CN109499596A - 一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法 - Google Patents

一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法 Download PDF

Info

Publication number
CN109499596A
CN109499596A CN201811382877.6A CN201811382877A CN109499596A CN 109499596 A CN109499596 A CN 109499596A CN 201811382877 A CN201811382877 A CN 201811382877A CN 109499596 A CN109499596 A CN 109499596A
Authority
CN
China
Prior art keywords
metal
nitrogen
chitosan
porous carbon
phosphorus doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811382877.6A
Other languages
English (en)
Other versions
CN109499596B (zh
Inventor
彭新文
周秋生
杜帆
钟林新
孙润仓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201811382877.6A priority Critical patent/CN109499596B/zh
Publication of CN109499596A publication Critical patent/CN109499596A/zh
Application granted granted Critical
Publication of CN109499596B publication Critical patent/CN109499596B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明属于催化和储能材料领域,公开了一种金属‑氮‑磷掺杂的多孔碳双功能电催化剂及制备方法。将壳聚糖加入到醋酸溶液中搅拌溶解均匀,然后依次加入磷酸水溶液和醛溶液,70~100℃下反应,反应液经透析,冷冻干燥,得到磷酸化壳聚糖;将磷酸化壳聚糖和金属盐溶于水中,然后加热蒸干水分,固体产物在700~900℃温度下碳化处理,将碳化后的固体分散于酸性溶液中进行后处理,抽滤,干燥,得到金属‑氮‑磷掺杂的多孔碳双功能电催化剂。本发明通过改性后的壳聚糖与金属盐之间的特异性作用,有利于催化剂活性的调控,所得催化剂可以高效催化电解水制氢和氧还原反应,具有优于商业Pt/C催化剂的氧还原性能。

Description

一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法
技术领域
本发明属于催化和储能材料领域,具体涉及一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法。
背景技术
化石燃料的大量使用逐渐威胁到传统的能源和环境,努力开发绿色和可再生能源技术,包括燃料电池,金属空气电池和电解水系统是当今社会发展的趋势。由于燃料电池主要依赖于氧化还原反应将化学能转化为电能,所以氧还原反应在燃料电池和锌空电池中发挥着关键的作用。相比之下,氢析出反应属于电解水的半反应,其对于清洁和可持续能源氢气的产生起着决定性的作用。因此,用于电解水制氢和氧还原反应的高效电催化剂的发展显得尤其重要。迄今为止,铂基贵金属基催化剂对于以上两种反应是最有效的电催化剂,但是这些催化剂的成本太高,再加上储量有限,阻碍了贵金属催化剂的大量使用。为了减少贵金属催化剂的使用量或者不再使用贵金属催化剂,近年来已有大量的研究着手于开发廉价和高效的非贵金属基催化剂。目前为止,研究人员已开发出碳基材料、过渡金属碳化物、硫化物、硒化物、磷化物以及它们的合金或者复合物用于多功能的电催化剂。然而由于较小的比表面积和低导电性,大部分催化剂表现出了有限的双功能电催化活性。金属氧化物或者金属纳米颗粒负载在导电碳层上可以克服以上缺陷,进而提高催化剂的活性。
多孔碳材料,由于具有电导率高、耐酸碱性、比表面积大以及可调的孔隙结构等优点,已被广泛应用于催化剂的载体、电催化、超级电容器等领域。然而,单一的碳材料是电化学惰性和较差的催化活性。碳原子中杂原子(N、P、S、F)的掺杂可以调节与掺杂的杂原子结合的碳原子的电子密度,增强其催化活性。例如,杂原子氮的引入可以活化与其相邻的碳原子,进而该碳原子可以充当电催化的活性位点,有利于对氧分子的吸附,加快氧还原反应的动力学过程。然而,由于有限的比表面积,使得可暴露的活性位点较少,导致大多数氮掺杂的催化剂不能够与Pt基催化剂相抗衡。
甲壳素在自然界中分布广泛,据报道,全球每天通过生物合成的甲壳素大约有100亿吨,具有产量大、价格低廉、无污染等特性。甲壳素经过脱乙酰化反应得到的产物是壳聚糖。壳聚糖主要存在于蟹壳、虾壳和真菌菌丝体,它是自然界中除了纤维素以外含量最多的多糖。由于壳聚糖的反应活性较低、加工性较差,它是目前开发较少的生物质资源。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法。
本发明的另一目的在于提供一种通过上述方法制备得到的金属-氮-磷掺杂的多孔碳双功能电催化剂。
本发明目的通过以下技术方案实现:
一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,包括如下制备步骤:
(1)将壳聚糖加入到醋酸溶液中搅拌溶解均匀,然后滴加磷酸水溶液搅拌均匀,再加入醛溶液,在70~100℃温度下反应,反应液经透析,冷冻干燥,得到磷酸化壳聚糖;
(2)将磷酸化壳聚糖和金属盐溶于水中,然后加热蒸干水分,固体产物在700~900℃温度下碳化处理,将碳化后的固体分散于酸性溶液中进行后处理,抽滤,干燥,得到金属-氮-磷掺杂的多孔碳双功能电催化剂。
优选地,步骤(1)中所述壳聚糖与醋酸溶液的质量体积比为(0.1~2):(10~100)g/mL。
优选地,步骤(1)中所述醋酸溶液为体积百分含量为1%~2%的醋酸水溶液。
优选地,步骤(1)中所述磷酸加入的摩尔量与壳聚糖的质量比为1~20mmol:0.1~2g,所述醛加入的摩尔量与壳聚糖的质量比为1~20mmol:0.1~2g。
优选地,步骤(1)中所述醛是指甲醛、乙醛或戊二醛。
优选地,步骤(2)中所述金属盐选自硝酸钴、硝酸铁、硝酸镍或乙酸镍。
优选地,步骤(2)中所述磷酸化壳聚糖和金属盐的质量摩尔比为0.1~1g:0.1~1mmol。
一种金属-氮-磷掺杂的多孔碳双功能电催化剂,通过上述方法制备得到。
本发明原理为:壳聚糖的分子链中有许多氨基和羟基存在,这些官能团的存在使得壳聚糖大分子链易于改性和功能化,通过与磷酸和醛的反应制备出磷酸化壳聚糖,再通过磷酸化壳聚糖和金属盐之间的特异性作用和后续的碳化,制备出金属-氮-磷掺杂的多孔碳双功能电催化剂,所得电催化剂可用于电解水制氢和氧还原反应。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明采用改性后的壳聚糖和金属盐之间的相互作用,制备具有双功能的电催化剂。在合理利用生物质资源的基础上,为后续开发碳基催化剂的发展提供一种新方法。
(2)本发明通过改性后的壳聚糖与金属盐之间的特异性作用,有利于催化剂活性的调控,所得催化剂可以高效催化电解水制氢和氧还原反应,具有优于商业Pt/C催化剂的氧还原性能。
附图说明
图1为实施例所用原料壳聚糖及所得磷酸化壳聚糖的傅里叶红外光谱图。
图2为实施例3(a,b)和实施例4(c,d)制备所得钴-氮-磷掺杂的多孔碳双功能电催化剂的扫描电镜图。
图3为实施例3~5制备的钴-氮-磷掺杂的多孔碳双功能电催化剂的电解水制氢(a)和氧化原反应的极化曲线(b)图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本实施例的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,具体制备步骤如下:
(1)用电子天平称取0.1g壳聚糖,加入到含有10mL 1%(V/V)醋酸溶液的圆底烧瓶中,磁力搅拌器搅拌均匀;将1mmol磷酸溶于10mL水中,再将其逐滴加入到含有壳聚糖溶液的圆底烧瓶,搅拌均匀;最后,加入1mmol甲醛溶液,置于80℃油浴锅中反应过夜。反应过后,冷却烧瓶至室温,将烧瓶内的溶液倒入透析袋,透析两天,冷冻干燥,最终的固体即为磷酸化壳聚糖。
(2)将0.1g的磷酸化壳聚糖和0.1mmol的硝酸镍溶于10mL水中,搅拌均匀;然后将其置于100℃油浴锅中蒸干,所得固体产物在700℃的管式炉中碳化处理2h。将碳化后的固体分散于0.1mmol/L的盐酸溶液中,搅拌5h,抽滤,干燥,得到镍-氮-磷掺杂的多孔碳双功能电催化剂。
实施例2
本实施例的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,具体制备步骤如下:
(1)用电子天平称取1.79g壳聚糖,加入到含有100mL 1%(V/V)醋酸溶液的圆底烧瓶中,磁力搅拌器搅拌均匀;将10mmol磷酸溶于10mL水中,再将其逐滴加入到含有壳聚糖溶液的圆底烧瓶,搅拌均匀;最后,加入10mmol甲醛溶液,置于80℃油浴锅中反应过夜。反应过后,冷却烧瓶至室温,将烧瓶内的溶液倒入透析袋,透析两天,冷冻干燥,最终的固体即为磷酸化壳聚糖。
(2)将0.5g的磷酸化壳聚糖和0.5mmol的乙酸镍溶于10mL水中,搅拌均匀;然后将其置于100℃油浴锅中蒸干,所得固体产物在800℃的管式炉中碳化处理2h。将碳化后的固体分散于0.5mmol/L的盐酸溶液中,搅拌4h,抽滤,干燥,得到镍-氮-磷掺杂的多孔碳双功能电催化剂。
实施例3
本实施例的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,具体制备步骤如下:
(1)用电子天平称取1.79g壳聚糖,加入到含有100mL 1%(V/V)醋酸溶液的圆底烧瓶中,磁力搅拌器搅拌均匀;将20mmol磷酸溶于10mL水中,再将其逐滴加入到含有壳聚糖溶液的圆底烧瓶,搅拌均匀;最后,加入20mmol甲醛溶液,置于80℃油浴锅中反应过夜。反应过后,冷却烧瓶至室温,将烧瓶内的溶液倒入透析袋,透析两天,冷冻干燥,最终的固体即为磷酸化壳聚糖。
(2)将0.1g的磷酸化壳聚糖和1mmol的硝酸钴溶于20mL水中,搅拌均匀;然后将其置于100℃油浴锅中蒸干,所得固体产物在700℃的管式炉中碳化处理2h。将碳化后的固体分散于1mmol/L的盐酸溶液中,搅拌3h,抽滤,干燥,得到钴-氮-磷掺杂的多孔碳双功能电催化剂。
实施例4
本实施例的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,具体制备步骤如下:
(1)用电子天平称取1.79g壳聚糖,加入到含有100mL 1%(V/V)醋酸溶液的圆底烧瓶中,磁力搅拌器搅拌均匀;将20mmol磷酸溶于10mL水中,再将其逐滴加入到含有壳聚糖溶液的圆底烧瓶,搅拌均匀;最后,加入20mmol甲醛溶液,置于80℃油浴锅中反应过夜。反应过后,冷却烧瓶至室温,将烧瓶内的溶液倒入透析袋,透析两天,冷冻干燥,最终的固体即为磷酸化壳聚糖。
(2)将0.1g的磷酸化壳聚糖和1mmol的硝酸钴溶于20mL水中,搅拌均匀;然后将其置于80℃油浴锅中蒸干,所得固体产物在800℃的管式炉中碳化处理2h。将碳化后的固体分散于1mmol/L的盐酸溶液中,搅拌3h,抽滤,干燥,得到钴-氮-磷掺杂的多孔碳双功能电催化剂。
实施例5
本实施例的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,具体制备步骤如下:
(1)用电子天平称取1.79g壳聚糖,加入到含有100mL 1%(V/V)醋酸溶液的圆底烧瓶中,磁力搅拌器搅拌均匀;将20mmol磷酸溶于10mL水中,再将其逐滴加入到含有壳聚糖溶液的圆底烧瓶,搅拌均匀;最后,加入20mmol甲醛溶液,置于80℃油浴锅中反应过夜。反应过后,冷却烧瓶至室温,将烧瓶内的溶液倒入透析袋,透析两天,冷冻干燥,最终的固体即为磷酸化壳聚糖。
(2)将0.1g的磷酸化壳聚糖和1mmol的硝酸钴溶于20mL水中,搅拌均匀;然后将其置于80℃油浴锅中蒸干,所得固体产物在900℃的管式炉中碳化处理2h。将碳化后的固体分散于1mmol/L的盐酸溶液中,搅拌3h,抽滤,干燥,得到钴-氮-磷掺杂的多孔碳双功能电催化剂。
以上实施例所用原料壳聚糖及所得磷酸化壳聚糖的傅里叶红外光谱图如图1所示。对于壳聚糖的红外谱图,3466cm-1对应于O-H和N-H的伸缩振动重叠峰;2870cm-1为C-H伸缩振动峰;1649cm-1归属于酰胺Ⅰ谱带中C=O的伸缩振动峰;1422cm-1为C-H弯曲振动峰;1155cm-1归属于不对称氧伸缩振动峰;1086cm-1代表壳聚糖的C-O伸缩振动峰。从磷酸化壳聚糖的红外谱图可以看出,3000~3500cm-1范围内的吸收峰变宽,有可能是由于改性壳聚糖结构中增加的羟基的数量所引起的。吸收峰位于1639cm-1和1531cm-1是由于存在于吡喃糖环中的伯胺基团(N-H伸缩弯曲)的磷酸化所引起的。在945cm-1出现的吸收峰归属于磷酸根的不对称伸缩振动。
以上实施例3(a,b)和实施例4(c,d)制备所得钴-氮-磷掺杂的多孔碳双功能电催化剂的扫描电镜图如图2所示。由图2可以看出,最后制备的催化剂的表面有许多孔道结构的存在,这有利于电催化过程中电子的迁移和气体的释放,以及催化剂的活性位点的充分暴露。
以上实施例3~5制备的钴-氮-磷掺杂的多孔碳双功能电催化剂的电解水制氢(a)和氧化原反应的极化曲线(b)图如图3所示。从图中可以看出,700℃、800℃和900℃所制备的催化剂在电流密度为10mA/cm2所对应的过电位分别为391、287和240mV。因此,900℃所制备的钴-氮-磷掺杂的多孔碳催化剂具有最佳的HER活性。此外,根据氧还原反应的极化曲线图,可以知道,700℃、800℃和900℃所制备的催化剂的氧化原峰分别出现在0.807、0.795、0.785V,相比之下,700℃所制备的催化剂接近于商业Pt/C的氧还原峰(0.839V)。从极化曲线可以读出其半波电位和起始电位的信息,结果发现,700℃所制备的催化剂的起始电位和半波电位为1.010和0.871V,高于催化剂Pt/C(1.000和0.845V),催化剂Co-N-P-700有最好的ORR性能。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于包括如下制备步骤:
(1)将壳聚糖加入到醋酸溶液中搅拌溶解均匀,然后滴加磷酸水溶液搅拌均匀,再加入醛溶液,在70~100℃温度下反应,反应液经透析,冷冻干燥,得到磷酸化壳聚糖;
(2)将磷酸化壳聚糖和金属盐溶于水中,然后加热蒸干水分,固体产物在700~900℃温度下碳化处理,将碳化后的固体分散于酸性溶液中进行后处理,抽滤,干燥,得到金属-氮-磷掺杂的多孔碳双功能电催化剂。
2.根据权利要求1所述的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于:步骤(1)中所述壳聚糖与醋酸溶液的质量体积比为(0.1~2):(10~100)g/mL。
3.根据权利要求1所述的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于:步骤(1)中所述醋酸溶液为体积百分含量为1%~2%的醋酸水溶液。
4.根据权利要求1所述的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于:步骤(1)中所述磷酸加入的摩尔量与壳聚糖的质量比为1~20mmol:0.1~2g,所述醛加入的摩尔量与壳聚糖的质量比为1~20mmol:0.1~2g。
5.根据权利要求1所述的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于:步骤(1)中所述醛是指甲醛、乙醛或戊二醛。
6.根据权利要求1所述的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于:步骤(2)中所述金属盐选自硝酸钴、硝酸铁、硝酸镍或乙酸镍。
7.根据权利要求1所述的一种金属-氮-磷掺杂的多孔碳双功能电催化剂的制备方法,其特征在于:步骤(2)中所述磷酸化壳聚糖和金属盐的质量摩尔比为0.1~1g:0.1~1mmol。
8.一种金属-氮-磷掺杂的多孔碳双功能电催化剂,其特征在于:通过权利要求1~7任一项所述的方法制备得到。
CN201811382877.6A 2018-11-20 2018-11-20 一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法 Active CN109499596B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811382877.6A CN109499596B (zh) 2018-11-20 2018-11-20 一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811382877.6A CN109499596B (zh) 2018-11-20 2018-11-20 一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法

Publications (2)

Publication Number Publication Date
CN109499596A true CN109499596A (zh) 2019-03-22
CN109499596B CN109499596B (zh) 2021-09-21

Family

ID=65749265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811382877.6A Active CN109499596B (zh) 2018-11-20 2018-11-20 一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法

Country Status (1)

Country Link
CN (1) CN109499596B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203902A (zh) * 2019-05-09 2019-09-06 中国地质大学(武汉) 一种氮-氧-磷共掺杂高致密微孔碳材料及其制备方法和应用
CN110433843A (zh) * 2019-08-06 2019-11-12 华南理工大学 一种三维多孔电催化剂CoP@NPC及其制备方法与应用
CN110560117A (zh) * 2019-07-18 2019-12-13 华南理工大学 一种双金属钴钌-氮磷掺杂多孔碳电催化剂及其制备方法与应用
CN111416130A (zh) * 2020-03-20 2020-07-14 广东工业大学 磷、氮共掺杂多孔碳阴极氧还原铁基催化剂、制备及应用
CN112609205A (zh) * 2020-11-30 2021-04-06 陕西科技大学 一种氮掺杂碳纤维负载锆诱导的过渡金属磷化物及制备方法
CN114622217A (zh) * 2021-08-06 2022-06-14 广东工业大学 一种铁钴磷化物催化剂及其制备方法和应用
CN115050977A (zh) * 2022-06-20 2022-09-13 江苏展鸣新能源有限公司 一种应用于锌-空气电池的多孔碳负载Co3O4电催化剂及制法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113490A (zh) * 2011-11-17 2013-05-22 中国科学院海洋研究所 一种水溶性壳聚糖磷酸酯及其制备和应用
CN107140638A (zh) * 2017-05-27 2017-09-08 华南理工大学 一种生物质基氮自掺杂多孔炭材料及其制备方法和应用
US10010866B1 (en) * 2017-09-19 2018-07-03 King Saud University Nitrogen and phosphorus co-doped crystalline carbon materials
CN108394884A (zh) * 2018-01-10 2018-08-14 青岛大学 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103113490A (zh) * 2011-11-17 2013-05-22 中国科学院海洋研究所 一种水溶性壳聚糖磷酸酯及其制备和应用
CN107140638A (zh) * 2017-05-27 2017-09-08 华南理工大学 一种生物质基氮自掺杂多孔炭材料及其制备方法和应用
US10010866B1 (en) * 2017-09-19 2018-07-03 King Saud University Nitrogen and phosphorus co-doped crystalline carbon materials
CN108394884A (zh) * 2018-01-10 2018-08-14 青岛大学 一种壳聚糖基高比表面积氮/磷共掺杂碳纳米片的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BOLONG LIANG ET AL: "Nitrogen and phosphorus dual-doped carbon derived from chitosan: An excellent cathode catalyst in microbial fuel cell", 《CHEMICAL ENGINEERING JOURNAL》 *
张晶 等: "热处理温度对Fe-N-C-t催化ORR性能的影响及动力学研究", 《化工进展》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110203902A (zh) * 2019-05-09 2019-09-06 中国地质大学(武汉) 一种氮-氧-磷共掺杂高致密微孔碳材料及其制备方法和应用
CN110560117A (zh) * 2019-07-18 2019-12-13 华南理工大学 一种双金属钴钌-氮磷掺杂多孔碳电催化剂及其制备方法与应用
CN110433843A (zh) * 2019-08-06 2019-11-12 华南理工大学 一种三维多孔电催化剂CoP@NPC及其制备方法与应用
CN111416130A (zh) * 2020-03-20 2020-07-14 广东工业大学 磷、氮共掺杂多孔碳阴极氧还原铁基催化剂、制备及应用
CN111416130B (zh) * 2020-03-20 2021-07-23 广东工业大学 磷、氮共掺杂多孔碳阴极氧还原铁基催化剂、制备及应用
CN112609205A (zh) * 2020-11-30 2021-04-06 陕西科技大学 一种氮掺杂碳纤维负载锆诱导的过渡金属磷化物及制备方法
CN114622217A (zh) * 2021-08-06 2022-06-14 广东工业大学 一种铁钴磷化物催化剂及其制备方法和应用
CN114622217B (zh) * 2021-08-06 2023-04-18 广东工业大学 一种铁钴磷化物催化剂及其制备方法和应用
CN115050977A (zh) * 2022-06-20 2022-09-13 江苏展鸣新能源有限公司 一种应用于锌-空气电池的多孔碳负载Co3O4电催化剂及制法

Also Published As

Publication number Publication date
CN109499596B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN109499596A (zh) 一种金属-氮-磷掺杂的多孔碳双功能电催化剂及制备方法
Archana et al. Hierarchical CuO/NiO-carbon nanocomposite derived from metal organic framework on cello tape for the flexible and high performance nonenzymatic electrochemical glucose sensors
Wala et al. Effect of anode material on electrochemical oxidation of low molecular weight alcohols—A review
Hu et al. Nickel phosphide electrocatalysts for hydrogen evolution reaction
Shen et al. Application of metal–organic framework materials and derived porous carbon materials in catalytic hydrogenation
Zhu et al. PdM (M= Pt, Au) bimetallic alloy nanowires with enhanced electrocatalytic activity for electro‐oxidation of small molecules
Yuan et al. CoP nanoparticles in situ grown in three-dimensional hierarchical nanoporous carbons as superior electrocatalysts for hydrogen evolution
Lu et al. Co3O4/CuMoO4 hybrid microflowers composed of nanorods with rich particle boundaries as a highly active catalyst for ammonia borane hydrolysis
Zeng et al. Seaweed-derived nitrogen-rich porous biomass carbon as bifunctional materials for effective electrocatalytic oxygen reduction and high-performance gaseous toluene absorbent
CN102723504B (zh) 一种多壁碳纳米管载核壳型银-铂阴极催化剂及制备方法
CN108714429B (zh) 一种棒状CoP/CoP2纳米复合物电催化剂的制备方法
CN110690464B (zh) 一种过渡金属和氮共掺杂多孔碳电催化剂的制备方法
CN103227334A (zh) 一种碳载金属催化剂及其制备方法和应用
CN107486233A (zh) 一种氮化碳掺杂碳基钴氧化物纳米催化剂的制备方法和应用
Lu et al. Heteroatom-doped porous carbon-based nanostructures for electrochemical CO2 reduction
CN112007637B (zh) 一种双金属合金-埃洛石复合催化剂及其制备方法和应用
CN103193219A (zh) 三维有序多孔碳/普鲁士蓝纳米复合材料的制备方法
CN110523424A (zh) 一种基于Ru/NPC-CoxO制氢催化剂及制备方法
Song et al. Metal–organic frameworks (MOFs) derived materials used in Zn–air battery
CN110560117A (zh) 一种双金属钴钌-氮磷掺杂多孔碳电催化剂及其制备方法与应用
CN101251506A (zh) 一种导电聚苯胺/纤维素复合生物传感器的制备方法
Pavithra et al. A facile synthesis of a fusiform-shaped three-dimensional Co/Mn@ cnds-MOF nanocomposite as an efficient electrocatalyst for oxygen evolution reaction in alkaline medium
CN109384750A (zh) 一种催化加氢5-羟甲基糠醛制备2,5-二甲基呋喃的方法
Yang et al. Different interlayer anions controlled zinc cobalt layered double hydroxide nanosheets for ethanol electrocatalytic oxidation
Rupar et al. ORR catalysts derived from biopolymers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant