CN107171665B - 带通信号的双通道tiadc非线性系统参数估计方法 - Google Patents

带通信号的双通道tiadc非线性系统参数估计方法 Download PDF

Info

Publication number
CN107171665B
CN107171665B CN201710193159.3A CN201710193159A CN107171665B CN 107171665 B CN107171665 B CN 107171665B CN 201710193159 A CN201710193159 A CN 201710193159A CN 107171665 B CN107171665 B CN 107171665B
Authority
CN
China
Prior art keywords
signal
line
error
parameter
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710193159.3A
Other languages
English (en)
Other versions
CN107171665A (zh
Inventor
李宇
蔡彬
谭洪舟
刘崇庆
吕立钧
农革
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sun Yat Sen University
SYSU CMU Shunde International Joint Research Institute
Original Assignee
Sun Yat Sen University
SYSU CMU Shunde International Joint Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sun Yat Sen University, SYSU CMU Shunde International Joint Research Institute filed Critical Sun Yat Sen University
Priority to CN201710193159.3A priority Critical patent/CN107171665B/zh
Publication of CN107171665A publication Critical patent/CN107171665A/zh
Application granted granted Critical
Publication of CN107171665B publication Critical patent/CN107171665B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/10Calibration or testing
    • H03M1/1071Measuring or testing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H17/00Networks using digital techniques
    • H03H17/02Frequency selective networks
    • H03H17/06Non-recursive filters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0071Use of interleaving
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/1205Multiplexed conversion systems
    • H03M1/121Interleaved, i.e. using multiple converters or converter parts for one channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

本发明提供一种带通信号的双通道TIADC非线性系统参数估计方法,本发明针对带通输入信号,提出了一种非线性误差估计结构。该方法利用信号的带通特性,信号仅存在于中频,而在高频和低频的频带内都只存在误差信号,进而采用可变步长的N‑LMS算法在两边的频带对误差信号进行盲估计。仿真测试表明该方法切实可行,收敛速度快,使得TIADC的性能得到极大的提高。

Description

带通信号的双通道TIADC非线性系统参数估计方法
技术领域
本发明涉及高速的模数转换技术领域,更具体地,涉及一种带通信号的双通道TIADC非线性系统参数估计方法。
背景技术
随着集成电路技术的不断发展,数字化技术的推广,对模数转换器件ADC的采样速率以及采样精度的要求越来越高,不仅要求数据采集系统有高的采样率,还要有高的采样精度。在实际的运用中,对实时采样速率以及采样精度有极高的依赖性。然而ADC的最大采样速率受限于它的分辨率,分辨率与采样速率之间是一对矛盾体,根据目前的IC设计工艺,要实现更高速的采样速率,我们需要探索一种基于新结构和新方法的ADC。一种实现超高速采样的重要方法就是利用时间交织(Time-interleaved)结构的ADC。
这种多通道时间交织系统的方法是利用M片有着相同采样率fs的单个ADC,采用并行的结构,每片ADC以相隔1/(M*fs)的时间间隔进行采样,以达到采样率为M*fs(总采样率f=M*fs)的效果。理论上,这种对于M通道的并行交替采样的ADC结构能够使得整个系统采样率达到单个ADC的M倍。但是由于制造工艺本身固有的缺点,不可能使得每一片ADC完全一模一样,所以必然会使得各个通道ADC之间存在失配误差,从而严重降低了整个ADC系统的信噪比。
国内外早期基于多通道时间交织ADC系统的失配修正一般是利用对前端电路的修调,通过精心布局的线路来减少失配误差的影响。这种方法的缺点就是当随着时间的推移,温度的变化,电器元件的老化会使得电路的修正效果失效。为了克服这种前端修正的方法,可以利用后端处理的方法,目前基于多通道时间交织ADC系统的失配误差及其数字后端处理的修正算法是未来发展的关键。
然而,目前大多数数字后端补偿方法必须针对特定的误差种类如增益误差,时间误差,限制了补偿系统性能的提升。即便是通过通道传递函数把线性滤波器的误差的效果转移为频域响应失配误差,其处理范围仍然把误差限制在线性的范围内。
发明内容
本发明提供一种高效的带通信号的双通道TIADC非线性系统参数估计方法。
为了达到上述技术效果,本发明的技术方案如下:
一种带通信号的双通道TIADC非线性系统参数估计方法,包括以下步骤:
S1:S1:设置各通道的输入信号,使其输入输出满足:
Figure BDA0001256727290000021
其中,x(t)为输入信号,
Figure BDA0001256727290000022
为非线性误差参数,m表示通道号,l表示非线性误差阶数;
S2:设置误差信号:令
Figure BDA0001256727290000023
误差信号为:
Figure BDA0001256727290000024
令S=[S2,S3…SL],D=[D2,D3…DL],Px[n]=[x2[n],x3[n]…xL[n]]T则误差信号为:e[n]=S[x2[n],x3[n]…xL[n]]T+(-1)nD[x2[n],x3[n]…xL[n]]T
S3:用高通滤波器f[n]对TIADC的输出信号y[n]进行滤波处理,得到的输出信号ed[n]则不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号,其中f[n]的截止频率高于wc+0.5B,wc是带通输入信号的中心频率,B是带通输入信号的带宽;
S4:对S参数进行估计;
S5:对D参数进行估计;
S6:求解步骤S5中的线性方程即得到各通道非线性系统参数。
进一步地,所述步骤S4的具体过程如下:
S41:用输出信号y[n]近似代替x[n],经过一个(-1)n的翻转乘法器,再用第3步所设计的滤波器f[n]对该信号进行滤波,所得的输出信号ed[n]则必然不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号;
S42:对高阶信号(y[n])2、(y[n])3……(y[n])L执行和上一步类似的操作。经过一个(-1)n的翻转乘法器,再用第3步所设计的高通滤波器f[n]对上述高阶信号进行滤波,所得信号为yS 2[n]、yS 3[n]……yS L[n];
S43:以yS 2[n]、yS 3[n]……yS L[n]为输入信号,ed[n]为期望信号,S=[S2,S3…SL]为待估计误差系数,执行变步长的NLMS算法。
进一步地,所述步骤S43的具体过程如下:
S431:设
Figure BDA0001256727290000025
Figure BDA0001256727290000031
S432:计算各时刻学习速率:
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T,则估计误差e(k)=d(k)-y(k);令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1),
则k时刻的学习速率
Figure BDA0001256727290000032
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T+P|第k行,则估计误差e(k)=d(k)-y(k);
令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1),则k时刻的学习速率
Figure BDA0001256727290000033
S433:计算待估计系统参数:
对于k时刻,W|第k行=W|第k-1行+μ(k)e(k)(X|第k行)*,则
Figure BDA0001256727290000034
Figure BDA0001256727290000035
进一步地,所述步骤S5的具体过程如下:
S51:用第3步所设计的滤波器f[n]对y[n]进行滤波,所得的输出信号ed[n]不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号;
S52:对高阶信号(y[n])2、(y[n])3……(y[n])L执行和第4(2)相同的操作,先经过一个(-1)n的翻转乘法器,再用第3步所设计的高通滤波器f[n]对上述高阶信号进行滤波,所得信号为yD 2[n]、yD 3[n]……yD L[n];
S53:以yD 2[n]、yD 3[n]……yD L[n]为输入信号,ed[n]为期望信号,D=[D2,D3…DL]为待估计误差系数,执行变步长的NLMS算法。
进一步地,所述步骤S53的具体过程如下:
S531:设
Figure BDA0001256727290000041
S532:计算各时刻学习速率:
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T,则估计误差e(k)=d(k)-y(k);令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1),则k时刻的学习速率
Figure BDA0001256727290000042
S533:计算待估计系统参数:
对于k时刻,W|第k行=W|第k-1行+μ(k)e(k)(X|第k行)*,则
Figure BDA0001256727290000043
Figure BDA0001256727290000044
进一步地,所述步骤S6的具体过程是:
求解线性方程组
Figure BDA0001256727290000045
即求解各通道非线性系统参数。
与现有技术相比,本发明技术方案的有益效果是:
本发明针对带通输入信号,提出了一种非线性误差估计结构。该方法利用信号的带通特性,信号仅存在于中频,而在高频和低频的频带内都只存在误差信号,进而采用可变步长的N-LMS算法在两边的频带对误差信号进行盲估计。仿真测试表明该方法切实可行,收敛速度快,使得TIADC的性能得到极大的提高。
附图说明
图1为带有非线性传输特性的双通道TIADC模型示意图;
图2为基于带通信号采样的频谱示意图;
图3为基于变步长NLMS的S参数估计结构图;
图4为S参数的估计曲线图;
图5为估计的均方误差图(S参数);
图6为基于变步长NLMS的D参数估计结构图;
图7为D参数的估计曲线图;
图8为估计的均方误差图(D参数)。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;
为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;
对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
下面结合附图和实施例对本发明的技术方案做进一步的说明。
实施例1
1.设置输入信号x(t)满足采样定理。对于理想的ADC装置,在经过采样保持器之前,各通道的输入输出应该是一致的,即Tm(x)=x(t)。而对于存在非线性误差的传输系统,各通道的输入输出关系就应用
Figure BDA0001256727290000051
来表示,其中
Figure BDA0001256727290000052
为非线性误差参数,m表示通道号,l表示非线性误差阶数。
2.令
Figure BDA0001256727290000053
由于提前经过线性校正处理,一阶误差
Figure BDA0001256727290000054
则误差信号
Figure BDA0001256727290000055
Figure BDA0001256727290000056
令S=[S2,S3…SL],D=[D2,D3…DL],Px[n]=[x2[n],x3[n]…xL[n]]T,则误差信号可表示为e[n]=S[x2[n],x3[n]…xL[n]]T+(-1)nD[x2[n],x3[n]…xL[n]]T
3.设计一个高通滤波器f[n],使之满足其截止频率高于wc+0.5B,其中wc是带通输入信号的中心频率,B是带通输入信号的带宽。
4.对S参数进行估计。
(1)用输出信号y[n]近似代替x[n],经过一个(-1)n的翻转乘法器,再用第3步所设计的滤波器f[n]对该信号进行滤波,所得的输出信号ed[n]则必然不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号。
(2)类似地,对高阶信号(y[n])2、(y[n])3……(y[n])L执行和上一步类似的操作。经过一个(-1)n的翻转乘法器,再用第3步所设计的高通滤波器f[n]对上述高阶信号进行滤波,所得信号为yS 2[n]、yS 3[n]……yS L[n]。
(3)以yS 2[n]、yS 3[n]……yS L[n]为输入信号,ed[n]为期望信号,S=[S2,S3…SL]为待估计误差系数,执行变步长的NLMS算法。具体操作如下:
(a)设
Figure BDA0001256727290000061
(b)计算各时刻学习速率。
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T,则估计误差e(k)=d(k)-y(k)。
令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),
其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1)
则k时刻的学习速率
Figure BDA0001256727290000062
(c)计算待估计系统参数。
对于k时刻,W|第k行=W|第k-1行+μ(k)e(k)(X|第k行)*
Figure BDA0001256727290000063
5.对D参数进行估计。
(1)用第3步所设计的滤波器f[n]对y[n]进行滤波,所得的输出信号ed[n]不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号。
(2)对高阶信号(y[n])2、(y[n])3……(y[n])L执行和第4(2)相同的操作,先经过一个(-1)n的翻转乘法器,再用第3步所设计的高通滤波器f[n]对上述高阶信号进行滤波,所得信号为yD 2[n]、yD 3[n]……yD L[n]。
(3)以yD 2[n]、yD 3[n]……yD L[n]为输入信号,ed[n]为期望信号,D=[D2,D3…DL]为待估计误差系数,执行变步长的NLMS算法。具体操作如下:
(a)设
Figure BDA0001256727290000064
(b)如同第4(3)(b)步骤一样,计算各时刻学习速率。
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T,则估计误差e(k)=d(k)-y(k)。
令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),
其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,
σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1)
则k时刻的学习速率
Figure BDA0001256727290000071
(3)计算待估计系统参数。
对于k时刻,W|第k行=W|第k-1行+μ(k)e(k)(X|第k行)*
Figure BDA0001256727290000072
6.求解线性方程组
Figure BDA0001256727290000073
即可求解各通道非线性系统参数。
如图1所示,这是带有非线性传输特性的双通道TIADC模型示意图,在实现高速采样的模数转化时,输入信号分别以两通道输入,在每条通道受到不同的失真传输函数的影响,导致最终合并出输出信号产生了非线性失真。图2为带通信号采样的频谱示意图,在输入信号的频带外的频域中,只含有误差信号的信息D和S。而且在低频部分,S的幅度比较高,而高频部分,D的幅度比较高。因此,可在这两个区域对非线性误差信号的参数分别进行盲估计。
本发明采用的测试信号为高斯白噪声通过一带通滤波器所产生的信号,该带通滤波器为619阶的第一类线性相位FIR滤波器,截止频率为0.11π和0.89π,阻带幅度为-100dB。因此,TIADC的输入信号满足带通信号的要求。
下面以具有三阶非线性特性的TIADC为例,对本发明的的具体实施方式作详细的描述,其非线性特性为:对任意l>3,
Figure BDA0001256727290000074
并且
Figure BDA0001256727290000075
本发明把双通道TIADC的误差参数的系数按发明原理所述转换为参数S和D,并对此分别进行估计。用变步长NLMS估计S参数的结构图如图3所示。这里f[n]是一个截止频率为0.9π,阻带幅度为-80dB的63阶的第一类线性相位FIR高通滤波器。变步长NLMS估计结构是一个有L-1个权系数S2,S3…SL的自适应线性组合器。这是一个多输入系统,其L-1个瞬时输入的信号源为TIADC的各阶输出信号经过翻转乘法器(-1)n之后通过f[n]所得的信号,即yS 2[n]、yS 3[n]……yS L[n]。而估计结构的期望信号则用TIADC的输出信号y[n]通过(-1)n f[n]产生,以提取低频段的S信息。
按照上述发明原理所述,为达到更好的收敛效果和避免剧烈震荡,学习速率偏移参数γ设置为0.0007,步长参数α为0.005,以此对S2,S3…SL进行变步长NLMS估计,盲估计的结果如图4所示,估计过程产生的均方误差如图5所示,可见S2收敛至-0.00096附近,S3收敛至0.0032附近,均方误差也随着迭代次数的增加快速降低。
相似地,用变步长NLMS估计D参数的结构图如图6所示。所不同的是期望信号的产生无需通过一个(-1)n的乘法器,以获取高频段的D信息。其学习速率偏移参数γ和步长参数α设为0.0004和0.005。以此对D2,D3…DL进行变步长NLMS估计,估计的结果如图7所示,均方误差如图8所示,可见D2收敛至-0.0020附近,D3收敛至0.0015附近。
通过求解线性方程组,结果保留小数点后3位,可解得
Figure BDA0001256727290000081
Figure BDA0001256727290000082
总的来说,对于带通输入信号,本发明提出了一种基于可变步长N-LMS算法的TIADC非线性误差估计方法。从以上的实验结果可以看出该方法能够有效估计双通道TIADC的非线性误差参数。该方法鲁棒性强,简单易行,收敛速度快,能有效提高TIADC的性能。
相同或相似的标号对应相同或相似的部件;
附图中描述位置关系的用于仅用于示例性说明,不能理解为对本专利的限制;
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。

Claims (4)

1.一种带通信号的双通道TIADC非线性系统参数估计方法,其特征在于,包括以下步骤:
S1:设置各通道的输入信号,使其输入输出满足:
Figure FDA0003000075510000011
其中,x(t)为输入信号,
Figure FDA0003000075510000012
为非线性误差参数,m表示通道号,l表示非线性误差阶数;
S2:设置误差信号:令
Figure FDA0003000075510000013
误差信号为:
Figure FDA0003000075510000014
令S=[S2,S3…SL],D=[D2,D3…DL],Px[n]=[x2[n],x3[n]…xL[n]]T则误差信号为:e[n]=S[x2[n],x3[n]…xL[n]]T+(-1)nD[x2[n],x3[n]…xL[n]]]T,其中L表示非线性误差阶数l的最高阶数;
S3:用高通滤波器f[n]对TIADC的输出信号y[n]进行滤波处理,得到的输出信号ed[n]则不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号,其中f[n]的截止频率高于wc+0.5B,wc是带通输入信号的中心频率,B是带通输入信号的带宽;
S4:对S参数进行估计;
S5:对D参数进行估计;
S6:求解步骤S5中的线性方程即得到各通道非线性系统参数;
所述步骤S4的具体过程如下:
S41:用输出信号y[n]近似代替x[n],经过一个(-1)n的翻转乘法器,再用步骤S3所设计的滤波器f[n]对该信号进行滤波,所得的输出信号ed[n]则必然不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号;
S42:对高阶信号(y[n])2、(y[n])3……(y[n])L执行和上一步类似的操作,经过一个(-1)n的翻转乘法器,再用步骤S3所设计的高通滤波器f[n]对上述高阶信号进行滤波,所得信号为
Figure FDA0003000075510000015
S43:以
Figure FDA0003000075510000016
为输入信号,ed[n]为期望信号,S=[S2,S3…SL]为待估计误差系数,执行变步长的NLMS算法;
所述步骤S5的具体过程如下:
S51:用步骤S3所设计的滤波器f[n]对y[n]进行滤波,所得的输出信号ed[n]不包含输入信号的信息,而只含误差信息,故用作误差估计的期望信号;
S52:对高阶信号(y[n])2、(y[n])3……(y[n])L执行和第S42相同的操作,先经过一个(-1)n的翻转乘法器,再用步骤S3所设计的高通滤波器f[n]对上述高阶信号进行滤波,所得信号为
Figure FDA0003000075510000017
S53:以
Figure FDA0003000075510000018
为输入信号,ed[n]为期望信号,D=[D2,D3…DL]为待估计误差系数,执行变步长的NLMS算法。
2.根据权利要求1所述的带通信号的双通道TIADC非线性系统参数估计方法,其特征在于,所述步骤S43的具体过程如下:
S431:设
Figure FDA0003000075510000019
Figure FDA00030000755100000110
S432:计算各时刻学习速率:
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T,则估计误差e(k)=ed(k)-y(k);令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1),则k时刻的学习速率
Figure FDA0003000075510000021
S433:计算待估计系统参数:
对于k时刻,W|第k行=W|第k-1行+μ(k)e(k)(X|第k行)*,则
Figure FDA0003000075510000022
Figure FDA0003000075510000023
3.根据权利要求2所述的带通信号的双通道TIADC非线性系统参数估计方法,其特征在于,所述步骤S53的具体过程如下:
S531:设
Figure FDA0003000075510000024
S532:计算各时刻学习速率:
对于k时刻,输出信号y(k)=(W|第k-1行)(X|第k行)T,则估计误差e(k)=ed(k)-y(k);
令变步长因子β(k)=β(k-1)-ρ(k)/σ(k),其中ρ(k)=γ*α*c(k),γ为可以调节的学习速率偏移参数,α为可以调节的步长参数,c(k)=e(k)e(k-1)×(X|第k行)(X|第k-1行)T,σ(k)=(X|第k-1行)(X|第k-1行)T+β(k-1),则k时刻的学习速率
Figure FDA0003000075510000025
S533:计算待估计系统参数:
对于k时刻,W|第k行=W|第k-1行+μ(k)e(k)(X|第k行)*,则
Figure FDA0003000075510000026
Figure FDA0003000075510000027
4.根据权利要求3所述的带通信号的双通道TIADC非线性系统参数估计方法,其特征在于,所述步骤S6的具体过程是:
求解线性方程组
Figure FDA0003000075510000028
即求解各通道非线性系统参数。
CN201710193159.3A 2017-03-28 2017-03-28 带通信号的双通道tiadc非线性系统参数估计方法 Active CN107171665B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710193159.3A CN107171665B (zh) 2017-03-28 2017-03-28 带通信号的双通道tiadc非线性系统参数估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710193159.3A CN107171665B (zh) 2017-03-28 2017-03-28 带通信号的双通道tiadc非线性系统参数估计方法

Publications (2)

Publication Number Publication Date
CN107171665A CN107171665A (zh) 2017-09-15
CN107171665B true CN107171665B (zh) 2021-06-22

Family

ID=59849289

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710193159.3A Active CN107171665B (zh) 2017-03-28 2017-03-28 带通信号的双通道tiadc非线性系统参数估计方法

Country Status (1)

Country Link
CN (1) CN107171665B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108736891B (zh) * 2018-04-16 2021-09-17 佛山市顺德区中山大学研究院 一种iq和tiadc失配校正系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818209B1 (en) * 2011-06-14 2014-08-26 Ciena Corporation System and apparatus for distributing a signal to the front end of a multipath analog to digital converter
CN104969523A (zh) * 2012-12-18 2015-10-07 信号处理设备瑞典股份公司 用于处理i/q下变频信号及双通道ti-adc的通道失配的方法和设备
CN105871377A (zh) * 2016-03-24 2016-08-17 南京天易合芯电子有限公司 时域交织模数转换器采样时间失配的校准方法及系统
CN106374920A (zh) * 2016-09-05 2017-02-01 中山大学 一种基于多项式模型的tiadc系统的估计与补偿实现方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818209B1 (en) * 2011-06-14 2014-08-26 Ciena Corporation System and apparatus for distributing a signal to the front end of a multipath analog to digital converter
CN104969523A (zh) * 2012-12-18 2015-10-07 信号处理设备瑞典股份公司 用于处理i/q下变频信号及双通道ti-adc的通道失配的方法和设备
CN105871377A (zh) * 2016-03-24 2016-08-17 南京天易合芯电子有限公司 时域交织模数转换器采样时间失配的校准方法及系统
CN106374920A (zh) * 2016-09-05 2017-02-01 中山大学 一种基于多项式模型的tiadc系统的估计与补偿实现方法

Also Published As

Publication number Publication date
CN107171665A (zh) 2017-09-15

Similar Documents

Publication Publication Date Title
CN107302357B (zh) 一种双通道tiadc线性频响失配和非线性失配的联合校正方法
CN107294534B (zh) 用于窄带信号采样的双通道tiadc频响失配实时校正方法
GB2587066A (en) Method for compensating gain flatness of transceiver
CN110166880A (zh) 一种改良型自适应降噪耳机及其降噪方法
CN106374920A (zh) 一种基于多项式模型的tiadc系统的估计与补偿实现方法
CN108111169A (zh) 一种四通道tiadc线性失配和非线性失配的联合校正方法
US7688235B2 (en) Composite analog to digital receiver with adaptive self-linearization
WO2020164435A1 (zh) 一种磁共振射频功率放大器装置及磁共振系统
CN107171665B (zh) 带通信号的双通道tiadc非线性系统参数估计方法
CN108696464B (zh) 一种iq与4通道tiadc联合失真盲估计与修正方法
CN107154804B (zh) 低通信号的双通道tiadc非线性系统参数估计方法
US8542840B2 (en) Apparatus and method for filtering a signal to match a loudspeaker
Dolecek et al. Low order wideband multiplierless comb compensator
CN107302358B (zh) 一种四通道tiadc的非线性失配补偿方法
Turulin et al. Analysis of controlled digital recursive high-pass filters structures with infinite non-negative impulse response
CN111010144B (zh) 改进的两通道iir的qmfb设计方法
Vansebrouck et al. Performance study of nonlinearities blind correction in wideband receivers
Salgado et al. Power and area efficient comb-based decimator for sigma-delta ADCs with high decimation factors
CN110474611B (zh) 一种斩波前置放大器及其设计方法
Reddy et al. Comparison of FIR and IIR Filters using ECG Signal with Different Sampling Frequencies
CN106680847A (zh) 基于fir滤波的adc采样信号中直流信号的消除方法
Liang et al. A Wiener model based Post-calibration of ADC nonlinear distortion
US6920471B2 (en) Compensation scheme for reducing delay in a digital impedance matching circuit to improve return loss
CN111289106A (zh) 一种基于数字滤波的光谱降噪方法
Rathi Comparison of various window techniques for design FIR digital filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant