transmission Systems
Rakovich et al. Transfer functions for sharp cut-off filters with an equalized phase response
Thakur et al. Computationally efficient sampling rate converter for audio signal application
Kheirati Roonizi A New Approach based Delay Differential Equation To Smoothing Filter Design
CN114564831B (zh) 一种带通滤波器的电磁暂态建模方法及装置
Sugita et al. A DESIGN METHOD OF TWO-DIMENSIONAL LINEAR PHASE FIR FILTERS USING FRITZ JOHN’S THEOREM
Muhammad et al. COMPUTATIONAL ANALYSIS OF BUTTERWORTH AND CHEBYSHEV-I FILTERS USING BILINEAR TRANSFORMATION
CN116050489A (zh) 基于神经网络激活函数的芯片加速方法、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant