CN109534453B - 一种氯自由基介导的电化学过滤系统及其应用 - Google Patents

一种氯自由基介导的电化学过滤系统及其应用 Download PDF

Info

Publication number
CN109534453B
CN109534453B CN201811480288.1A CN201811480288A CN109534453B CN 109534453 B CN109534453 B CN 109534453B CN 201811480288 A CN201811480288 A CN 201811480288A CN 109534453 B CN109534453 B CN 109534453B
Authority
CN
China
Prior art keywords
anode
cathode
ammonia nitrogen
filtration system
hydrochloric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811480288.1A
Other languages
English (en)
Other versions
CN109534453A (zh
Inventor
刘艳彪
梅建成
孙立雯
彭翔
李方
沈忱思
马春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Baitan Environmental Technology Co.,Ltd.
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201811480288.1A priority Critical patent/CN109534453B/zh
Publication of CN109534453A publication Critical patent/CN109534453A/zh
Application granted granted Critical
Publication of CN109534453B publication Critical patent/CN109534453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4676Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electroreduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46152Electrodes characterised by the shape or form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

本发明公开了一种氯自由基介导的电化学过滤系统在降解氨氮废水中的应用。所述电化学过滤系统包括阳极与阴极,其特征在于,所述阳极采用二氧化锡改性的碳纳米管薄膜,阴极采用Pd/Cu改性泡沫镍,阳极、阴极相对一侧的表面各设有一层PTFE基底膜,且阳极的一侧为进水口,阴极的一侧为出水口,出水口处设有Ag/AgCl参比电极;阳极、阴极分别通过一集流体与电源的正极、负极连接。本发明将膜分离技术与电化学氧化技术相结合,利用电氧化产生的氯自由基介导反应将氨氮选择性转化为氮气,并通过连续流方式进行操作以提高系统的传质性能。

Description

一种氯自由基介导的电化学过滤系统及其应用
技术领域
本发明涉及一种氯自由基介导的连续流电化学过滤系统在降解氨氮废水上的应用,属于水处理技术领域。
背景技术
近年来,水体中氨氮超标排放所造成的环境污染已引起世界各国的广泛关注。水中的氨氮主要来源于生活污水中含氮有机物导致的污染,如焦化废水和合成氨化肥厂废水等,受微生物作用,可分解成亚硝酸盐氮,继续分解,最终成为硝酸盐氮,完成水的自净过程。高浓度的氨氮会消耗溶解氧,加速富营养化过程,对水生生物造成急性毒性。迄今,多种技术已被报道用于水和废水中的氨氮去除,如生物处理、化学沉淀、折点氯化、光催化和光电催化等技术。例如,生物过程可以通过硝化和反硝化将氨氮转化为氮气。然而,这是一个耗时的过程,需要对C/N比率以及其他操作参数进行精确调控。另一种广泛应用的折点氯化方法需消耗了大量的氯气或次氯酸盐,并需进一步的后处理来去除剩余氯。因此,发展高效、快速、经济去除水中的氨氮污染的新技术,也是满足国家水资源安全可持续利用重大需求的有力保障,对缓解日益严峻的环境压力有着重要的现实意义。
近年来,电化学氧化技术作为一种高效环保的技术手段,有望解决氨氮污染的难题。电化学氧化过程可通过活性自由基(如羟基自由基,OH·)或直接电子转移过程来实现有机污染物的氧化降解。Xiao等利用形稳电极(如RuO2/Ti和IrO2/Ti)耦合UV辐照实现了氨氮的快速去除。[Cl-]在UV辐照下会转化生成Cl·,后者可与氨氮结合生成氮气(WaterRes.,2009,43,1432-1440)。基于这一思路,Zhang等利用光催化技术产生的光生空穴与[Cl-]反应生成Cl·,同样可与氨氮选择性结合生成氮气,在电场作用下的光电催化氧化过程中,可在90min内达到90%的氨氮去除效率(Environ.Sci.Technol.,2018,52,1413-1420)。尽管氨氮去除效率有所提高,但由扩散限制的传质过程仍显著限制了上述过程的规模化应用。此外,上述报道均在传统间歇式反应器内进行,该反应体系显然不适合自动化操作。
传统的电化学反应体系程通常使用两个平行板状电极分别作为阴、阳极,并以flow-by模式运行。由于扩散限制,该体系通常会导致一个相对较大的扩散边界层(通常>100μm)。A.Donaghue等的实验研究和理论计算表明,氧化反应只发生在阳极表面(<1μm)(Environ.Sci.Technol.,2013,47,12391-12399)。因此,一种有效的解决方案是将膜分离技术与电化学技术相结合,以一种连续流操作方式进行。在这种“活性”膜体系中,对流强化传质可显著增强目标污染物分子向膜表面活性位点的传递过程。例如,Liu和Vecitis的实验结果表明电化学过滤体系的传质速率比传统序批式体系提高了6倍(J.Phys.Chem.C,2012,116,374-383)。这种连续流反应体系的设计还具有可放大和易于控制等特点,有望应用于实际工程领域。
发明内容
本发明所要解决的问题是:提供一种能将膜分离技术与电化学技术相结合,以一种连续流操作方式进行的电化学过滤系统,其能对流强化传质可显著增强目标污染物分子向膜表面活性位点的传递过程。
为了解决上述问题,本发明提供了一种氯自由基介导的电化学过滤系统,包括阳极与阴极,其特征在于,所述阳极采用二氧化锡改性的碳纳米管薄膜,阴极采用Pd/Cu改性泡沫镍,阳极、阴极相对一侧的表面各设有一层PTFE基底膜,且阳极的一侧为进水口,阴极的一侧为出水口,出水口处设有Ag/AgCl参比电极;阳极、阴极分别通过一集流体与电源的正极、负极连接。
优选地,所述二氧化锡改性的碳纳米管薄膜的制备方法为:
步骤1):将碳纳米管置于容器中,加入NMP并使用探针超声0.5h使之分散均匀;将分散液抽滤到PTFE基底膜上,制成碳纳米管薄膜;
步骤2):将氯化亚锡置于容器中,加入稀盐酸后超声5~20min制成电吸附溶液;
步骤3):将钛片作为正极,碳纳米管薄膜作为负极,施加外加电压,在电吸附溶液中反应0.5~2h;
步骤4):将电吸附好的膜放入80℃的恒温水浴锅中水浴0.5~2h后,即得二氧化锡改性的碳纳米管薄膜。
更优选地,所述步骤2)中稀盐酸采用盐酸与超纯水的混合溶液,盐酸与超纯水的体积比为1:2。
更优选地,所述步骤3)中外加电压的范围为0.5~2V。
优选地,所述Pd/Cu改性泡沫镍的制备方法为:
步骤5):将泡沫镍依次浸没在浓度0.1M的硫酸、丙酮、去离子水中各超声10~30min去除表面氧化物。
步骤6):将氯化钯、五水合硫酸铜、盐酸溶液置于同一容器中混合均匀,得到混合液;
步骤7):在三电极系统中,采用泡沫镍作为工作电极、Pt作为对电极,以及饱和Ag/AgCl作为参比电极,将三者共同浸入混合液中,在应用电位为-1.0V vs.Ag/AgCl的条件下进行电沉积,沉积完成后即的得Pd/Cu改性泡沫镍。
更优选地,所述步骤6)中氯化钯、五水合硫酸铜、盐酸溶液浓度分别为2mM、4mM、0.1M,三者的体积比为1:1:1。
更优选地,所述步骤7)中电沉积的时间为20~60min,应用电位范围为(-5)~(-1)V vs.Ag/AgCl。
优选地,所述集流体采用Ti棒。
本发明还提供了一种上述氯自由基介导的电化学过滤系统在降解氨氮废水中的应用。将硫酸铵溶液导入过滤体系,控制阳极电势范围在1~3V vs.Ag/AgCl,pH值范围在1~12,[Cl-]的初始浓度范围在0.01-1.0mol/L;所述[Cl-]在阳极被氧化生成氯自由基,即Cl·,Cl·选择性地与NH4 +反应生成氮气,阳极副产物进一步在阴极选择性还原为N2;所述阳极的副产物为NO3 -和NO2 -中的至少一种。
本发明与现有技术相比,具有以下有益效果:
1、该氧化锡改性碳纳米管薄膜的制备原料简单易得、制备周期较短、制备条件温和,原料和制备的成本都较低;
2、该氧化锡改性碳纳米管薄膜做阳极可以拓展碳纳米管薄膜的析氧电位,使其能在较高的阳极电位下工作,有些改善其抗腐蚀性;
3、改性碳纳米管网络具有孔隙度高(>85%)和孔径小(<90nm)等特点,有利于氨氮分子的快速转化;
4、可采取循环过滤的操作方式,也可采用单次过滤的操作方式;
5、在适当的外部电位的作用下,原位阳极氧化[Cl-]可有效且持续地产生Cl·,这些产生的Cl·可选择性地与NH4 +反应生成N2,阳极副反应产生的NO3 -和NO2 -可进一步在选择性阴极还原为N2,阳极和阴极的高孔隙率和对流增强了氨氮的传质和转化性能。
附图说明
图1为本发明提供的电化学过滤系统的示意图;
图2为氯离子浓度对氨氮转换的影响图;
图3为氯离子浓度为0.1M时氨氮随时间转换的影响图。
具体实施方式
为使本发明更明显易懂,兹以优选实施例,并配合附图作详细说明如下。
实施例1-4提供的氯自由基介导的电化学过滤系统如图1所示,其包括阳极2与阴极4,所述阳极2采用二氧化锡改性的碳纳米管薄膜,阴极4采用Pd/Cu改性泡沫镍,阳极2、阴极4相对一侧的表面各设有一层PTFE基底膜3,且阳极2的一侧为进水口1,阴极4的一侧为出水口7,出水口7处设有Ag/AgCl参比电极6;阳极2、阴极4分别通过一集流体5与电源的正极、负极连接。所述集流体5采用Ti棒。
实施例1
取40mg碳纳米管加入50mL NMP溶液,探头超声60min,将分散均匀的碳纳米管抽滤到PTFE支撑膜上,先用乙醇冲洗,再用蒸馏水冲洗。取1g氯化亚锡于烧杯中,依此加入33mL盐酸和67mL超纯水,水浴超声15min。将钛片做正极,碳纳米管薄膜做负极,施加外加电压1V,在电吸附溶液中反应1h,将电吸附好的膜放入80℃的恒温水浴锅中水浴1h后,将制备好的改性碳纳米管薄膜在电化学过滤器中做阳极。
取氯化钯(2mM)、五水合硫酸铜(4mM)、盐酸(0.1M)各100mL于同一烧杯中超声15min使其混合均匀;在三电极系统中,采用Ni泡沫为工作电极、Pt为对电极,以及饱和Ag/AgCl为参比电极,三者共同浸入混合液中,在应用电位为-1.0V vs.Ag/AgCl的条件下进行电沉积实验,将制备好的Pd/Cu改性泡沫镍在电化学过滤器中做阴极。
控制阳极电势在2.5V vs.Ag/AgCl,pH为7,[Cl-]的初始浓度在0.1mol/L,(NH4)2SO4浓度为30mg/L(NH4)2SO4,反应体积30mL反应1.5h后废水中的氨氮去除率>99%。
实施例2
取40mg碳纳米管加入50mL NMP溶液,探头超声60min,将分散均匀的碳纳米管抽滤到PTFE支撑膜上,先用乙醇冲洗,再用蒸馏水冲洗。取1g氯化亚锡于烧杯中,依此加入33mL盐酸和67mL超纯水,水浴超声15min。将钛片做正极,碳纳米管薄膜作为负极,施加外加电压1V,在电吸附溶液中反应1h,将电吸附好的膜放入80℃的恒温水浴锅中水浴1h后,将制备好的改性碳纳米管薄膜在电化学过滤器中做阳极。
取氯化钯(2mM)、五水合硫酸铜(4mM)、盐酸(0.1M)各100mL于同一烧杯中超声15min使其混合均匀;在三电极系统中,采用Ni泡沫为工作电极、Pt为对电极,以及饱和Ag/AgCl为参比电极,三者共同浸入混合液中,在应用电位为-0.5V vs.Ag/AgCl的条件下进行电沉积实验,将制备好的Pd/Cu改性泡沫镍在电化学过滤器中做阴极。
控制阳极电势在1.5V vs.Ag/AgCl,pH为7,[Cl-]的初始浓度在0.1mol/L,反应1.5h后废水中的氨氮转化可以忽略不记,氨氮浓度的轻微下降可以归因于阳极和阴极的吸附。
实施例3
阳极改性碳纳米管薄膜和阴极Pd/Cu改性泡沫镍制备方法与实施例1相同。加入0.175g氯化钠的30mL氨氮废水通过电化学过滤装置后回到原来的烧杯中,然后又重新进入过滤装置进行循环过滤;加入0.175g氯化钠的30mL氨氮废水通过电化学过滤装置后滴入新的烧杯中,做单次过滤实验;加入0.175g氯化钠的30mL氨氮废水进行batch实验。
控制阳极电势在2.5V vs.Ag/AgCl,pH为7,[Cl-]的初始浓度在0.1mol/L。反应1.5h后单次过滤实验的氨氮去除率为15.8%,batch实验的氨氮去除率为63.6%,循环过滤实验的氨氮去除率大于100%。
实施例4
阳极改性碳纳米管薄膜和阴极Pd/Cu改性泡沫镍制备方法与实施例1相同。控制阳极电势在1.5V vs.Ag/AgCl,pH为7,[Cl-]的初始浓度在0.02mol/L,反应1.5h后的氨氮去除率为20%。[Cl-]浓度不仅影响氨氮的去除性能,还决定了相应的转化产物。在所有情况下,N2和硝酸盐(NO3 -)一直是主要产物。反应过程中未检测到亚硝酸盐(NO2 -),主要是由于电活性过滤系统的氧化能力较强。
由图2可见,[Cl-]的浓度从0.02增加到0.1mol/L时,N2产量从4.06±0.21增加到23.82±1.05mg/L。在[Cl-]0.1mol/L时,N2产率为78.4%,NO3 -产率为21.6%。进一步增加[Cl-]浓度至0.12mol/L,会导致NO3-的比例增加(从6.57mg/L增加到11.35mg/L)。由于N2是目前体系中理想的最终产物,0.1mol/L的[Cl-]被确定为最优。
由图3可见,N2的产率随着时间的增加而逐渐增加,在1.5h连续反应后得到了最大的产率。在1.5h时,虽然氨氮的去除率不断提高,但N2的含量略有下降。同时,NO3 -量在初始1h内持续增加,在1.25h时下降10%,这是由于氮气与NO3 -的相互转化,这是一个动态过程。

Claims (6)

1.一种氯自由基介导用于降解氨氮废水的电化学过滤系统,包括阳极(2)与阴极(4),其特征在于,所述阳极(2)采用二氧化锡改性的碳纳米管薄膜,阴极(4)采用Pd/Cu改性泡沫镍,阳极(2)、阴极(4)相对一侧的表面各设有一层PTFE基底膜(3),且阳极(2)的一侧为进水口(1),阴极(4)的一侧为出水口(7),出水口(7)处设有Ag/AgCl参比电极(6);阳极(2)、阴极(4)分别通过一集流体(5)与电源的正极、负极连接;
所述二氧化锡改性的碳纳米管薄膜的制备方法为:
步骤1):将碳纳米管置于容器中,加入NMP并使用探针超声0.5h使之分散均匀;将分散液抽滤到PTFE基底膜(3)上,制成碳纳米管薄膜;
步骤2):将氯化亚锡置于容器中,加入稀盐酸后超声5~20min制成电吸附溶液;稀盐酸采用盐酸与超纯水的混合溶液,盐酸与超纯水的体积比为1:2;
步骤3):将钛片作为正极,碳纳米管薄膜作为负极,施加外加电压,在电吸附溶液中反应0.5~2h;外加电压的范围为0.5~2V;
步骤4):将电吸附好的膜放入80℃的恒温水浴锅中水浴0.5~2h后,即得二氧化锡改性的碳纳米管薄膜;
所述Pd/Cu改性泡沫镍的制备方法为:
步骤5):将泡沫镍依次浸没在浓度0.1M的硫酸、丙酮、去离子水中各超声10~30min去除表面氧化物;
步骤6):将氯化钯、五水合硫酸铜、盐酸溶液置于同一容器中混合均匀,得到混合液;
步骤7):在三电极系统中,采用泡沫镍作为工作电极、Pt作为对电极,以及饱和Ag/AgCl作为参比电极,将三者共同浸入混合液中,在应用电位为-1.0V vs.Ag/AgCl的条件下进行电沉积,沉积完成后即的得Pd/Cu改性泡沫镍。
2.如权利要求1所述的氯自由基介导用于降解氨氮废水的电化学过滤系统,其特征在于,所述步骤6)中氯化钯、五水合硫酸铜、盐酸溶液浓度分别为2mM、4mM、0.1M,三者的体积比为1:1:1。
3.如权利要求1所述的氯自由基介导用于降解氨氮废水的电化学过滤系统,其特征在于,所述步骤7)中电沉积的时间为20~60min,应用电位范围为(-5)~(-1)V vs.Ag/AgCl。
4.如权利要求1所述的氯自由基介导用于降解氨氮废水的电化学过滤系统,其特征在于,所述集流体(5)采用Ti棒。
5.一种权利要求1-4任意一项所述的氯自由基介导用于降解氨氮废水的电化学过滤系统在降解氨氮废水中的应用。
6.如权利要求5所述的氯自由基介导用于降解氨氮废水的电化学过滤系统在降解氨氮废水中的应用,其特征在于,将硫酸铵溶液导入过滤体系,控制阳极电势范围在1~3Vvs.Ag/AgCl,pH值范围在1~12,[Cl-]的初始浓度范围在0.01-1.0mol/L;所述[Cl-]在阳极被氧化生成氯自由基,即Cl·,Cl·选择性地与NH4+反应生成氮气,阳极副产物进一步在阴极选择性还原为N2;所述阳极的副产物为 NO3 - 和 NO2 - 中的至少一种。
CN201811480288.1A 2018-12-05 2018-12-05 一种氯自由基介导的电化学过滤系统及其应用 Active CN109534453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811480288.1A CN109534453B (zh) 2018-12-05 2018-12-05 一种氯自由基介导的电化学过滤系统及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811480288.1A CN109534453B (zh) 2018-12-05 2018-12-05 一种氯自由基介导的电化学过滤系统及其应用

Publications (2)

Publication Number Publication Date
CN109534453A CN109534453A (zh) 2019-03-29
CN109534453B true CN109534453B (zh) 2022-05-17

Family

ID=65853769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811480288.1A Active CN109534453B (zh) 2018-12-05 2018-12-05 一种氯自由基介导的电化学过滤系统及其应用

Country Status (1)

Country Link
CN (1) CN109534453B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110683616A (zh) * 2019-10-17 2020-01-14 东华大学 一种连续流光电化学过滤系统及其应用
CN112250144A (zh) * 2020-09-25 2021-01-22 暨南大学 一种基于电化学氧化-还原顺序转换的Cr(VI)去除与回收方法
CN112551650B (zh) * 2020-10-16 2022-11-04 北京工业大学 一种用于水处理的泡沫镍负载碳纳米管/铜电极的制备方法及应用
CN115259139B (zh) * 2022-06-14 2024-02-02 江西理工大学 一种碲化铋纳米化及其与碳纳米管薄膜复合的方法
CN115231763B (zh) * 2022-07-21 2024-05-14 湖南金龙新材料有限公司 一种含铜循环冷却水的处理方法
CN115849522B (zh) * 2023-03-01 2023-05-12 广东工业大学 基于筛分式集流体的流动阳极电化学污水处理装置及工艺

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Electrochemical wastewater treatment with carbon nanotube filters coupled with in situ generated H2O2";Yanbiao Liu et al;《Environmental Science: Water Research & Technology》;20150723;第1卷(第6期);第769–778页以及其附加材料 *
"Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode";Yan Zhang et al;《Environmental Science & Technology》;20180206;第52卷(第3期);第1413-1420页 *
Han Liu et al."Bismuth-Doped Tin Oxide-Coated Carbon Nanotube Network: Improved Anode Stability and Efficiency for Flow-Through Organic Electrooxidation".《ACS Applied Materials & Interfaces》.2013,第5卷(第20期),第10054—10066页. *

Also Published As

Publication number Publication date
CN109534453A (zh) 2019-03-29

Similar Documents

Publication Publication Date Title
CN109534453B (zh) 一种氯自由基介导的电化学过滤系统及其应用
CN109896598B (zh) 基于碳毡负载铁纳米颗粒的电芬顿阴极材料的制备方法及其在降解水中有机污染物中的应用
CN107445244B (zh) 光电催化-氯自由基脱氮方法
CN113401981B (zh) 一种无需投加药剂的电芬顿处理有机废水的装置及方法
CN111792705B (zh) 一种氧化石墨烯负载的碳基铜镍电极、制备方法及用途
CN113737205B (zh) 一种(亚)硝酸根电化学还原直接制备氨气的方法
CN111039363A (zh) 一种基于电化学耦合膜分离自诱导类芬顿的铜破络与强化去除装置及其应用
CN108017120A (zh) 一种采用新型阳极电催化氧化处理苯酚有机废水的方法
CN109516527B (zh) 一种连续流电化学过滤系统及其在降解氨氮废水中的应用
CN105712447A (zh) 一种对氯硝基苯电催化脱氯的方法
CN205653218U (zh) 多维电解污水处理设备
JP2007105673A (ja) 硝酸性窒素を含む排水の処理方法及び処理装置、並びに該排水処理用電解槽
CN110683617A (zh) 基于差别化控制的废水成对电解处理的方法
CN112723494B (zh) 电活化过硫酸盐促进难降解有机物与氮元素同步去除的水处理技术
CN114180684A (zh) 电催化-电絮凝协同处理全氟化合物废水的装置及方法
Liu et al. Electrocatalytic reduction of nitrate using Pd-Cu modified carbon nanotube membranes
CN111995010B (zh) 一种应用于高浓度含氰废水的电化学管式处理装置及方法
CN113845208B (zh) 一种光电微生物耦合脱氮除碳系统
JP2007061681A (ja) 硝酸性窒素を含む排水の処理方法及び処理装置、並びに該排水処理用電解槽
CN114249399A (zh) 一种高效去除高盐体系中硝态氮的光电催化体系及应用
CN105776439A (zh) 泡沫镍基纳米石墨电极及其制备方法和应用
CN108383214B (zh) 一种光伏电催化有机废水处理反应器及其阳极制备方法
CN113003669A (zh) 一种用于电催化氧化废水处理的氟修饰亚氧化钛活性膜电极的制备方法及穿流式水处理模式
CN216614121U (zh) 一种新型电催化氨氮废水处理装置
CN111087049A (zh) 一种有机氮废水的处理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240524

Address after: Room 2215, No. 933 Zhongshan West Road, Changning District, Shanghai, 200000

Patentee after: Shanghai Baitan Environmental Technology Co.,Ltd.

Country or region after: China

Address before: 201600 No. 2999 North Renmin Road, Shanghai, Songjiang District

Patentee before: DONGHUA University

Country or region before: China