CN109480883A - 医用图像诊断装置 - Google Patents

医用图像诊断装置 Download PDF

Info

Publication number
CN109480883A
CN109480883A CN201811054685.2A CN201811054685A CN109480883A CN 109480883 A CN109480883 A CN 109480883A CN 201811054685 A CN201811054685 A CN 201811054685A CN 109480883 A CN109480883 A CN 109480883A
Authority
CN
China
Prior art keywords
mentioned
pet
collecting zone
acquisition time
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811054685.2A
Other languages
English (en)
Other versions
CN109480883B (zh
Inventor
森安健太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Publication of CN109480883A publication Critical patent/CN109480883A/zh
Application granted granted Critical
Publication of CN109480883B publication Critical patent/CN109480883B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • A61B6/545Control of apparatus or devices for radiation diagnosis involving automatic set-up of acquisition parameters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • G01T1/164Scintigraphy
    • G01T1/1641Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras
    • G01T1/1642Static instruments for imaging the distribution of radioactivity in one or two dimensions using one or several scintillating elements; Radio-isotope cameras using a scintillation crystal and position sensing photodetector arrays, e.g. ANGER cameras
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/46Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment with special arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching

Abstract

一种医用图像诊断装置,能够容易地设定PET摄像的每个部位的收集时间。该医用图像诊断装置具有诊视床、显示部、设定部及图像生成部。显示部显示设定画面。设定部根据设定指示设定收集时间。摄像部根据设定的收集时间针对收集区域的每个进行PET摄像,收集表示从被检体内放射出的伽马射线的计数值的PET事件数据。图像生成部基于PET事件数据生成PET图像。收集区域由以在长轴方向上可变的交叠率相互交叠的至少一个单位收集范围构成。单位收集范围与摄像部所包含的伽马射线检测器的可达范围对应。设定部以使得相邻的两个收集区域的边界的位置被设定在由用户指定的位置的方式调节相邻的两个收集区域中的至少一方的交叠率。

Description

医用图像诊断装置
本申请是基于2017年9月11日提交的日本在先专利申请2017-174015作出的,并在此主张享有该在先专利申请的优先权,该在先专利申请的全部内容都通过援引而被包含于本发明。
技术领域
本发明的实施方式涉及医用图像诊断装置。
背景技术
在PET(正电子发射计算机断层显像,Positron Emission Tomography)摄像中,存在一边使顶板间歇性地移动一边进行数据收集的间歇移动扫描(步进扫描摄影)。关于间歇移动扫描所涉及的收集时间的设定,通过所有收集区域的收集时间的总和(总收集时间)或者每1个顶板位置的收集时间的设定来进行。在这些方法中,难以在需要高画质的部分和不需要高画质的部分对收集时间赋予差异。
专利文献1:日本特开2012-150114号公报
专利文献2:日本特开2013-198747号公报
专利文献3:美国专利申请公开第2015/216486号说明书
专利文献4:美国专利申请公开第2014/148684号说明书
发明内容
发明所要解决的课题在于提供一种能够容易地设定PET摄像所涉及的每个部位的收集时间的医用图像诊断装置。
目的在于容易地设定PET摄像所涉及的每个部位的收集时间。
实施方式所涉及的医用图像诊断装置具备:诊视床,将顶板支承为能够沿长轴方向移动;显示部,显示用于针对在上述顶板的长轴方向上排列的收集区域的每个设定PET事件数据的收集时间的设定画面;设定部,根据经由上述设定画面接受的上述收集区域的每个的收集时间的设定指示,针对上述收集区域的每个设定收集时间;摄像部,根据上述设定的收集时间而针对上述收集区域的每个进行PET摄像,收集表示从被检体内放射出的伽马射线的计数值的PET事件数据;以及图像生成部,基于上述收集的PET事件数据而生成PET图像,上述收集区域由在上述长轴方向上以可变的交叠率相互交叠的至少一个单位收集范围构成,
上述单位收集范围与上述摄像部所包含的伽马射线检测器的可达范围对应,上述设定部以使得相邻的两个收集区域的边界的位置被设定在由用户指定的位置的方式,调节上述相邻的两个收集区域中的至少一方的交叠率。
发明效果
本发明能够容易地设定PET摄像所涉及的每个部位的收集时间。
附图说明
图1是示出第1实施方式所涉及的PET/CT装置的构成的图。
图2是说明第1实施方式所涉及的步进扫描方式的PET摄像的图。
图3是示出利用第1实施方式所涉及的PET/CT装置进行的PET/CT检查的典型流程的图。
图4是示出在步骤SA1中显示的设定画面的一例的图。
图5是示出图3的步骤SA2中的收集区域以及步骤SA3中的收集时间的设定处理的图。
图6是示出第1实施方式所涉及的顶板位置的每个的灵敏度时间积的图。
图7是示意性地示出第1实施方式所涉及的交叠率=50%时的单位收集范围的图。
图8是示意性地示出交叠率被固定的情况下的收集区域的设定的限制的图。
图9是示意性地示出第1实施方式所涉及的利用了VOL的收集区域的设定的图。
图10是示出应用例1所涉及的图像的显示画面的一例的图。
图11是示意性地示出应用例2所涉及的、收集区域的边界部的收集时间的调节处理的图。
图12是示出利用第2实施方式所涉及的PET/CT装置进行的PET/CT检查的典型流程的图。
图13是示出在图12的步骤SB5中利用的部位/时间表格的一例的图。
图14是示出利用第3实施方式所涉及的PET/CT装置进行的PET/CT检查的典型流程的图。
图15是示出利用第4实施方式所涉及的PET/CT装置进行的PET/CT检查的典型流程的图。
图16是示出在图15的步骤SD9中执行的、第4实施方式所涉及的步进扫描方式的PET摄像的典型流程的图。
标记说明
1:医用图像诊断装置(PET/CT装置);10:PET机架;11:检测器环;13:信号处理电路;15:同时计数电路;17:伽马射线检测器;30:CT机架;31:X射线管;32:X射线检测器;33:旋转框架;34:X射线高电压装置;35:CT控制装置;36:楔子;37:准直器;50:诊视床;51:基座;52:支承框架;53:顶板;54:诊视床驱动装置;70:控制台;71:PET数据存储器;72:CT数据存储器;73:处理电路;74:显示器;75:存储器;76:输入接口;731:重构功能;732:图像处理功能;733:摄像控制功能;734:收集区域设定功能;735:收集时间设定功能;736:显示控制功能。
具体实施方式
总的来说,根据一个实施方式,医用图像诊断装置具有诊视床、显示部、设定部以及图像生成部。诊视床将顶板支承为能够沿长轴方向移动。显示部显示用于针对在上述顶板的长轴方向的排列的收集区域的每个设定PET事件数据的收集时间的设定画面。设定部根据经由上述设定画面接受的上述收集区域的每个的收集时间的设定指示,针对上述收集区域的每个设定收集时间。摄像部根据上述设定的收集时间而针对上述收集区域的每个进行PET摄像,收集表示从被检体内放射出的伽马射线的计数值的PET事件数据。图像生成部基于上述收集到的PET事件数据而生成PET图像。上述收集区域由在上述长轴方向以可变的交叠率相互交叠的至少一个单位收集范围构成。上述单位收集范围与上述摄像部所包含的伽马射线检测器的可达范围对应。上述设定部以使得相邻的两个收集区域的边界的位置被设定在由用户指定的位置的方式,调节上述相邻的两个收集区域中的至少一方的交叠率。
以下,参照附图对本实施方式所涉及的医用图像诊断装置进行说明。
本实施方式所涉及的医用图像诊断装置具有至少进行PET摄像的摄像机构。作为这样的医用图像诊断装置,例如能够举出仅具有PET摄像功能的PET装置、具有PET摄像机构和CT(计算机断层扫描,Computed Tomography)摄像机构的PET/CT装置、具有PET摄像机构和MR(磁共振,Magnetic Resonance)摄像机构的PET/MR装置等。并且,本实施方式所涉及的医用图像诊断装置也可以具有至少进行SPECT(单光子发射计算机断层扫描,SinglePhoton Emission CT)摄像的摄像机构。作为这样的医用图像诊断装置,例如能够举出仅具有SPECT摄像功能的SPECT装置、具有SPECT摄像机构和CT摄像机构的SPECT/CT装置、具有SPECT摄像机构和MR摄像机构的SPECT/MR装置等。本实施方式所涉及的医用图像诊断装置也能够应用于上述任一种类型的装置,但为了具体地进行以下的说明,假设为PET/CT装置。
(第1实施方式)
图1是示出第1实施方式所涉及的PET/CT装置1的构成的图。如图1所示,PET/CT装置1具有PET机架(gantry)10、CT机架30、诊视床50以及控制台70。典型地,PET机架10、CT机架30以及诊视床50设置于共同的检查室,控制台70设置于与检查室邻接的控制室。PET机架10是对被检体P进行PET摄像的摄像装置。CT机架30是对被检体P进行X射线CT摄像的摄像装置。诊视床50将载置作为摄像对象的被检体P的顶板53支承为移动自如。控制台70是对PET机架10、CT机架30以及诊视床50进行控制的计算机。
如图1所示,PET机架10具有检测器环11、信号处理电路13以及同时计数电路15。
检测器环11具有排列在绕中心轴Z的圆周上的多个伽马射线检测器17。在检测器环11的开口部设定有图像视场(FOV:Field Of View)。以使得图像视场中包含被检体P的摄像部位的方式定位被检体P。对被检体P投放由正电子放射原子核素标记了的药剂。从正电子放射原子核素放射出的正电子与周围的电子成对湮灭,产生一对成对湮灭伽马射线。伽马射线检测器17检测从被检体P的体内放射出的成对湮灭伽马射线,生成与所检测到的成对湮灭伽马射线的光量对应的电信号。例如,伽马射线检测器17具有多个闪烁器和多个光电子倍增管。闪烁器接受源自被检体P内的放射性同位素的成对湮灭伽马射线而产生光。光电子倍增管产生与光的光量对应的电信号。所产生的电信号被朝信号处理电路13供给。
信号处理电路13基于伽马射线检测器17的电信号生成单一事件数据。具体地说,信号处理电路13实施检测时刻计测处理、位置计算处理、以及能量计算处理。信号处理电路13由构成为能够执行检测时刻计测处理、位置计算处理、以及能量计算处理的专用集成电路(Application Specific Integrated Circuit:ASIC)或现场可编程门阵列(FieldProgrammable Gate Array:FPGA)、其他的复杂可编程逻辑器件(Complex ProgrammableLogic Device:CPLD)、简单可编程逻辑器件(Simple Programmable Logic Device:SPLD)实现。
在检测时刻计测处理中,信号处理电路13计测伽马射线检测器17检测到伽马射线的检测时刻。具体地说,信号处理电路13监视来自伽马射线检测器17的电信号的波高值,将波高值超过预先设定的阈值的时刻作为检测时刻计测。换言之,信号处理电路13通过探测波高值超过阈值这一情况而以电学的方式检测湮灭伽马射线。在位置计算处理中,信号处理电路13基于来自伽马射线检测器17的电信号计算成对湮灭伽马射线的入射位置。湮灭伽马射线的入射位置与湮灭伽马射线所入射至的闪烁器的位置坐标对应。在能量计算处理中,信号处理电路13基于来自伽马射线检测器17的电信号计算所检测到的成对湮灭伽马射线的能量值。与单一事件相关的检测时刻的数据、位置坐标的数据、能量值的数据被建立关联。与单一事件相关的能量值的数据、位置坐标的数据、检测时刻的数据的组合被称为单一事件数据。单一事件数据在每当检测到湮灭伽马射线时依次生成。所生成的单一事件数据被朝同时计数电路15供给。
同时计数电路15对来自信号处理电路13的单一事件数据实施同时计数处理。作为硬件资源,同时计数电路15由构成为能够执行同时计数处理的ASIC或FPGA、CPLD、SPLD实现。在同时计数处理中,同时计数电路15从反复供给的单一事件数据中反复确定与被收纳在预先确定的时间框内的2个单一事件相关的单一事件数据。推定该成对的单一事件源自从相同的成对湮灭点产生的成对湮灭伽马射线。成对的单一事件被总称为同时计数事件。连结检测到该成对湮灭伽马射线的成对的伽马射线检测器17(更详细地说是闪烁器)的线被称为LOR(响应线,line of response)。与构成LOR的成对的事件相关的事件数据被称为同时计数事件数据。同时计数事件数据和单一事件数据被传送至控制台70。另外,在并不特意区分同时计数事件数据和单一事件数据时,称为PET事件数据。
另外,在上述构成中,假设信号处理电路13和同时计数电路15被包含于PET机架10,但本实施方式并不限定于此。例如,同时计数电路15、或者信号处理电路13和同时计数电路15双方也可以包含于与PET机架10相独立的装置。并且,同时计数电路15可以针对搭载于PET机架10的多个信号处理电路13设置有一个,也可以将搭载于PET机架10的多个信号处理电路13划分成多个组,且针对各组各设置一个。
如图1所示,CT机架30具有X射线管31、X射线检测器32、旋转框架33、X射线高电压装置34、CT控制装置35、楔子36、准直器37以及DAS38。
X射线管31产生X射线。具体地说,X射线管31包含保持阴极和阳极的真空管,该阴极产生热电子,该阳极接受从阴极飞出的热电子而产生X射线。X射线管31经由高圧缆线与X射线高电压装置34连接。阴极和阳极之间由X射线高电压装置34施加管电压。通过施加管电压,热电子从阴极朝阳极飞出。通过热电子从阴极朝阳极飞出而流动有管电流。通过来自X射线高电压装置34的高电压的施加以及灯丝电流的供给,热电子从阴极朝阳极飞出,且通过热电子与阳极碰撞而产生X射线。
X射线检测器32检测从X射线管31产生且通过了被检体P后的X射线,并将与所检测到的X射线的剂量对应的电信号朝DAS38输出。X射线检测器32具有在切片方向(列方向或者行方向)排列有多列沿通道方向排列多个X射线检测元件而成的X射线检测元件列的构造。X射线检测器32例如是具有栅极、闪烁器阵列以及光传感器阵列的间接转换型的检测器。闪烁器阵列具有多个闪烁器。闪烁器输出与入射X射剂量对应的光量的光。栅极配置在闪烁器阵列的X射线入射面侧,且具有吸收散射X射线的X射线遮蔽板。光传感器阵列转换生成与来自闪烁器的光的光量对应的电信号。作为光传感器,例如能够使用光电二极管或者光电子倍增管。另外,X射线检测器32也可以是具有将入射X射线转换成电信号的半导体元件的直接转换型的检测器(半导体检测器)。
旋转框架33是将X射线管31和X射线检测器32支承为能够绕旋转轴Z旋转的圆环状的框架。具体地说,旋转框架33将X射线管31与X射线检测器32对置支承。旋转框架33以能够绕旋转轴Z旋转的方式被支承在固定框架(未图示)。通过利用CT控制装置35使旋转框架33绕旋转轴Z旋转而使X射线管31和X射线检测器32绕旋转轴Z旋转。旋转框架33接受来自CT控制装置35的驱动机构的动力而绕旋转轴Z以恒定的角速度旋转。在旋转框架33的开口部设定有图像视场(FOV)。
另外,在本实施方式中,将非倾斜状态下的旋转框架33的旋转轴或者诊视床50的顶板53的长边方向定义为Z轴方向,将与Z轴方向正交、且相对于地面水平的轴方向定义为X轴方向,将与Z轴方向正交、且相对于地面垂直的轴方向定义为Y轴方向。
X射线高电压装置34具有:高电压产生装置,具有变压器(transformer)以及整流器等电气电路,产生对X射线管31施加的高电压以及对X射线管31供给的灯丝电流;以及X射线控制装置,进行与X射线管31照射的X射线对应的输出电压的控制。高电压产生装置可以为变压器方式,也可以为逆变器方式。X射线高电压装置34可以设置于CT机架30内的旋转框架33,也可以设置于CT机架30内的固定框架(未图示)。
楔子36调节照射至被检体P的X射线的剂量。具体地说,楔子36使X射线衰减,以使得从X射线管31朝被检体P照射的X射线的剂量成为预先确定的分布。例如,作为楔子36,能够使用楔形过滤器(wedge filter)、滤线器(bow-tie filter)等铝等的金属板。
准直器37限定透过楔子36后的X射线的照射范围。准直器37将遮蔽X射线的多个铅板支承为能够滑动,调节由多个铅板形成的狭缝的形态。
DAS38(数据采集系统,Data Acquisition System)从X射线检测器32读出与利用X射线检测器32检测到的X射线的剂量对应的电信号,将所读出的电信号以可变的放大率放大,且通过遍及成像(view)期间对电信号进行积分来收集具有与遍及该成像期间的X射线的剂量对应的数字值的CT原始数据。DAS38例如由搭载有能够生成CT原始数据的电路元件的ASIC实现。CT原始数据经由非接触数据传送装置等而被传送至控制台70。
CT控制装置35对X射线高电压装置34、DAS38进行控制,以便根据控制台70的处理电路73的摄像控制功能733来执行X射线CT摄像。CT控制装置35具有:具有CPU等的处理电路;以及马达以及促动器等驱动机构。处理电路作为硬件资源具有CPU、MPU等处理器和ROM、RAM等存储器。并且,CT控制装置35也可以由ASIC、FPGA、CPLD、SPLD实现。
另外,CT机架30存在X射线产生部和X射线检测部作为一体并在被检体的周围旋转的旋转/旋转式(第3代CT)、固定有呈环状地阵列排列的多个X射线检测元件且仅X射线产生部在被检体的周围旋转的固定/旋转式(第4代CT)等各种各样的类型,任一种类型均能够应用于一个实施方式。
如图1所示,诊视床50载置作为扫描对象的被检体P,且使所载置的被检体移动。诊视床50由PET机架10和CT机架30共有。
诊视床50具备基座51、支承框架52、顶板53以及诊视床驱动装置54。基座51设置于地面。基座51是将支承框架52支承为能够相对于地面而在垂直方向(Y轴方向)移动的框体。支承框架52是设置在基座51的上部的框架。支承框架52将顶板53支承为能够沿着中心轴Z滑动。顶板53是供被检体P载置的具有柔软性的板。
诊视床驱动装置54被收容在诊视床50的框体内。诊视床驱动装置54是产生用于使供被检体P载置的支承框架52和顶板53移动的动力的马达或者促动器。诊视床驱动装置54根据控制台70等的控制而工作。
PET机架10和CT机架30以使得PET机架10的开口的中心轴Z与CT机架30的开口的中心轴Z大致一致的方式配置。诊视床50以使得顶板53的长轴与PET机架10以及CT机架30的开口的中心轴Z平行的方式配置。从距诊视床50近的一侧开始,按照CT机架30以及PET机架10的顺序依次设置。
如图1所示,控制台70具有PET数据存储器71、CT数据存储器72、处理电路73、显示器74、存储器75以及输入接口76。例如,PET数据存储器71、CT数据存储器72、处理电路73、显示器74、存储器75以及输入接口76之间的数据通信经由总线(bus)进行。
PET数据存储器71是存储从PET机架10传送的单一事件数据以及同时计数事件数据的存储装置。PET数据存储器71是HDD、SSD、集成电路存储装置等存储装置。
CT数据存储器72是存储从CT机架30传送的CT原始数据的存储装置。CT数据存储器72是HDD、SSD、集成电路存储装置等存储装置。
处理电路73作为硬件资源具有CPU或者MPU、GPU(图形处理器,GraphicsProcessing Unit)等处理器和ROM、RAM等存储器。处理电路73通过执行从该存储器读出的各种程序来实现重构功能731、图像处理功能732、摄像控制功能733、收集区域设定功能734、收集时间设定功能735以及显示控制功能736。另外,重构功能731、图像处理功能732、摄像控制功能733、收集区域设定功能734、收集时间设定功能735以及显示控制功能736可以利用一个基板的处理电路73实现,也可以由多个基板的处理电路73分散实现。
在重构功能731中,处理电路73基于从PET机架10传送的同时计数事件数据来重构表示对被检体P投放的正电子放射原子核素的分布的PET图像。并且,处理电路73基于从CT机架30传送的CT原始数据来重构表现与被检体P相关的CT值的空间分布的CT图像。作为图像重构算法,使用FBP(滤过反向投影,filtered back projection)法或逐次近似重构法等现有的图像重构算法即可。并且,处理电路73还能够基于PET事件数据生成与PET相关的定位图像、或基于CT原始数据生成与CT相关的定位图像。
在图像处理功能732中,处理电路73对通过重构功能731重构的PET图像以及CT图像实施各种图像处理。例如,处理电路73对PET图像以及CT图像实施体绘制、表面体绘制、像素值投影处理、MPR(多平面重构,Multi-Planer Reconstruction)处理、CPR(弯多平面重构,Curved MPR)处理等3维图像处理而生成显示图像。
在摄像控制功能733中,处理电路73为了进行PET摄像而同步地控制PET机架10和诊视床50。本实施方式所涉及的PET摄像设为是一边使顶板53间歇性地移动一边针对收集区域的每个收集PET事件数据的间歇移动扫描(步进扫描方式)。并且,处理电路73为了进行CT摄像而同步地控制CT机架30和诊视床50。在连续进行PET摄像和CT摄像的情况下,同步地控制PET机架10、CT机架30以及诊视床50。并且,处理电路73能够执行借助PET机架10进行的定位扫描(以下称为PET定位扫描)、借助CT机架30进行的定位扫描(以下称为CT定位扫描)。为了进行PET定位扫描,处理电路73同步地控制PET机架10和诊视床50。为了进行CT定位扫描,处理电路73同步地控制CT机架30和诊视床50。
在收集区域设定功能734中,处理电路73设定与PET摄像相关的收集区域。收集区域例如根据经由借助显示控制功能736显示的设定画面进行的、通过输入接口76作出的用户指示设定。
在收集时间设定功能735中,处理电路73针对利用收集区域设定功能734设定的各收集区域设定收集时间。收集时间例如根据经由借助显示控制功能736显示的设定画面进行的、通过输入接口76作出的用户指示设定。
在显示控制功能736中,处理电路73将各种信息显示于显示器74。例如,处理电路73显示通过重构功能731重构的PET图像和CT图像。并且,处理电路73显示收集区域以及收集时间的设定画面。
显示器74接受显示控制功能736中的处理电路73的控制而显示各种信息。作为显示器74,例如能够适当利用CRT显示器、液晶显示器、有机EL显示器、LED显示器、等离子显示器、或者本技术领域公知的其他的任意显示器。
存储器75是存储各种信息的HDD、SSD、集成电路存储装置等存储装置。并且,存储器75也可以是在与CD-ROM驱动器、DVD驱动器、闪存等可移动存储介质之间读写各种信息的驱动装置等。
输入接口76输入来自用户的各种指令。具体地说,输入接口76连接于输入设备。作为输入设备,能够利用键盘、鼠标、轨迹球、操纵杆、各种开关等。输入接口76将来自输入设备的输出信号经由总线朝处理电路73供给。
其次,对本实施方式所涉及的PET/CT装置1的动作例进行说明。
第1实施方式所涉及的PET/CT装置1实现与步进扫描方式的PET摄像相关的收集区域以及收集时间的简易设定。
图2是说明步进扫描方式的PET摄像的图。图2的(A)是载置于顶板53的被检体P的示意性的俯视图,图2的(B)是示出PET摄像整体的灵敏度时间积的分布的图表。图2的(C)是示出与一个顶板停止位置相关的灵敏度时间积的分布的图表。
如图2的(A)所示,被检体P被载置于顶板53。PET摄像整体的收集范围(以下称为总收集范围)RAT设定成包含被检体P的大致全身。PET事件数据在Z轴方向上的收集范围与伽马射线检测器17在Z轴方向上的可达范围(对应日语:カバレッジ)对应。因此,为了遍及广阔的收集范围RAT收集PET事件数据,进行一边使顶板53沿Z轴方向间歇性地移动一边收集PET事件数据的步进扫描方式的PET摄像。
图2的(C)所示的一个三角形DU示出对应的顶板53的停止位置(以下仅称为顶板停止位置)处的伽马射线检测器17的灵敏度时间积分布。一个三角形DU的底边的长度(Z轴方向的长度)示出伽马射线检测器17在Z轴方向上的可达范围RAU。灵敏度时间积由伽马射线检测器17的灵敏度与收集时间之积规定。伽马射线检测器17在Z轴方向上的可达范围的中心灵敏度最高,随着从中心趋向端部而灵敏度降低。以下,在本实施方式中,将一个顶板停止位置处的伽马射线检测器17在Z轴方向上的可达范围称为单位收集范围RAU。
如图2的(B)所示,在步进扫描方式中,以使得在Z轴方向相邻的两个单位收集范围RAU相互交叠的方式,在总收集范围RAT的整体设定有多个单位收集范围RAU。即、在与多个单位收集范围RAU分别对应的多个顶板停止位置分别使顶板53停止并收集PET事件数据。在本实施方式中,将另一方的单位收集范围RAU所交叠的面积占据一方的单位收集范围RAU的面积的比率称为交叠率。例如,如图2的(B)所示,在交叠率为50%的情况下,相邻的两个单位收集范围RAU的一半交叠。PET摄像整体的灵敏度时间积分布DT对应于与总收集范围RAT所包含的所有的单位收集范围RAU对应的三角形DU的灵敏度时间积的总和。
另外,在图2中,假设顶板停止位置的每个位置的收集时间全都相同。第1实施方式所涉及的PET/CT装置1使用能够针对顶板停止位置的每个设定收集时间的VBT(可变诊视床时间,Variable Bed Time),提供用于在VBT中简易迅速地设定收集时间等的用户接口。第1实施方式所涉及的VBT以收集区域为单位设定收集时间。收集区域被规定成:收集时间共通、且在Z轴方向上在空间上连续的至少一个单位收集范围的集合。详细情况后述。
图3是示出利用第1实施方式所涉及的PET/CT装置1进行的PET/CT检查的典型流程的图。另外,PET/CT检查是指进行PET摄像和CT摄像双方的医用检查。
首先,处理电路73执行显示控制功能736(步骤SA1)。在步骤SA1中,处理电路73作为用于设定与步进扫描方式的PET摄像相关的收集区域以及收集时间的用户接口而将设定画面显示于显示器74。
图4是示出在步骤SA1中显示的设定画面I1的一例的图。如图4所示,设定画面I1包含收集区域以及收集时间的设定区域R1。在设定区域R1显示有模仿被检体的被检体模型PM。被检体模型PM可以是模仿实际的被检体P的体格的精细的模型,也可以是标准体格的模型。在设定画面I1显示有交叠率的显示栏R2。与显示栏R2邻接地显示有用于调节交叠率的按钮BU以及BD。按钮BU是用于使交叠率按照1%、5%等规定幅度上升的按钮。按钮BD是用于使交叠率按照1%、5%等规定幅度下降的按钮。并且,在设定画面I1显示有指示步骤SA2中的收集区域以及步骤SA3中的收集时间的完成的完成按钮B1。
在进行步骤SA1后,处理电路73执行收集区域设定功能734(步骤SA2)。在步骤SA2中,处理电路73根据针对在步骤SA1中显示的设定画面的、经由输入接口76输入的用户指示,设定PET摄像的收集区域。步骤SA2的详细情况后述。
在进行步骤SA2后,处理电路73执行收集时间设定功能735(步骤SA3)。在步骤SA3中,处理电路73针对在步骤SA2中设定的各收集区域设定收集时间。
图5是示出步骤SA2中的收集区域以及步骤SA3中的收集时间的设定处理的图。如图5所示,在设定区域R1,与被检体模型PM重叠地显示有表示收集区域的标记IRn(n为表示收集区域的编号的整数)。收集区域是收集时间共通且在Z轴方向上在空间上连续的至少一个单位收集范围的集合。收集区域的个数、位置以及范围能够根据经由输入接口76而由用户作出的标记IRn的调节指示来任意设定。换言之,处理电路73根据经由设定画面I1接受的收集区域的划分的调节指示来设定收集区域的个数、位置以及范围。具体地说,在利用鼠标等点击设定区域R1的任意部位的情况下,在所点击的位置显示标记IRn。所显示的标记IRn的位置以及范围能够通过拖放操作等任意变更。处理电路73将与各标记IRn对应的顶板位置(Z轴方向位置)设定于收集区域。
在设定收集区域后,针对该收集区域设定收集时间。在第1实施方式中,提供用于简易地设定收集时间的用户接口。例如,关于收集时间,准备预先设定的多个级别。例如,准备短时间(低)、标准(中)以及长时间(高)3个级别。针对“短时间”、“标准”以及“长时间”的各级别,预先设定默认的收集时间。例如,“短时间”被设定为30秒,“标准”被设定为1分钟,“长时间”被设定为1分30秒。针对各收集区域的收集时间的分配能够根据经由输入接口76而由用户作出的指示任意设定。例如,每当用鼠标点击收集区域时,针对该收集区域按照“短时间”、“标准”以及“长时间”的顺序循环地分配收集时间。
此时,可以在收集区域的各标记IRn显示与该标记IRn所被分配的“短时间”、“标准”以及“长时间”对应的视觉信息。作为视觉信息,例如,如图5所示,可以与各标记IRn邻接地显示表示“短时间”的“低”、表示“标准”的“中”以及表示“长时间”的“高”的文字信息。并且,收集区域的各标记IRn可以用与该标记IRn所被分配的“短时间”、“标准”以及“长时间”对应地预先设定的颜色显示。例如可以为:被分配“短时间”的收集区域用蓝色显示、被分配“标准”的收集区域用绿色显示、被分配“长时间”的收集区域用红色等显示。处理电路73将针对各收集区域分配的收集时间设定为该收集区域的收集时间。
这样,根据第1实施方式,能够使用用户接口而通过在视觉上明确且简易的操作设定收集区域以及收集时间。并且,通过以从预先划分成多个级别的收集时间中选择所期望的收集时间的形式设定收集时间,能够简易且在短时间内设定收集时间。
图6是示出各个顶板位置的灵敏度时间积的图。图6的(A)是载置于顶板53的被检体P的示意性的俯视图,图6的(B)是示出各个顶板位置的灵敏度时间积的图。如图6的(A)所示,假设设定有被检体P的头部的“短时间”的收集区域、躯干部的“长时间”的收集区域、腿部的“标准”的收集区域。在该情况下,如图6的(B)所示,灵敏度时间积在不同的收集区域间具有不同的值。各顶板位置的灵敏度时间积与对各顶板位置的灵敏度时间积作出贡献的两个单位收集范围的灵敏度时间积的合计值一致。
另外,关于收集时间的设定方法,假设针对“短时间”、“标准”以及“长时间”的各级别预先设定默认的收集时间。然而,本实施方式并不限定于此。例如,也可以仅针对多个级别中的一个级别(例如“标准”)设定默认的收集时间。在该情况下,处理电路73将“短时间”的收集时间设定为“标准”收集时间的定量倍(减少一成),将“长时间”的收集时间设定为“标准”收集时间的定量倍(增加一成)。定量倍的值基于总收集时间、各收集区域的范围长度、针对各收集区域设定的收集时间的分类自动地决定。并且,处理电路73也可以将“短时间”的收集时间设定为相对于“标准”的收集时间减少预定值(例如1分钟)的相减值,将“长时间”的收集时间设定为相对于“标准”的收集时间增加预定值(例如1分钟)的相加值。
另外,在邻接的单位收集范围间的交叠率固定的情况下,收集区域的设定被限制。
图7是示意性地示出交叠率=50%时的单位收集范围RUn(n为表示单位收集范围的编号)的图。另外,在图7中,为了容易理解,针对每个顶板停止位置而将单位收集范围RUn在X轴方向错开来示出,但实际的单位收集范围并不在X轴方向错开。如图7所示,当在第1个单位收集范围RU1中进行PET摄像的情况下,第2个单位收集范围RU2被设定在从第1个单位收集范围RU1在Z轴方向错开一半的位置。即、总收集范围的长度只能设定为单位收集范围RUn的长度的一半的倍数。
图8是示意性地示出交叠率固定的情况下的收集区域的设定的限制的图。收集区域的边界被限制在划分出该边界的一方的收集区域的端部的单位收集范围的端部或者另一方的收集区域的端部的单位收集范围的端部。例如,当图8的位置P1被指定为“长时间”的收集区域与“短时间”的收集区域之间的边界的情况下,该边界位于“长时间”的收集区域的端部的单位收集范围的非端部或者“短时间”的收集区域的端部的单位收集范围的非端部。
处理电路73判定被指定为边界的位置是否为划分出该边界的一方的收集区域的端部的单位收集范围的端部或者另一方的收集区域的端部的单位收集范围的端部。处理电路73在该边界并不位于单位收集范围的端部的情况下判定为无法在所指定的位置设定边界。在该情况下,处理电路73自动地将边界设定在该位置P1所隶属的“长时间”的收集区域的端部的单位收集范围的端部P3和“短时间”的收集区域的端部的单位收集范围的端部P2中的一方。
本实施方式所涉及的处理电路73为了在任意位置设定收集区域,而使得能够进行VOL(可变交叠,Variable Overlap)。即、处理电路73判定被指定为边界的位置是否为划分出该边界的一方的收集区域的端部的单位收集范围的端部或者另一方的收集区域的端部的单位收集范围的端部,在该边界并不位于单位收集范围的端部的情况下执行VOL。
图9是示意性地示出利用了VOL的收集区域的设定的图。如图9的(A)所示,假设初始状态的交叠率为50%。在该情况下,假设收集区域的边界被指定在单位收集范围的非端部P1。在不执行VOL的情况下,边界被自动地设定在所被指定的位置所隶属的两个单位收集范围中的一方的一端部、例如端部P2。
如图9的(B)所示,在执行VOL的情况下,处理电路73为了将边界设定在所被指定的位置而自动地调整交叠率。具体地说,首先,处理电路73基于所被指定的位置的顶板位置(Z轴方向位置)来确定该所被指定的位置的收集区域。在图9的(A)的情况下,由于位置P1被指定,因此被确定为“短时间”的收集区域。其次,确定所确定出的收集区域所包含的单位收集范围的个数。在图9的(A)的情况下为5个。其次,确定所被指定的位置的顶板位置(Z轴方向位置)。在图9的(A)的情况下,假设1个单位收集范围的长度为10,则确定为距离总收集范围的端部Ps为28的位置。其次,计算出在当前的个数的单位收集范围中用于使得收集区域的端部位于指定位置的交叠率。在图9的(B)的情况下为55%。然后,处理电路73将所计算出的交叠率应用于该收集区域。由此,能够设定以指定位置作为边界的收集区域。变更后的交叠率被显示在图4的显示栏R2。
另外,此处假设变更所被指定的位置所隶属的收集区域的交叠率,但本实施方式并不限定于此。例如,也可以变更与包含所被指定的位置的收集区域邻接的收集区域的交叠率。例如,在图9的情况下,也可以变更“长时间”的收集区域的交叠率。并且,也可以变更包含所被指定的位置的收集区域和与其邻接的收集区域双方的交叠率。
在进行步骤SA3后,处理电路73执行摄像控制功能733(步骤SA4)。在步骤SA4中,处理电路73同步地控制CT机架30和诊视床50,利用CT机架30执行CT定位扫描。CT定位扫描是用于收集供进行摄像范围的确认以及设定等的被检体P的全身的图像的CT摄像。作为CT定位扫描,能够应用定位(scano)摄影、螺旋扫描。定位摄影通过在X射线管31以及X射线检测器32的旋转角度固定的情况下,一边进行借助X射线管31执行的X射线照射以及借助X射线检测器32执行的X射线检测一边使顶板53滑动来进行。X射线管31以及X射线检测器32的旋转角度典型地被固定为患者正面方向或者患者侧面方向。螺旋扫描通过在X射线管31以及X射线检测器32高速旋转的情况下一边进行借助X射线管31执行的X射线照射以及借助X射线检测器32执行的X射线检测一边使顶板53滑动来进行。
在进行步骤SA4后,处理电路73执行重构功能731(步骤SA5)。在步骤SA5中,处理电路73基于在步骤SA4中收集到的CT原始数据生成CT定位图像。
在进行步骤SA5后,处理电路73执行显示控制功能736(步骤SA6)。在步骤SA6中,处理电路73将在步骤SA5中生成的CT定位图像嵌入在步骤SA1中显示的设定画面来进行显示。即、设定画面中的被检体模型被替换成CT定位图像。在CT定位图像上重叠地显示有在步骤SA2中设定的收集区域。由此,用户能够更详细地确认收集区域与被检体之间的位置关系。
在进行步骤SA6后,处理电路73再次执行收集区域设定功能734(步骤SA7)。在步骤SA7中,处理电路73根据针对在步骤SA6中显示的设定画面的、经由输入接口76进行的用户指示,进行在步骤SA2中设定的收集区域的微调。通过微调来确定收集区域。
在进行步骤SA7后,处理电路73执行摄像控制功能733(步骤SA8)。在步骤SA8中,处理电路73同步地控制CT机架30和诊视床50,利用CT机架30执行CT摄像。
在进行步骤SA8后,处理电路73继续执行摄像控制功能733(步骤SA9)。在步骤SA9中,处理电路73根据在步骤SA2中设定或者在步骤SA7中微调后的收集区域以及在步骤SA3中设定的收集时间同步地控制PET机架10和诊视床50,利用PET机架10执行步进扫描方式的PET摄像。
在进行步骤SA9后,处理电路73执行重构功能731(步骤SA10)。在步骤SA10中,处理电路73基于在步骤SA8中收集到的CT原始数据重构CT图像,基于在步骤SA9中收集到的同时计数事件数据重构PET图像。具体地说,处理电路73基于CT原始数据重构3维的CT体数据,并对CT体数据实施绘制处理而生成2维的显示图像。CT图像是CT体数据与基于该CT体数据的显示图像的总称。并且,处理电路73基于同时计数事件数据重构3维的PET体数据,并对PET体数据实施绘制处理而生成2维的显示图像。PET图像是PET体数据与基于该PET体数据的显示图像的总称。
在进行步骤SA10后,处理电路73执行显示控制功能736(步骤SA11)。在步骤SA11中,处理电路73将在步骤SA10中重构的CT图像和PET图像显示于显示器74。
通过以上动作,第1实施方式所涉及的PET/CT检查结束。
另外,图3所示的PET/CT检查的流程并不限定于此。例如,图3所示的PET/CT检查进行了PET摄像和CT摄像的双方,但本实施方式并不限定于此,也可以仅进行PET摄像。在该情况下,能够省略步骤SA8。并且,在不需要进行收集区域的微调的情况下,能够省略步骤SA6以及SA7。
并且,也可以并不执行步骤SA2~SA3。在该情况下,在收集区域以及收集时间的设定前进行CT定位扫描(步骤SA4),生成CT定位图像(步骤SA5),显示嵌入有CT定位图像的设定画面(步骤SA6)。在该设定画面中,与步骤SA2以及SA3同样,设定有收集区域以及收集时间。在该情况下,用户能够并不参照被检体模型、而是参照CT定位图像来设定收集区域以及收集时间。
如上所述,第1实施方式所涉及的PET/CT装置1具有诊视床50、显示器74以及处理电路73。诊视床50将顶板53支承为能够沿长轴方向移动。处理电路73使显示器74显示用于针对在顶板53的长轴方向排列的收集区域的每个设定PET事件数据的收集时间的设定画面。处理电路73根据经由设定画面接受的收集区域的每个的收集时间的设定指示,针对收集区域的每个设定收集时间。处理电路73根据所设定的收集时间使顶板53沿长轴方向间歇性地移动并针对收集区域的每个进行PET摄像,收集表示从被检体P内放射出的伽马射线的计数值的PET事件数据。处理电路73基于所收集到的PET事件数据生成PET图像。
根据上述构成,第1实施方式所涉及的PET/CT装置1针对收集区域的每个设定收集时间,因此能够容易地设定收集区域以及收集时间。
(应用例1)
在相邻的2个收集区域的收集时间差大的情况下,这2个收集区域间的画质的变化剧烈。由此,存在图像观察变得困难的顾虑。
应用例1所涉及的处理电路73在相邻的2个收集区域的收集时间差比阈值大的情况下执行图像处理功能732,对PET体数据实施图像滤波,以便抑制这2个收集区域间的画质的变化。
具体地说,处理电路73首先算出在相邻的2个收集区域设定的收集时间的差,并将所算出的收集时间差与阈值进行比较。阈值被设定为产生用户无法允许的画质的差别的收集时间差。例如,阈值可以设定成等于收集时间“短时间”与收集时间“长时间”之差的值。在收集时间差比阈值小的情况下,处理电路73不实施图像滤波。
在收集时间差比阈值大的情况下,处理电路73选择要应用的图像滤波。作为图像滤波,能够根据各种观点而选择各种各样的图像滤波,可以是具有PET体数据的像素值的平滑化效果的任何图像滤波。例如,作为能够应用的图像滤波,能够利用平滑化滤波、高斯滤波、中值滤波、低通滤波等。并且,关于在Z轴方向上的线性,可以是线性滤波也可以是非线性滤波。图像滤波可以由用户经由输入接口76任意地选择,也可以自动地选择。平滑化的滤波强度也能够任意设定。在选择图像滤波后,处理电路73将所选择的图像滤波针对PET体数据在Z轴方向应用。由此,能够抑制因相邻的收集区域间的时间差而引起的画质的差别。
图10是示出应用例1所涉及的图像的显示画面I2的一例的图。如图10所示,在显示画面I2的显示栏R1显示有重叠了收集区域的被检体模型PM。在被检体模型PM上显示有表示显示对象的轴向截面的位置的标记IAx。与标记IAx对应的轴向截面的PET/CT图像IP1被显示在显示栏R3。在显示栏R4显示有与应用于PET体数据的图像滤波相关的信息。作为与应用于PET体数据的图像滤波相关的信息,例如是被应用图像滤波这一情况、所被应用的图像滤波的种类以及强度、被应用图像滤波的顶板位置(Z轴方向位置)。例如,如图10所示,显示“收集区域1与收集区域2之间的边界被实施线性的高斯滤波”等。这样,通过显示所被应用的图像滤波的信息,用户能够获知被应用了图像滤波这一情况、所被应用的图像滤波的种类、被应用了图像滤波的部分。
(应用例2)
在应用例1中,假设在相邻的2个收集区域的收集时间差大的情况下对PET体数据实施图像滤波。然而,本实施方式并不限定于此。应用例2所涉及的处理电路73调节相邻的2个收集区域的边界部的收集时间,从而抑制这2个收集区域的收集时间差。另外,应用例2所涉及的边界部典型地被规定为由相邻的2个收集区域中的第1收集区域的端部(更详细地说,为第2收集区域侧的端部)的单位收集范围、与第2收集区域的端部(更详细地说,为第1收集区域侧的端部)的单位收集范围中的至少一方确定的部分。
图11是示意性地示出应用例2所涉及的、收集区域的边界部RUB的收集时间的调节处理的图。如图11的(A)所示,假设收集时间“短时间”的收集区域RUL与收集时间“长时间”的收集区域RUH邻接。在该情况下,如图11的(B)所示,将“短时间”的收集区域RUL与“长时间”的收集区域RUH之间的边界部RUB的收集时间设定为收集时间“短时间”与收集时间“长时间”之间的收集时间。
具体地说,处理电路73首先确定“短时间”的收集区域RUL与“长时间”的收集区域RUH之间的边界部RUB。边界部RUB例如被设定为“长时间”的收集区域RUH所包含的单位收集范围中的与“短时间”的收集区域邻接的单位收集范围。其次,处理电路73将边界部RUB的收集时间设定为对夹着该边界部RUB的2个单位收集范围分配的收集时间的中间值。例如,在图11的(B)的情况下,设定为边界部RUB的在-Z轴方向邻接的单位收集范围的收集时间“短时间”与在+Z轴方向邻接的单位收集范围的收集时间“长时间”之间的收集时间、例如“标准”。
由此,夹着边界部的两个收集区域的收集时间差被抑制,因此画质的差别也被抑制。另外,在上述的具体例中,边界部例如也可以设定成“短时间”的收集区域RUL所包含的单位收集范围中的与“长时间”的收集区域RUH邻接的单位收集范围。并且,边界部例如也可以设定成“长时间”的收集区域RUH所包含的单位收集范围中的与“短时间”的收集区域RUL邻接的单位收集范围、和“短时间”的收集区域RUL所包含的单位收集范围中的与“长时间”的收集区域RUH邻接的单位收集范围这双方。并且,边界部可以不仅包含构成收集区域的多个单位收集范围中的从其他收集区域起位于第1位的位置的单位收集范围,还包含从该其他收集区域起第2位、第3位等的单位收集范围。
并且,在上述的具体例中,形成为调节收集时间“短时间”的收集区域与收集时间“长时间”的收集区域之间的边界部的收集时间,但本实施方式并不限定于此。例如,也可以调节收集时间“短时间”的收集区域与收集时间“标准”的收集区域之间的边界部、或者收集时间“标准”的收集区域与收集时间“长时间”的收集区域之间的边界部的收集时间。在该情况下,边界部的收集时间分别被设定为收集时间“短时间”与收集时间“标准”之间的中间的时间、收集时间“标准”与收集时间“长时间”之间的中间的时间。
并且,虽然形成为边界部的收集时间被设定为夹着该边界部的两个收集区域的收集时间的中间的时间,但本实施方式并不限定于此。例如,也可以根据顶板位置(Z轴方向位置)而非线性地设定。
(第2实施方式)
第2实施方式所涉及的PET/CT装置1基于CT定位图像而自动地设定收集区域以及收集时间。以下对第2实施方式所涉及的PET/CT装置1进行说明。另外,在以下的说明中,关于具有与第1实施方式大致相同的功能的构成要素,标注相同的标记,且仅在必要的情况下进行重复说明。
图12是示出由第2实施方式所涉及的PET/CT装置1进行的PET/CT检查的典型流程的图。
如图12所示,处理电路73首先执行摄像控制功能733(步骤SB1)。在步骤SB1中,处理电路73同步地控制CT机架30和诊视床50,以便利用CT机架30执行定位扫描。
在进行步骤SB1后,处理电路73执行重构功能731(步骤SB2)。在步骤SB2中,处理电路73基于在步骤SB1中收集到的CT原始数据来生成与被检体相关的定位图像。
在进行步骤SB2后,处理电路73执行图像处理功能732(步骤SB3)。在步骤SB3中,处理电路73通过图像处理而从定位图像提取出被检体的解剖学部位。解剖学部位的提取方法并无特殊限定。处理电路73使用阈值处理、区域成长处理、图像识别处理等已有的方法提取解剖学部位。作为提取对象的解剖学部位优选为心脏、肝脏、膀胱、脑等脏器。
在进行步骤SB3后,处理电路73执行收集区域设定功能734(步骤SB4)。在步骤SB4中,处理电路73设定与在步骤SB3中提取出的解剖学部位对应的收集区域。具体地说,处理电路73将包含所提取出的解剖学部位的局部区域设定为收集区域。收集区域也可以设定为包含所提取出的解剖学部位和在Z轴方向上的余量区域的范围。余量区域可以针对解剖学部位的每个预先设定。
在进行步骤SB4后,处理电路73执行收集时间设定功能735(步骤SB5)。在步骤SB5中,处理电路73利用部位/时间表格来设定在步骤SB4中设定的各收集区域的收集时间。
图13是示出部位/时间表格的一例的图。如图13所示,部位/时间表格是将解剖学部位与收集时间建立关联的LUT(查找表,Look Up Table)。适合各解剖学部位的收集时间通过部位/时间表格建立关联。解剖学部位与收集时间的组合由用户经由输入接口76设定。例如,解剖学部位“脑”的收集时间被设定为“30s”。部位/时间表格例如被存储于存储器75。另外,部位/时间表格为LUT,但本实施方式并不限定于此,只要能够存储解剖学部位与收集时间之间的关系即可,例如也可以是数据库等。
在进行步骤SB5后,处理电路73执行摄像控制功能733(步骤SB6)。在步骤SB6中,处理电路73同步地控制CT机架30和诊视床50,利用CT机架30执行CT摄像。
在进行步骤SB6后,处理电路73继续执行摄像控制功能733(步骤SB7)。在步骤SB7中,处理电路73同步地控制PET机架10和诊视床50,利用PET机架10执行步进扫描方式的PET摄像。
在进行步骤SB7后,处理电路73执行重构功能731(步骤SB8)。在步骤SB8中,处理电路73基于在步骤SB6中收集到的CT原始数据重构CT图像,并基于在步骤SB7中收集到的同时计数事件数据重构PET图像。
在进行步骤SB8后,处理电路73执行显示控制功能736(步骤SB9)。在步骤SB9中,处理电路73将在步骤SB8中重构的CT图像与PET图像显示于显示器74。
通过以上动作,第2实施方式所涉及的PET/CT检查结束。
另外,第2实施方式所涉及的PET/CT检查并不仅限定于图12所示的流程。例如,在步骤SB3中,处理电路73只要能够从通过在步骤SB1中收集到的CT原始数据提取出解剖学部位即可,无需在步骤SB2中生成定位图像。
如上述说明那样,第2实施方式所涉及的PET/CT装置1具有诊视床50、PET机架10、CT机架30以及处理电路73。诊视床50将顶板53支承为能够沿长轴方向移动。PET机架10进行PET摄像。CT机架30进行CT摄像。处理电路73利用CT机架30进行定位扫描并收集CT原始数据。处理电路73根据所收集到的CT原始数据或者基于该CT原始数据的定位图像,设定与由PET机架10进行的间歇移动扫描相关的、被检体P的每个部位的收集区域的收集时间。
根据上述构成,能够基于利用CT机架30进行定位扫描而收集到的CT原始数据或者定位图像,自动地设定被检体P的每个部位的收集区域的收集时间。因此,能够容易地设定每个收集区域的收集时间。
(第3实施方式)
第3实施方式所涉及的PET/CT装置1基于PET定位图像自动地设定收集区域以及收集时间。以下,对第3实施方式所涉及的PET/CT装置1进行说明。另外,在以下的说明中,针对具有与第1实施方式大致相同的功能的构成要素,标注相同的标记,且仅在必要的情况下进行重复说明。
图14是示出由第3实施方式所涉及的PET/CT装置1进行的PET/CT检查的典型流程的图。
如图14所示,处理电路73首先执行摄像控制功能733(步骤SC1)。在步骤SC1中,处理电路73同步地控制PET机架10、CT机架30以及诊视床50,以便并行地执行利用CT机架30进行的定位扫描和利用PET机架10进行的定位扫描。具体地说,处理电路73在CT定位扫描中一边使顶板53沿+Z轴方向滑动一边利用CT机架30进行定位扫描,在进行CT机架30的定位扫描后,一边保持原样地使顶板53沿+Z轴方向滑动一边利用PET机架10进行定位扫描。在PET机架10的定位扫描中,处理电路73针对顶板53的每个Z轴方向位置记录单一事件数据或者同时计数事件数据的计数值。计数值即便比PET摄像少也无妨,因此无需在PET事件数据的收集中使顶板53停止。
在进行步骤SC1后,处理电路73执行重构功能731(步骤SC2)。在步骤SC2中,处理电路73基于在步骤SC1中收集到的CT原始数据生成与被检体相关的CT定位图像,基于在步骤SC1中收集到的PET事件数据生成与被检体相关的PET定位图像。
在进行步骤SC2后,处理电路73执行图像处理功能732(步骤SC3)。在步骤SC3中,处理电路73通过图像处理从PET定位图像中提取被检体的解剖学部位。例如,脑和膀胱与其他部位相比存在计数值更多的倾向。因此,处理电路73对PET定位图像实施阈值处理而提取具有阈值以上的计数值的图像区域,将位于头部侧的图像区域设定为脑部,将位于腿部侧的图像区域设定为膀胱部。进而,处理电路73基于脑部与膀胱部之间的距离(以下称为脑部-膀胱部间距离)从PET定位图像提取被检体P的各解剖学部位。例如,从定位图像提取计数值比较多的图像区域,计测所提取出的图像区域与脑部之间的距离(以下称为脑部间距离)、和所提取出的图像区域与膀胱部之间的距离(以下称为膀胱部间距离),并基于脑部间距离、膀胱部间距离以及脑部-膀胱部间距离、和经验学上的解剖学部位的位置信息来确定该图像区域的解剖学部位。
在进行步骤SC3后,处理电路73执行收集区域设定功能734(步骤SC4)。在步骤SC4中,处理电路73设定与在步骤SC3中提取出的解剖学部位对应的收集区域。步骤SC4的处理与步骤SB4同样。
在进行步骤SC4后,处理电路73执行收集时间设定功能735(步骤SC5)。在步骤SC5中,处理电路73利用部位/时间表格设定在步骤SC4中设定的各收集区域的收集时间。步骤SC5的处理与步骤SB5同样。
在进行步骤SC5后,处理电路73执行摄像控制功能733(步骤SC6)。在步骤SC6中,处理电路73同步地控制CT机架30和诊视床50,利用CT机架30执行CT摄像。
在进行步骤SC6后,处理电路73接着执行摄像控制功能733(步骤SC7)。在步骤SC7中,处理电路73同步地控制PET机架10和诊视床50,利用PET机架10执行步进扫描方式的PET摄像。
在进行步骤SC7后,处理电路73执行重构功能731(步骤SC8)。在步骤SC8中,处理电路73基于在步骤SC6中收集到的CT原始数据重构CT图像,并基于在步骤SC7中收集到的同时计数事件数据重构PET图像。
在进行步骤SC8后,处理电路73执行显示控制功能736(步骤SC9)。在步骤SC9中,处理电路73将在步骤SC8中重构的CT图像和PET图像显示于显示器74。
通过以上动作,第3实施方式所涉及的PET/CT检查结束。
另外,第3实施方式所涉及的PET/CT检查并不仅限定于图14所示的流程。例如,只要在步骤SC3中处理电路73能够根据通过步骤SC1收集到的PET事件数据提取解剖学部位即可,无需在步骤SC2中生成PET定位图像。例如,处理电路73在PET定位扫描中针对每个顶板位置(单位收集范围)记录单一事件数据或者同时计数事件数据的计数值。处理电路73也可以基于该计数值的记录来推定解剖学部位。例如,在使用了FDG(氟脱氧葡萄糖)的全身扫描的情况下,计数值高的部位是脑和膀胱。处理电路73基于脑与膀胱之间的距离来推定被检体全身的各解剖学部位(脏器)的位置。具体地说,处理电路73首先在体轴方向将计数值描点。在脑、心脏、膀胱的位置,FDG的聚集多,计数值高。处理电路73预先存储这样的各个解剖学部位的FDG的聚集倾向。处理电路73基于该聚集倾向和在体轴方向上的计数值的分布来确定脑、心脏、膀胱的位置。处理电路73基于其他脏器与脑、心脏以及膀胱之间的相对位置关系来推定该其他脏器的位置。当在Z=10cm的位置存在第一次计数值的波峰、在Z=40cm的位置存在第二次计数值的波峰、在Z=90cm的位置存在第三次计数值的波峰的情况下,推定Z=10cm的位置为脑、Z=40cm的位置为心脏、Z=90cm的位置为膀胱。处理电路73基于其他脏器与脑以及膀胱之间的相对位置关系来推定其他脏器的位置。
并且,在步骤SC5中,处理电路73形成为利用部位/时间表格来针对收集区域的每个设定收集时间。然而,本实施方式并不限定于此。例如,处理电路73也可以根据PET摄像的总收集时间和每个解剖学部位的计数值而针对与各解剖学部位对应的各收集区域算出收集时间。更详细地说,处理电路73根据收集区域的个数分配PET摄像的总收集时间从而针对各收集区域算出收集时间的初始值。其次,处理电路73根据与各收集区域对应的解剖学部位的计数值来决定对初始值相乘的权重。权重被决定为计数值越多则收集时间越小、计数值越少则收集时间越大的值。处理电路73通过关于各收集区域对初始值乘以权重来决定最终的收集时间。通过像这样不利用部位/时间表格而决定每个收集区域的收集时间,能够设定与实际的被检体的病状对应的收集时间。
如上述说明的那样,第3实施方式所涉及的PET/CT装置1具有诊视床50、PET机架10、CT机架30以及处理电路73。诊视床50将顶板53支承为能够沿长轴方向移动。PET机架10进行PET摄像。CT机架30进行CT摄像。处理电路73利用PET机架30进行定位扫描而收集PET事件原始数据。处理电路73根据所收集到的PET事件数据或者基于该PET事件数据的定位图像,设定与由PET机架10进行的间歇移动扫描相关的、被检体P的每个部位的收集区域的收集时间。
根据上述构成,能够基于利用PET机架30进行定位扫描而收集到的PET事件数据或者定位图像,自动地设定被检体P的每个部位的收集区域的收集时间。因此,能够容易地设定每个收集区域的收集时间。
(第4实施方式)
第4实施方式所涉及的PET/CT装置1基于PET定位图像自动地设定收集区域以及收集时间。以下对第4实施方式所涉及的PET/CT装置1进行说明。另外,在以下的说明中,关于具有与第1实施方式大致相同的功能的构成要素,标注相同的标记,仅在必要的情况下进行重复说明。
图15是示出由第4实施方式所涉及的PET/CT装置1进行的PET/CT检查的典型流程的图。
如图15所示,处理电路73首先执行显示控制功能736(步骤SD1)。在步骤SD1中,处理电路73作为用于设定与步进扫描方式的PET摄像相关的收集区域以及收集时间的用户接口而在显示器74上显示设定画面。步骤SD1的处理内容与步骤SA1大致相同。
在进行步骤SD1后,处理电路73执行收集区域设定功能734(步骤SD2)。在步骤SD2中,处理电路73根据针对在步骤SD1中显示的设定画面的、经由输入接口76的用户指示,设定PET摄像的收集区域。步骤SD2的处理内容与步骤SA2大致相同。
在进行步骤SD2后,处理电路73执行收集时间设定功能735(步骤SD3)。在步骤SD3中,处理电路73针对在步骤SD2中设定的各收集区域设定计数值的上限(以下称为上限计数值)。步骤SD3的处理内容与步骤SA3大致相同。但是,在步骤SD3中,代替收集时间而设定上限计数值。上限计数值也与收集时间同样被分类成3个级别等多个级别,根据由用户经由输入接口进行的设定指示而从该多个级别中任意设定。所设定的上限计数值与收集区域建立关联并存储于存储器75等。
在进行步骤SD3后,处理电路73执行摄像控制功能733(步骤SD4)。在步骤SD4中,处理电路73同步地控制CT机架30和诊视床50,利用CT机架30执行定位扫描。
在进行步骤SD4后,处理电路73执行重构功能731(步骤SD5)。在步骤SD5中,处理电路73基于在步骤SD4中收集到的CT原始数据生成CT定位图像。
在进行步骤SD5后,处理电路73执行显示控制功能736(步骤SD6)。在步骤SD6中,处理电路73将在步骤SD5中生成的CT定位图像嵌入至设定画面而进行显示。即、设定画面中的被检体模型被替换成CT定位图像。在CT定位图像上重叠地显示有在步骤SD2中设定的收集区域。由此,用户能够更详细地确认收集区域与被检体P之间的位置关系。
在进行步骤SD6后,处理电路73再次执行收集区域设定功能734(步骤SD7)。在步骤SD7中,处理电路73根据针对在步骤SD6中显示的设定画面的、经由输入接口76作出的用户指示,进行在步骤SD2中设定的收集区域的微调。
在进行步骤SD7后,处理电路73执行摄像控制功能733(步骤SD8)。在步骤SD8中,处理电路73同步地控制CT机架30和诊视床50,利用CT机架30执行CT摄像。
在进行步骤SD8后,处理电路73接着执行摄像控制功能733(步骤SD9)。在步骤SD9中,处理电路73同步地控制PET机架10和诊视床50,利用PET机架10执行步进扫描方式的PET摄像。
图16是示出在图15的步骤SD9中执行的、第4实施方式所涉及的步进扫描方式的PET摄像的典型流程的图。如图16所示,处理电路73控制诊视床50,使顶板53移动至PET摄像的最初(第1)的单位收集范围(步骤S101)。
在进行步骤S101后,处理电路73确定第1单位收集范围的上限计数值(步骤S102)。具体地说,确定第1单位收集范围所隶属的收集区域,并确定针对所确定出的收集区域设定的上限计数值。步骤S102典型地在顶板53的移动中进行。
在进行步骤S102后,利用伽马射线检测器17检测从被检体P放射出的成对湮灭伽马射线(步骤S103)。信号处理电路13生成检测到的伽马射线的单一事件数据,同时计数电路15生成同时计数事件数据。
在进行步骤S103后,处理电路73待机直至同时计数事件数达到上限计数值(步骤S104)。具体地说,处理电路73将同时计数事件数与上限计数值进行比较来判定同时计数事件数是否达到上限计数值。当判定为同时计数事件数未达到上限计数值的情况下(步骤S104:否),处理电路73反复执行步骤S103和步骤S104。
进而,当判定为同时计数事件数达到上限计数值的情况下(步骤S104:是),处理电路73判定是否结束PET摄像(步骤S105)。具体地说,处理电路73判定当前的单位收集范围是否为最后的单位收集范围。当判定为当前的单位收集范围并非最后的单位收集范围的情况下(步骤S105:否),处理电路73控制诊视床50以便使顶板53移动至下一个单位收集范围(步骤S106)。进而,针对该下一个单位收集范围,进行上限计数值的确定(步骤S102)、伽马射线的检测(步骤S103)、计数值是否达到上限计数值的判定(步骤S104)、是否结束PET摄像的判定(步骤S105)。
进而,当判定为当前的单位收集范围是最后的单位收集范围的情况下(步骤S105:是),处理电路73结束利用PET机架10进行的步进扫描方式的PET摄像(步骤SD9)。
在进行步骤SD9后,处理电路73执行重构功能731(步骤SD10)。在步骤SD10中,处理电路73基于在步骤SD8中收集到的CT原始数据重构CT图像,基于在步骤SD9中收集到的同时计数事件数据重构PET图像。
在进行步骤SD10后,处理电路73执行显示控制功能736(步骤SD11)。在步骤SD11中,处理电路73将在步骤SD10中重构的CT图像和PET图像显示于显示器74。
通过以上动作,第4实施方式所涉及的PET/CT检查结束。
另外,图15所示的PET/CT检查的流程并不限定于此。例如,图15所示的PET/CT检查假设进行PET摄像和CT摄像这双方,但本实施方式并不限定于此,也可以仅进行PET摄像。在该情况下,能够省略步骤SD8。并且,在不需要进行收集区域的微调的情况下,能够省略步骤SD6以及SD7。
并且,假设处理电路73根据经由设定画面的用户指示来设定收集区域和上限计数值。然而,本实施方式并不限定于此。即、处理电路73也可以像第2实施方式那样从通过CT定位扫描收集到的CT原始数据或者CT定位图像提取解剖学部位,自动地设定与解剖学部位对应的收集区域,自动地设定与收集区域对应的上限计数值。解剖学部位也可以像第3实施方式那样从通过PET定位扫描收集到的PET事件数据或者PET定位图像提取。作为自动地设定上限计数值的方法,可以利用将上限计数值与解剖学部位建立关联的部位/计数值表格。处理电路73针对各收集区域,确定与该收集区域所包含的解剖学部位在部位/计数值表格中建立关联的上限计数值,并将所确定出的上限计数值设定为该收集区域的上限计数值。由此,无需用户指示就能够设定收集区域以及上限计数值。
如上所述,第4实施方式所涉及的PET/CT装置1具有存储器75、诊视床50以及处理电路73。存储器75针对被检体P的每个部位存储计数值的上限值(上限计数值)。诊视床50将顶板53支承为能够沿长轴方向移动。处理电路73收集表示从载置于顶板53的被检体P的体内放射出的伽马射线的计数值的计数数据。处理电路73控制诊视床50而使顶板53沿长轴方向间歇性地移动,以便针对被检体P进行PET摄像。此时,处理电路73在计数值达到与摄像对象部位对应的上限计数值的情况下使顶板53移动至下一个位置。
根据上述构成,在步进扫描方式的PET摄像中,处理电路73在收集计数值达到上限计数值的情况下使顶板53移动至下一个位置。这样,根据第4实施方式,能够通过设定各部位的上限计数值而间接地设定以及控制各部位的收集时间。
根据上述至少一个实施方式,能够容易地设定PET摄像所涉及的每个部位的收集时间。
以上说明了本发明的几个实施方式,但这些实施方式只不过是作为例子示出的,并非意图限定本发明的范围。实际上,这里描述的新的实施例能够以各种其他形式体现。此外,能够在不脱离本发明的主旨的情况下对这些实施例进行各种省略、替换和变更。这些修改包含于本发明的范围和主旨中,且包含于所附的技术方案及其等同的范围中。

Claims (13)

1.一种医用图像诊断装置,具备:
诊视床,将顶板支承为能够沿长轴方向移动;
显示部,显示用于针对在上述顶板的长轴方向上排列的收集区域的每个设定PET事件数据的收集时间的设定画面;
设定部,根据经由上述设定画面接受的上述收集区域的每个的收集时间的设定指示,针对上述收集区域的每个设定收集时间;
摄像部,根据上述设定的收集时间而针对上述收集区域的每个进行PET摄像,收集表示从被检体内放射出的伽马射线的计数值的PET事件数据;以及
图像生成部,基于上述收集的PET事件数据生成PET图像,
上述收集区域由在上述长轴方向上以可变的交叠率相互交叠的至少一个单位收集范围构成,
上述单位收集范围与上述摄像部所包含的伽马射线检测器的可达范围对应,上述设定部以使得相邻的两个收集区域的边界的位置被设定在由用户指定的位置的方式,调节上述相邻的两个收集区域中的至少一方的交叠率。
2.根据权利要求1所述的医用图像诊断装置,其中,
上述设定部针对上述收集区域的每个,将从预先设定的多个级别中经由输入设备指定的级别设定为收集时间。
3.根据权利要求2所述的医用图像诊断装置,其中,
上述多个级别的各个的值相独立地设定、或者设定成针对一个级别设定的值的定量倍。
4.根据权利要求1所述的医用图像诊断装置,其中,
上述显示部将上述设定画面所包含的表示上述收集区域的标记用与上述设定的收集时间建立对应的颜色显示。
5.根据权利要求1所述的医用图像诊断装置,其中,
上述设定部对上述相邻的两个收集区域的交叠部分的收集时间进行调节,以便减小上述相邻的两个收集区域的收集时间的差别。
6.根据权利要求1所述的医用图像诊断装置,其中,
上述摄像部在进行上述收集区域的划分以及上述收集时间的设定后,执行以上述被检体作为对象的定位扫描从而收集扫描数据,
上述图像生成部基于上述扫描数据生成与上述被检体相关的定位图像,
上述显示部在上述设定画面中显示上述定位图像,且为了进行上述收集区域的划分的调节而在上述定位图像上重叠地显示上述收集区域。
7.根据权利要求1所述的医用图像诊断装置,其中,
上述图像生成部对上述PET图像实施滤波,降低收集时间不同的相邻的两个收集区域的画质的差别。
8.一种医用图像诊断装置,具备:
诊视床,将顶板支承为能够沿长轴方向移动;
PET机架,进行PET摄像;
CT机架,进行CT摄像;
摄像部,一边使上述顶板沿上述长轴方向移动一边利用上述CT机架对载置于上述顶板的被检体进行定位扫描从而收集原始数据;以及
设定部,根据上述原始数据或者基于上述原始数据的定位图像,设定与利用上述PET机架对被检体的每个部位的收集区域进行PET摄像的间歇移动扫描相关的、上述收集区域的每个的收集时间。
9.根据权利要求8所述的医用图像诊断装置,其中,
还具备存储部,该存储部具有将上述间歇移动扫描的收集时间与解剖学部位的每个建立关联的表格,
上述设定部从基于上述原始数据的上述定位图像提取上述被检体的各部位,并利用上述表格设定与上述各部位对应的收集区域的收集时间。
10.一种医用图像诊断装置,具备:
诊视床,将顶板支承为能够沿长轴方向移动;
PET机架,进行PET摄像;
CT机架,进行CT摄像;
摄像部,一边使上述顶板沿上述长轴方向移动一边利用上述PET机架对载置于上述顶板的被检体进行定位扫描从而收集PET事件数据;以及
设定部,根据上述PET事件数据或者基于上述PET事件数据的定位图像,设定与一边使上述顶板沿上述长轴方向间歇性地移动一边利用上述PET机架针对收集区域的每个进行PET摄像的间歇移动扫描相关的、上述收集区域的每个的收集时间。
11.根据权利要求10所述的医用图像诊断装置,其中,
上述设定部基于上述收集的PET事件数据确定上述被检体的各部位的计数值,根据上述计数值设定与上述各部位对应的收集区域的收集时间。
12.根据权利要求11所述的医用图像诊断装置,其中,
上述设定部基于上述收集的PET事件数据提取上述被检体的脑部和膀胱部,基于上述脑部与上述膀胱部之间的距离提取上述被检体的各部位。
13.一种医用图像诊断装置,具备:
存储部,针对被检体的每个部位存储计数值的上限值;
诊视床,将顶板支承为能够沿长轴方向移动;
收集部,收集表示从载置于上述顶板的被检体的体内放射出的伽马射线的计数值的计数数据;以及
控制部,控制上述诊视床而使上述顶板沿上述长轴方向间歇性地移动,以便对上述被检体进行PET摄像,当上述计数值达到与摄像对象部位对应的上限值的情况下,使上述顶板移动至下一个位置。
CN201811054685.2A 2017-09-11 2018-09-11 医用图像诊断装置 Active CN109480883B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-174015 2017-09-11
JP2017174015A JP7005240B2 (ja) 2017-09-11 2017-09-11 医用画像診断装置

Publications (2)

Publication Number Publication Date
CN109480883A true CN109480883A (zh) 2019-03-19
CN109480883B CN109480883B (zh) 2023-04-25

Family

ID=65630112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811054685.2A Active CN109480883B (zh) 2017-09-11 2018-09-11 医用图像诊断装置

Country Status (3)

Country Link
US (1) US11134912B2 (zh)
JP (2) JP7005240B2 (zh)
CN (1) CN109480883B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107212899A (zh) * 2017-05-25 2017-09-29 上海联影医疗科技有限公司 医学成像方法及医学成像系统
CN110269637A (zh) * 2019-06-13 2019-09-24 上海联影医疗科技有限公司 符合处理装置、方法及pet系统
CN110313930A (zh) * 2019-07-24 2019-10-11 东软医疗系统股份有限公司 一种扫描部位的确定方法、装置及终端设备
CN112971824A (zh) * 2021-02-08 2021-06-18 上海联影医疗科技股份有限公司 Pet动态图像扫描方法、装置和计算机设备
CN113081018A (zh) * 2021-03-31 2021-07-09 上海联影医疗科技股份有限公司 Pet医学成像系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7005240B2 (ja) * 2017-09-11 2022-01-21 キヤノンメディカルシステムズ株式会社 医用画像診断装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160354047A1 (en) * 2015-06-03 2016-12-08 General Electric Company System and method for displaying variable duration image scans
US20170042492A1 (en) * 2015-08-12 2017-02-16 Toshiba Medical Systems Corporation Nuclear medicine diagnostic apparatus and control method thereof
WO2017032297A1 (en) * 2015-08-25 2017-03-02 Shanghai United Imaging Healthcare Co., Ltd. System and method for image calibration
US20170119322A1 (en) * 2015-11-02 2017-05-04 Toshiba Medical Systems Corporation Medical image diagnosis system, structural image diagnosis apparatus, and nuclear medical image diagnosis apparatus

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739539A (en) * 1996-03-28 1998-04-14 Adac Laboratories Use of body boundary information to perform iterative reconstruction in medical imaging system
JP5220617B2 (ja) * 2006-01-09 2013-06-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Toffovを介するランダム低減
US7885374B2 (en) 2006-03-15 2011-02-08 Kabushiki Kaisha Toshiba X-ray CT apparatus, a method for changing the helical pitch, an image reconstruction processing apparatus, an image reconstruction processing method, and an image reconstruction processing program
US8440976B2 (en) 2011-01-20 2013-05-14 Kabushiki Kaisha Toshiba Method for optimizing step size in a multi-step whole-body PET imaging
AU2012315530A1 (en) 2011-09-30 2014-04-17 Cincinnati Children's Hospital Medical Center Method for consistent and verifiable optimization of computed tomography (CT) radiation dose
US9254111B2 (en) 2012-11-27 2016-02-09 General Electric Company PET acquisition scheduling based on MR scout images
JP6415867B2 (ja) * 2013-06-20 2018-10-31 キヤノンメディカルシステムズ株式会社 X線ct装置及び医用画像診断装置
US20150216486A1 (en) 2014-01-31 2015-08-06 Kabushiki Kaisha Toshiba Nuclear medical imaging apparatus and controlling method
JP2017068903A (ja) * 2015-09-28 2017-04-06 スタンレー電気株式会社 Ledモジュール
JP6815167B2 (ja) * 2015-11-02 2021-01-20 キヤノンメディカルシステムズ株式会社 医用画像診断システム、形態画像診断装置及び核医学画像診断装置
US11534128B2 (en) * 2017-05-23 2022-12-27 General Electric Company Systems and methods for image quality enhancement for multi-head camera
JP7005240B2 (ja) 2017-09-11 2022-01-21 キヤノンメディカルシステムズ株式会社 医用画像診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160354047A1 (en) * 2015-06-03 2016-12-08 General Electric Company System and method for displaying variable duration image scans
US20170042492A1 (en) * 2015-08-12 2017-02-16 Toshiba Medical Systems Corporation Nuclear medicine diagnostic apparatus and control method thereof
WO2017032297A1 (en) * 2015-08-25 2017-03-02 Shanghai United Imaging Healthcare Co., Ltd. System and method for image calibration
US20170119322A1 (en) * 2015-11-02 2017-05-04 Toshiba Medical Systems Corporation Medical image diagnosis system, structural image diagnosis apparatus, and nuclear medical image diagnosis apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107212899A (zh) * 2017-05-25 2017-09-29 上海联影医疗科技有限公司 医学成像方法及医学成像系统
CN107212899B (zh) * 2017-05-25 2020-12-11 上海联影医疗科技股份有限公司 医学成像方法及医学成像系统
CN110269637A (zh) * 2019-06-13 2019-09-24 上海联影医疗科技有限公司 符合处理装置、方法及pet系统
CN110313930A (zh) * 2019-07-24 2019-10-11 东软医疗系统股份有限公司 一种扫描部位的确定方法、装置及终端设备
CN110313930B (zh) * 2019-07-24 2023-07-04 沈阳智核医疗科技有限公司 一种扫描部位的确定方法、装置及终端设备
CN112971824A (zh) * 2021-02-08 2021-06-18 上海联影医疗科技股份有限公司 Pet动态图像扫描方法、装置和计算机设备
WO2022166988A1 (zh) * 2021-02-08 2022-08-11 上海联影医疗科技股份有限公司 Pet动态扫描方法、装置和计算机设备
CN113081018A (zh) * 2021-03-31 2021-07-09 上海联影医疗科技股份有限公司 Pet医学成像系统
CN113081018B (zh) * 2021-03-31 2023-08-22 上海联影医疗科技股份有限公司 Pet医学成像系统

Also Published As

Publication number Publication date
JP2019049477A (ja) 2019-03-28
US20190076110A1 (en) 2019-03-14
JP2021185381A (ja) 2021-12-09
JP7005240B2 (ja) 2022-01-21
US11134912B2 (en) 2021-10-05
CN109480883B (zh) 2023-04-25

Similar Documents

Publication Publication Date Title
CN109480883A (zh) 医用图像诊断装置
JP6775917B2 (ja) X線コンピュータ断層撮影装置及びスキャン計画設定支援装置
US20120248320A1 (en) Nuclear medicine imaging system and method using multiple types of imaging detectors
CN100479757C (zh) 射线照相装置和射线照相方法
JP2016055157A (ja) 光子計数型x線ct装置
US10219756B2 (en) Radiography device, radiography method, and radiography program
CN106510747B (zh) 一种双源双探测器锥形束ct系统
US20160157806A1 (en) X-ray imaging apparatus and method for controlling the same
WO2015005485A1 (ja) X線ct装置、x線ctシステム及びインジェクター
US10497152B2 (en) X-ray CT apparatus and reconstruction processing apparatus
JP2000217810A (ja) コーンビームct装置
TWI494086B (zh) 醫療用資料處理裝置及具備醫療用資料處理裝置之放射線斷層攝影裝置
US20210279918A1 (en) Medical information processing apparatus, medical image diagnosis apparatus, and medical information processing method
JP6359278B2 (ja) X線コンピュータ断層撮影装置、および医用画像処理装置
CN111000574B (zh) 医用图像处理装置、方法、及记录介质
JP7106384B2 (ja) 医用画像処理装置及びx線コンピュータ断層撮影装置
US10915987B2 (en) X-ray diagnostic apparatus and display method
CN109243585B (zh) 医学图像的生成方法和医学图像处理系统及其交互方法
JP2015198833A (ja) 表示装置および表示方法
US11162909B2 (en) System and method for colorizing a radiograph from cabinet X-ray systems
JP7321798B2 (ja) 再構成装置及び放射線診断装置
JP2024066111A (ja) 医用画像処理装置及び方法
Tornai et al. Phantom Evaluation of a Multi-Pinhole Cardiac SPECT Camera for 3D Molecular Breast Imaging
JP4388419B2 (ja) 硬さ測定装置
JP2016148629A (ja) 医用画像処理装置および医用画像処理方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant