CN109475845B - 加氢处理催化剂和用于制备所述催化剂的方法 - Google Patents

加氢处理催化剂和用于制备所述催化剂的方法 Download PDF

Info

Publication number
CN109475845B
CN109475845B CN201780044089.3A CN201780044089A CN109475845B CN 109475845 B CN109475845 B CN 109475845B CN 201780044089 A CN201780044089 A CN 201780044089A CN 109475845 B CN109475845 B CN 109475845B
Authority
CN
China
Prior art keywords
mixed oxide
equal
catalyst
organic component
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780044089.3A
Other languages
English (en)
Other versions
CN109475845A (zh
Inventor
安杰拉·卡拉蒂
朱塞佩·贝卢西
米凯拉·贝莱塔托
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eni SpA
Original Assignee
Eni SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni SpA filed Critical Eni SpA
Publication of CN109475845A publication Critical patent/CN109475845A/zh
Application granted granted Critical
Publication of CN109475845B publication Critical patent/CN109475845B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • B01J27/0515Molybdenum with iron group metals or platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/047Sulfides with chromium, molybdenum, tungsten or polonium
    • B01J27/051Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/084Decomposition of carbon-containing compounds into carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/44Hydrogenation of the aromatic hydrocarbons
    • C10G45/46Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used
    • C10G45/48Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/50Hydrogenation of the aromatic hydrocarbons characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum or tungsten metal, or compounds thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/036Precipitation; Co-precipitation to form a gel or a cogel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1059Gasoil having a boiling range of about 330 - 427 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明属于非均相催化的领域。特别地,本发明涉及用于制备可有利地用于烃的加氢处理方法例如加氢脱硫、加氢脱氮、加氢脱芳构化方法的的催化剂的方法。更特别地,本发明涉及用于获得所述催化剂的方法,所述催化剂包含以下的混合氧化物:镍,铝,钼,和钨,和任选地选自Zn、Mn、Cd及其混合物的过渡金属Me,有机组分C,以及可能的无机粘合剂B。所述混合氧化物包含与黑钨矿同构的假晶相和非晶相。本发明还涉及所述加氢处理催化剂和其中使用所述催化剂的加氢处理方法。

Description

加氢处理催化剂和用于制备所述催化剂的方法
本发明属于非均相催化的领域。特别地,本发明涉及用于制备可有利地用于烃的加氢处理方法例如加氢脱硫、加氢脱氮、加氢脱芳构化方法的催化剂的方法。
特别地,本发明涉及用于获得所述催化剂的方法,所述催化剂包含以下的混合氧化物:镍,铝,钼,和钨,和任选的选自Zn、Mn、Cd及其混合物的过渡金属Me,有机组分C,以及可能的无机粘合剂B。
所述混合氧化物包含与黑钨矿同构的假晶相和非晶相。
本发明还涉及所述加氢处理催化剂和其中使用所述催化剂的加氢处理方法。
将原油重馏分转化为有用燃料和化学化合物的许多转化方法涉及催化剂的使用。特别地,基于过渡金属的催化组合物显示出在进行加氢处理单元操作的精制方法中是有效的。
关于燃料中基于硫和氮的污染物的含量的环境法规刺激了该领域的重大进展,所述环境法规要求对原油馏分进行特定处理以降低这些污染物的含量。通常,这样的处理通过在基于Mo或W的负载催化剂的存在下氢化来进行,在所述负载催化剂中添加有Co或Ni作为所述催化剂的活性的促进剂。该促进剂与贱金属协同作用,并且允许获得与制备方法、材料类型和其他因素有关的催化活性提高(C.Giavarini,“Hydrotreating”,Encyclopaediaof Hydrocarbons Treccani,(2005),第2卷,第3.1节,第115至135页)。为了显示出催化活性,重要的是要注意在上述组合物中的金属必须是硫化物的形式。
环境法规的收紧和原油燃料品质的同时恶化使得需要找到适于原油馏分的强化脱硫的新催化剂,特别是对于难以处理的那些化合物,例如,其中对硫的攻击在空间上受阻的经取代的二苯并噻吩(DBT)。此外,需要获得在含氮污染物的存在下也能够发挥其功能的加氢脱硫催化剂,所述含氮污染物在以有限量存在时也显示出使催化剂本身的功能减活的强烈倾向,对最终产品品质具有不利影响。
所谓的本体(bulk)催化剂显示出对于该目的是特别有效的,所述催化剂例如由M.V.Landau、D.Berger和M.Herskowitz在J.Catalysis(1996),第159卷,第236至245页中进行了描述。
在加氢处理方法中使用的“本体”催化剂可以仅由一种或更多种第VIII族非贵金属和可能地一种或更多种第VIB族金属形成,并且其不包含“载体”负载物或基底。通常,本体催化剂在最终的催化组合物中不存在粘合剂;当需要使用粘合剂时,粘合剂促进本体催化剂颗粒的聚集,优选不改变其形态。
该类型的催化剂及其制备在例如专利US 4,596,785、US 4,820,677、US 6,299,760、US 6,635,599中以及在专利申请US 2007/0286781和EP 1941944 A1中进行了描述。
US 4,596,785和US 4,820,677公开了用于石油馏分的加氢处理和/或加氢精制的催化剂,其通过在硫化物的存在下由水溶性盐开始使构成所述馏分的金属共沉淀而制备。这样的方法涉及用复杂的技术并在惰性气氛下操作以避免金属硫随后转化为相应的氧化物。在US 4,596,785的情况下,所获得的催化剂就第VIB族金属硫化物而言具有与辉钼矿相似的晶体结构,并且就第VIII族金属硫化物而言具有与黄铁矿相似的晶体结构。相反,US4,820,677中描述的催化剂是非晶的。
US 6,299,760和US 6,635,599公开了如下制备的加氢处理本体催化剂:将金属组分合并成溶液并在氧的存在下使其反应以获得稳定的沉淀物,然后将其硫化。
特别地,US 6,635,599中列出了可以获得所述沉淀物的某些模式:例如,通过在合并金属组分溶液期间或之后改变温度和/或pH,或者通过适当添加络合剂或非溶剂,或者仍然减少溶剂量,或者通过添加过量的金属组分之一直至引起其沉淀。
此外,申请US 2007/0286781公开了使用共沉淀技术制备基于过渡金属的多金属材料的方法。
最后,专利申请EP 1941944 A1公开了如下获得的用于石油馏分的加氢处理的催化剂:由相应铵盐的溶液开始进行金属共沉淀,然后在惰性气氛下进行高温加热,并进行硫化处理。
本体催化剂组合物中可以包含无机粘合剂,例如二氧化硅、氧化铝、二氧化硅-氧化铝,以保持催化剂颗粒的完整性。
例如,在EP 1171549 B1的一个优选方面中,提供了在催化剂制备期间添加无机粘合剂,或者,在另一个优选方面中,在形成催化剂的步骤之前将上述无机粘合剂添加到催化组合物中。特别地,在EP 1171549B1中指出,当在制备过程期间添加作为可溶前体的粘合剂时,应确保其本身被转化为固态,即,不与其他金属组分反应。通常,这样的粘合剂相对于本体催化剂具有较低的催化活性(或者没有催化活性)。因此,添加无机粘合剂通常会引起包含其的催化组合物的活性降低。
在另一些情况下,本体催化剂组合物可以包含所谓的“耐火”的氧化物形式的金属,例如二氧化硅、氧化铝、氧化镁、二氧化钛、氧化锆、硼酸酐和氧化锌。例如,申请WO2004/073859公开了式(X)b(M)c(Z)d(O)e的本体催化剂的制备,其中X是至少一种第VIII族非贵金属,M是至少一种第VIB族非贵金属,Z是选自铝、硅、镁、钛、锆、硼和锌中的一种或更多种元素,O是氧,选自b和c的指数等于1,而d、e以及选自b和c且不同于1的另一个指数是大于0的数,使得摩尔比b/c在0.5:1至5:1的范围内,摩尔比d/c在0.2:1至50:1的范围内,并且摩尔比e/c在3.7:1至108:1的范围内。
所述申请中描述的催化组合物通过以下过程来制备:使金属化合物与耐火氧化物和碱性化合物(通常为氨)在质子液体中进行受控共沉淀,从而提供金属和耐火氧化物的络合物,使其进一步经受热处理。在该发明的一个优选形式中,上述催化组合物可以包含少量的耐火氧化物形式的锌(相对于催化组合物的总重量在1重量%至3重量%的范围内),对催化组合物自身的表面积的积极影响归因于此。
WO 2004/073859的催化剂被定义为“低结晶度”催化剂,如通过X射线衍射“图案”所证实的,其中没有突出显示出特征在于半峰全宽(FWHM)低于2.5°2θ的反射。
申请WO 2009/058783和WO 2010/126689公开了包含附加组分的本体催化剂的制备,所述附加组分选自第IIA族、第IIB族或第IVB族,其中包括Zn。
WO 2009/058783公开了包含Zn/Mo/W/马来酸盐的催化前体,其在硫化之后允许获得相对于本领域已知的基于Ni/Mo/W的催化剂更好的加氢裂化产率,即使在较低温度下操作也如此,然而,其在加氢脱硫反应中的活性低于本领域已知的基于Ni/Mo/W的催化剂。
WO 2009/126689公开了一种催化前体,其特征在于在在至少100℃的温度下硫化至少30分钟之后的“残余几何体积收缩率”小于12%,以及在大孔区域中具有孔的单峰分布。
通过所谓的多金属“本体层状”催化剂实现了进一步的进展,该催化剂的组成为NixZnyMoW,其中Ni和Zn以可变摩尔比存在,如Y.Chen,L.Wang,Y.Zhang,T.Liu,X.Liu,Z.Jiang e C.Li在“A new multi-metallic bulk catalyst with highhydrodesulphurization activity of 4,6-DMDBT prepared using layered hydroxidesalts as structural templates”(2014)Applied Catalysis A:General,第474卷,第69至77页中和在WO 2014/043993中所描述的。作者将这种催化剂的高活性归因于高含量的活性金属和分层结构,该分层结构能够显示更高数量的活性位点,从而促进活性金属硫化物之间的相互作用,其中Ni/Zn与Mo/W之间的协同作用起着重要作用。
US 7,648,941公开了包含Ni和W氧化物作为主要组分的“本体”催化剂。可以在合成过程中添加第二第VIB族金属(以相对于第VIB族金属的总摩尔数低于10%的量)和第V族金属(以相对于第VIB族金属的总摩尔数低于10%的量)。
在这种情况下,催化组合物的制备包括将反应混合物热处理适当长的时间以使起始材料完全转化。所获得的催化剂定义为“非无定形的”,其中存在至少一个结晶相,尽管催化剂中还存在一个或更多个无序相。在这种情况下,催化剂显示出亚稳六方结构,其特征在于这样的衍射谱:在角度2θ为约60°至约65°之间具有单反射,并且在2θ为约32°至约36°之间和在2θ为约50°至约55°之间具有其半高全宽(FWHM)低于2.5°2θ的主反射。不受任何理论束缚,作者将高催化活性与上述亚稳六方相联系起来。在较高温度下,六方相转变为由与黑钨矿同构的NiWO4构成的斜方规则结构,这可以通过与“标准粉末衍射数据库”:JCPDS-ICDDPDF card15-0755或72-1189或72-480进行比较来确定,在其中其被称为“钨酸镍氧化物”。因此,US 7,648,941将可以获得与黑钨矿同构的相与其中钨为第VIB族金属的总摩尔数的至少90%的组合物联系起来。
WO 2012/130728公开了特殊的混合氧化物,其包含Ni,Mo,W,选自Si、Al及其混合物的至少一种元素,并且可能包含衍生自含有碳和氮的化合物的有机组分,其特征在于这样的事实:所述混合氧化物包含与黑钨矿同构的单斜晶相和非晶相,其结晶度大于0%且小于100%,优选大于或等于3%且小于100%。这样的混合氧化物的组成为NiaYbZcOd·pC,其中Y为Mo和W的混合物,并且Mo/W之比大于0.1且小于10。结晶相的形成在热处理期间发生,并且温度的选择允许调节混合氧化物的结晶度。事实上,包含与黑钨矿同构的结晶相和非晶相的混合氧化物(其中所述氧化物的结晶度大于0%和大于70%)可以在一定条件下获得,其中热处理在高于或等于150℃且低于或等于500℃的温度下进行,优选地在高于或等于170℃且低于或等于500℃的温度下进行。在高于500℃且低于900℃的温度下的热处理允许获得包含与黑钨矿同构的结晶相和非晶相的混合氧化物,其中所述氧化物的结晶度大于70%且小于100%。
最近,关于控制废气排放的甚至更严格的法规使得必须使用甚至更活泼的催化剂。例如,目前的欧洲法规规定汽车柴油燃料中硫的最高标准是10mg/kg。
此外,最近的法规还强制降低芳烃特别是多环芳烃(PAH)的含量。多环芳烃是已知的致癌剂并且可以存在于燃料中并且可以通过燃烧形成然后进入废气组合物中。PAH燃烧转而可以导致苯的形成。柴油燃料中的芳烃含量可以调节火焰温度,从而影响NOx排放,并且其与颗粒物形成和燃烧CO2排放直接相关。
鉴于这些原因,2009年的指令2009/30/CE要求将汽车柴油中PAH的最大含量降低直至8%m/m。
因此,显然需要一直提供新的催化剂,该催化剂在去除杂原子(特别是硫和氮)方面更具反应性且更有效,并且能够降低旨在用作燃料的原油馏分中芳烃的标准。
本申请人面临的目的是找到用于制备上述本体催化剂的前体的新方法,该方法通过使用更少量的昂贵且有毒的有机添加剂和/或金属而更便宜并且县归于已知技术方法符合当前的环境保护方向,进而在安全性和成本方面具有优势。
第二个目的在于从通过该新制备方法获得的前体中鉴定出这样的本体催化剂:其特征在于高的加氢脱硫和加氢脱氮性能,其中促进烃加氢脱芳构化的能力也得到改善。
申请人现在已经发现一种用于制备包含多金属混合氧化物的可用于原油馏分的加氢处理方法的本体催化剂的前体的新方法,其允许实现上述目的并且具有相对于已知技术方法的许多优点。
特别地,该方法的第一个改进方面涉及这样的事实:其需要更少量的第VIB族和第VIII族贵金属而不会使通过上述方法获得的材料的催化活性受到影响,因此,其特征在于相对于已知本体催化剂的制备方法的成本更低。
另一个改进方面涉及减少有机添加剂的使用,因此在煅烧之后上述催化剂的前体的重量损失更少,进而使制备方法的产率更高。
另一个优点是上述制备方法不涉及任何固/液分离步骤,并且获得了金属浓缩悬浮体:这允许避免形成被有毒金属污染的分离水并且降低能量成本,并因此有助于提高制备方法的产率。
从通过本发明的方法获得的包含过渡金属的混合氧化物的前体开始,可以制备新的催化剂,其有利地显示出显著的朝向加氢脱硫反应、加氢脱氮、特别是加氢脱芳构化的选择性,从而使加氢裂化反应最小化。
通过以下的详细描述,另外的特征和优点将显而易见。
为了更好地理解本发明的方法对象的特征,将参照所提出的附图,其仅具有说明性而非限制性的目的。
特别地,在根据本发明的方法制备并在在300℃至400℃的温度下煅烧之后分析的式(I)的混合氧化物的样品(谱a)和与基于Al的无机粘合剂B结合的式(I)的混合氧化物的样品(谱b)的27Al-MAS-NMR谱报告在图1中。
在图2a中,报告了其中不存在金属Me的式(I)的混合氧化物(指数“a”等于0)的XRD谱,而在图2b中,报告了其中存在金属Me且其为Zn的式(I)的混合氧化物的XRD谱。在两种情况下,在相应混合氧化物在干燥之后(谱a)、在在300℃至400℃的温度下煅烧之后(谱b)和在在600℃下煅烧之后(谱c)分析的样品上获得谱。
通过根据本发明的方法获得的包含金属Me且其中Me=Zn的式(I)的混合氧化物在干燥(120℃)之后、在在300℃至400℃(350℃)的温度下煅烧之后和在完全煅烧(600℃)之后获得的FT-IR谱报告在图3a中。通过比较,选择的用于制备上述混合氧化物的金属的前体的FT-IR谱报告在图3b中。
出于本说明书和所附权利要求的目的,除非另有说明,否则数值范围的限定总是包括端点。
在本发明实施方案的描述中,使用术语“包含”和“包括”意指所描述的选项,例如涉及方法或过程的步骤或者产品或装置的组件的选项,不一定是穷举的。然而,重要的是要注意,本发明的对象也是这样的实施方案:其中所描述选项,例如涉及方法或过程的步骤或者产品或设备的组件的这些选项所提及的“包括”,即使没有明确声明,也应被解释为“基本上由......组成”或“由......组成”。
出于本说明书和所附权利要求的目的,关于化学元素和所属族,参考CRCHandbook of Chemistry and Physics(第58版,1977-1978)中报道并使用CAS编号的元素周期表。特别地,出于本发明的目的,表述“第VIB族”和“第VIB族金属”包括元素、离子或化合物形式的铬、钼、钨及其混合物;表述“第VIII族”和“第VIII族非贵金属”包括元素、离子或化合物形式的铁、钴、镍及其混合物。
出于本发明的目的,术语“本体催化剂”意指非负载催化剂,以这种方式意味着催化剂组合物不提供金属通过浸渍或沉积而负载在其上的预成型载体。因此,不排除本文描述和例示的组合物可以包含与具有催化活性的组分不同的组分例如粘合剂、促进剂或添加剂的可能性。
出于本发明的目的,术语“与黑钨矿同构的结晶相的前体”意指这样的化合物:特征在于其包含与黑钨矿同构的假晶相和非晶相,当在氧化气氛下在等于或高于600℃的温度下经受煅烧大于或等于3小时的一段时间时,其发展成与黑钨矿同构的结晶相,其x射线衍射“图案”(“X射线衍射法”,XRD)包括表1中报告的信号。
表1
编号 2θ(°) 信号强度
1 15.6±0.1
2 19.3±0.2
3 24.0±0.3
4 24.9±0.3
5 30.9±0.5 非常强
6 31.5±0.5 中等
7 36.7±0.5
8 37.2±0.5
9 39.2±0.5 中等
10 41.7±0.6
11 46.5±0.6
12 48.1±0.6 非常弱
13 49.1±0.6
14 52.3±0.7 中等
15 54.7±0.7
16 58.8±0.7 非常弱
17 62.6±0.7 中等
18 63.7±0.7
19 66.0±0.8
20 68.9±0.8
术语“与黑钨矿同构的结晶相”意指这样的相,其具有与天然黑钨矿(由铁和锰的混合钨酸盐构成的矿物)相同类型的结晶结构,例如一类棱柱形单斜对称,但具有不同的化学组成,其中W、Fe、Mn进而可以部分或全部被不同的金属取代。上述相的XRD图案包括表1中报告的信号。
出于本发明的目的,术语“加氢处理”意指其中烃进料与氢接触以改变主要的化学和物理特性的一组反应。重要的是要记住,在精制领域中,加氢处理可以根据目的具有不同的名称(例如,加氢脱硫、加氢脱氮、加氢脱芳构化、加氢脱金属、加氢脱氧、加氢开环、加氢异构化、加氢裂化、加氢脱蜡等)。通常使用加氢精制的通用术语,所述术语可以包括相同的上述加氢处理方法,并且通常仅对于较不严格但不都这样的情况而言与其有所区别。
根据本发明的加氢处理可以对各种各样的石油和石化衍生物进行,所述衍生物包括全馏分原油或拔头原油、常压蒸馏或在真空下的残渣或产物、用丙烷脱沥青的过程的残渣例如“brick stock”馏分、重质和轻质循环油、流体催化裂化(FCC)过程的残渣、来自常压蒸馏和在真空下的瓦斯油、来自炼焦器的瓦斯油、轻质和重质馏出物(包括“粗直馏”馏出物)、加氢裂化产物、脱蜡产物、矿脂、费-托过程的产物、精制产物、石脑油、来自EST过程的产物及其混合物。
作为来自EST过程的产品,旨在为例如由以下文件中描述的方法获得的烃馏分:US5,932,090、US 7,255,795、WO2004/058922、WO2004/056946、WO2004/056947、WO2005/047425、WO2006/066911、WO2006/066857、WO2008/014947、WO2008/014948、WO2008/141830、WO2008/141831、WO2008/151792、WO2009/003633、WO2009/003634、WO2009/149923。
优选地,加氢处理涉及包含硫衍生污染物和/或氮衍生污染物的烃馏分,特别是包含高至40000ppm的硫,可能包含高至2000ppm的氮的烃馏分。在所述馏分中,可以存在高至60重量%的芳烃和高至30重量%的多环芳烃。
在第一方面中,本发明的一个目的是用于获得混合氧化物的方法,所述混合氧化物包含Ni、Mo、W、Al、任选地至少一种金属Me、和有机组分C或所述有机组分C的残余物,所述混合氧化物具有下式(I),
Mea Nib Moc Wd Ale Of·pC (I),
其中
-Me选自Zn、Cd、Mn及其混合物,
-C包含聚合物有机化合物,
-a可以大于或等于0,
-b、c、d、e和f大于0,
-f等于(2a+2b+6c+6d+3e)/2,
-(a+b)/(c+d)之比为0.9至1.1,
-a/b之比大于或等于0且小于或等于1.5,
-c/d之比为0.2至5,
-(a+b+c+d)/e之比为0.6至5,以及
-p为C相对于式(I)的混合氧化物的总重量的重量百分比,并且大于0%且小于或等于40%,
所述式(I)的混合氧化物包含与黑钨矿同构的假晶相和非晶相,
其中所述方法包括以下步骤:
1)将至少一种可溶W源和至少一种可溶Mo源混合至合适体积的水中,直到获得澄清的水溶液;
2)任选地,向步骤1中获得的溶液中添加至少一种元素Me的至少一种源;
3)向前一步骤中获得的混合物中添加至少一种Ni源;
4)在搅拌下,使步骤3中获得的混合物在50℃至80℃的温度下经受第一热处理;
5)向步骤4中获得的混合物中添加至少一种可溶的、可水解的或可分散的Al源,和至少一种聚合物有机化合物;
6)在搅拌下,使前一步骤中获得的混合物在80℃至95℃的温度下经受第二热处理,获得悬浮体;
7)使步骤6中获得的悬浮体经受干燥,以这样的方式获得固相;
8)煅烧前一步骤中获得的所述固相,获得式(I)的混合氧化物。
在本发明的一个优选方面中,b、c、d和e大于0.1。
在本发明的一个优选方面中,a大于0,更优选地,a大于0.1。
上述方法可以从步骤1至步骤8顺序地进行。然而,在一些优选实施方案中,在不是修改本发明的目的的情况下,可以省略至少一个任选的步骤,或者可以向所述方法中增加至少一个附加步骤,如以下更好地描述的。
该方法的第一步包括将钨源和钼源溶解在一定量的水,优选去离子水或蒸馏水中,所述量至少足以获得透明溶液。
可用的Mo源和W源是例如其氧化物(特别是酸性氧化物)、相应的酸和铵盐。优选地,使用偏钨酸盐作为钼铵源并使用七钼酸铵作为钨源。
在上述的钨源和钼源中,各金属的化合价为6。
将所获得的混合物保持在搅拌下直至获得澄清溶液,表明Mo源和W源全部溶解。
优选地,所述方法的步骤1可以在25℃至50℃的温度下进行,以促进上述溶解。
根据任选的步骤2,可以向所获得的透明溶液中添加可溶的或不溶的或部分可溶的元素Me源,优选可溶源。
不希望受任何理论束缚,上述元素Me在存在时可以具有促进与黑钨矿同构的假晶相的形成的功能。
当该方法包括添加元素Me时,如上所述,所述元素可以选自Zn、Cd和Mn及其混合物。
在本发明的一个优选方面中,任选地添加至所述方法的步骤2中的元素Me可以为Zn。
在本发明的另一个优选方面中,在步骤2中任选地添加的元素Me可以为Mn。
可用的元素Me源可以是例如相应的硝酸盐、乙酸盐、碳酸盐、碱式碳酸盐。
当Me为Zn时,可以使用乙酸锌或碱式碳酸锌,优选乙酸锌作为元素Me源。
优选地,当Me为Mn时,可以使用乙酸锰作为元素Me源。
在上述元素Me源中,相应的金属(Zn、Cd或Mn)的化合价都为2。
在本发明的一个优选方面中,可以省略任选的步骤2。在这种情况下,在在上述方法结束时获得的式(I)的混合氧化物中,不存在元素Me,即,上述式(I)中的所述元素Me的“a”指数等于0。
然后,根据本方法的步骤3,添加可溶的、不溶的或部分可溶的镍源,优选地添加部分可溶的镍源。可用的Ni源可以是相应的硝酸盐、乙酸盐、碱式碳酸盐、碳酸盐、乙酰丙酮化物。优选地,可以使用碱式碳酸镍。
优选地,所述方法的步骤3可以在50℃至70℃的温度下进行,以促进所述Ni源在前一步骤中获得的混合物中的溶解。
在步骤4中,在搅拌下,使获得的混合物在50℃至80℃的温度下经受第一热处理。
优选地,步骤4的所述第一热处理可以在搅拌下在50℃至80℃的温度下进行10分钟至1小时的时间。
在一个优选方面中,本制备方法的步骤4的所述第一热处理可以在55℃至70℃的温度下进行,保持混合物持续处于搅拌下。
在一个优选方面中,所述方法的步骤4的第一热处理可以在持续搅拌下进行20分钟至40分钟的时间。
在本发明的一个特别优选的方面中,所述方法的步骤4的第一热处理可在持续搅拌下在55℃至70℃的温度下进行20分钟至40分钟的时间。
在该热处理步骤结束时,该方法设想,在步骤5中,可以向由此获得的混合物中添加至少一种可溶的、可水解的或可分散的铝源,和至少一种聚合物有机化合物。
作为铝源,可以使用例如乳酸铝、或可分散氧化铝、或一水合氧化铝、或三水合氧化铝、或三烷氧基铝(其中烷基是线性或支化的并且可以包含2至5个碳原子),并且优选使用可分散氧化铝。
优选地,在所述方法的步骤5中作为铝源添加的可分散氧化铝可以为特征在于平均直径小于100μm的颗粒的勃姆石或假勃姆石。可用的可分散氧化铝可以是例如可商购的系列
Figure BDA0001946797570000121
Figure BDA0001946797570000122
Figure BDA0001946797570000123
的勃姆石。
在可分散的铝源中,在室温下在搅拌下可分散在包含一价酸的水溶液中的氧化铝或水分散性氧化铝可以是特别优选的:该氧化铝在分散相中是纳米级的,特征在于在分散体中的颗粒尺寸为10nm至500nm。可有利地使用的这种类型的可分散氧化铝是例如可商购的系列Disperal
Figure BDA0001946797570000124
(Al2O3 68重量%)和Dequadis
Figure BDA0001946797570000125
的勃姆石。
优选地,从铝单体前体开始保证其良好分散的可水解的铝源可以是三烷基铝酸盐,其中烷基包含3至4个碳原子。
重要的是要注意,可用于该步骤的铝源中不包括γ-氧化铝。
在本发明的一个优选方面中,可以将Al源作为预先按以下方式制备的分散体添加至步骤5中:将量为5重量%至25重量%、优选8重量%至18重量%的可水解的或可分散的可溶Al源添加至包含0.2重量%至2重量%乙酸的水溶液中。将所获得的分散体在25℃至90℃、优选30℃至70℃的温度下搅拌1小时至48小时、优选3小时至24小时的时间。
然后,为了促进组合物的均匀性并改善最终的混合氧化物的结构特性,在添加Al源之后,将聚合物有机化合物添加至所获得的分散体中。
在所述方法的步骤5中添加的上述聚合物有机化合物优选地包含选自N和O的一个或更多个杂原子,并且可以选自例如藻酸铵、甲基纤维素、丙基甲基纤维素、乙二醇和丙二醇共聚物、辛基酚乙氧基化物、聚氧乙烯十六烷基醚。
在一个优选方面中,添加至所述方法的步骤5中的聚合物有机化合物是甲基纤维素。在这样的情况下,可以使用可商购的甲基纤维素,例如甲基纤维素
Figure BDA0001946797570000131
(在水中的2%悬浮体的粘度=1200cP至1800cP)、甲基纤维素
Figure BDA0001946797570000132
(在水中的2%悬浮体的粘度=15cP)、丙基甲基纤维素
Figure BDA0001946797570000133
311(在水中的2%悬浮体的粘度>1000cP)。
在本发明的另一个优选方面中,在所述方法的步骤5中添加的聚合物有机化合物可以是藻酸铵。
在本发明的另一些优选形式中,可以使用以下物质作为聚合物有机化合物:聚乙二醇-聚丙二醇-聚乙二醇嵌段共聚物(例如,可作为
Figure BDA0001946797570000134
P123商购的聚合物,在60℃下的粘度=350cP)、或辛基酚乙氧基化物(可作为
Figure BDA0001946797570000135
X-305商购,具有非离子表面活性剂的特性,特征在于在25℃下的粘度=470cP)、或聚氧乙烯十六烷基醚(可作为
Figure BDA0001946797570000136
58商购,具有非离子表面活性剂的特性,特征在于在25℃下在水中5%的相对粘度(H2O=1)=1.2至1.5)。
相对于混合物中存在的金属的重量,所述聚合物有机化合物可以以可在1重量%至10重量%之间变化的百分比添加。
在一个优选方面中,相对于金属的重量,所述聚合物有机化合物可以以1重量%至5重量%的百分比添加。
因此,显然,在根据本发明的催化剂的制备方法中的聚合物有机化合物的量是特别低的:这使得在随后的混合氧化物煅烧期间产生更少量的挥发性有机化合物,特别是含氮化合物,以便不一定需要处理排出至后燃烧室中的蒸气。
根据本发明的一个替代实施方案,在上述方法的步骤5中,不是单独添加至少一种可溶的、可水解或可分散的的Al源,然后添加至少一种聚合物有机化合物,而是可以添加单独制备并且包含所述至少一种可溶的、可水解的或可分散的Al源和所述至少一种聚合物有机化合物两者的分散体。
为了制备上述的包含Al和聚合物有机化合物两者的分散体,工序如下:将可溶的、可水解的或可分散的Al源添加至包含乙酸的水溶液中,并在25℃至80℃的温度下将所获得的分散体与包含聚合物有机化合物且保持在搅拌下的水性悬浮体混合20分钟至1小时的时间。
另外,在这种情况下,相对于混合物中存在的金属的重量,聚合物有机化合物可以以可在1重量%至10重量%之间变化的百分比添加。
在一个优选方面中,相对于金属的重量,所述聚合物有机化合物可以以1重量%至5重量%的百分比添加。
在添加至根据本发明的方法的步骤3中获得的含金属混合物之前,在添加聚合物有机化合物之后,将包含可溶的、可水解的或可分散的Al源和聚合物有机化合物两者的分散体在25℃至90℃、优选30℃至70℃的温度下搅拌1小时至48小时、优选3小时至24小时的时间。
在如上所述的分别添加Al源和聚合物有机化合物以及将这两种组分一起添加的两种情况下,使所获得的包含Mo、W、Ni、Al、聚合物有机化合物和任选地Me的混合物在随后的步骤6中在搅拌下在80℃至95℃的温度下进一步经受第二热处理。
优选地,所述第二热处理在搅拌下在80℃至95℃的温度下进行5小时至30小时的时间。
该第二热处理允许获得均匀的悬浮体,其中可能源自不溶或部分可溶源的金属组分可以相互作用并与彼此建立紧密接触。优选地,步骤6中获得的悬浮体可以具有相对于悬浮体的总重量的15重量%至40重量%、优选18重量%至30重量%的金属氧化物的理论含量。
在本发明的一个优选方面中,所述第二热处理可以在85℃至92℃的温度下进行。
在本发明的一个优选方面中,所述第二热处理可以进行15小时至25小时的时间。
在本发明的一个特别优选的方面中,步骤6的所述第二热处理可以在85℃至92℃的温度下进行15小时至25小时的时间。
使由此获得的悬浮体经受步骤7的干燥。步骤7的干燥的主要功能是除去悬浮体中存在的水,从而允许获得固相。
步骤7的干燥可以通过使用本领域技术人员已知的任何技术来进行,例如静态烘箱,或者通过“带式干燥”或“快速干燥”或“喷雾干燥”,并且优选地,其通过“喷雾干燥”来进行。
在一个优选方面中,干燥可以在100℃至250℃的温度下进行。
防止固相所需的时间与用于进行步骤7的干燥操作的方法有关。为了获得期望的固相,确定使用的每种方法的更合适的时间在技术人员的能力范围内。
重要的是要注意,鉴于与可以获得悬浮体(甚至是极其浓稠的)的步骤6不同,在干燥步骤7中获得基本上不含液相的固相是必要的这一事实,进行第二热处理的步骤6与步骤7的干燥不同,即使这两个步骤可以可能通过相同的原理进行,即,通过施加热适当的时间进行。
在本发明的一个优选方面中,在干燥之后,可以使获得的固相经受成型。
在这种情况下,根据本发明的方法可以包括紧接在步骤7之后的附加步骤7’,其中使所述步骤7中获得的经干燥固相经受成型。
所有的成型技术可以用于此目的。成型可以通过压片、挤出、造粒、球化或喷雾干燥雾化来进行。
为了促进成型操作,可以向混合氧化物中添加一种或更多种有机添加剂以改善上述混合氧化物的流变特性。这些添加剂优选地可以包括:淀粉、纤维素、硬脂酸盐/酯、表面活性剂或其混合物。
该方法的最后一步提供了所制备的混合氧化物的部分煅烧。步骤8的煅烧可以在空气或惰性气氛下在高于或等于200℃且低于或等于450℃的温度下进行。在一个优选方面中,煅烧可以在300℃至400℃的温度下进行。
部分煅烧可以在恒定温度下或者在温度梯度(或“程序”)下进行。煅烧时间可以优选地从最短3小时至长至20小时变化。基于煅烧温度和煅烧时间,获得的混合氧化物可以包含大于0且小于或等于40%的可变百分比的有机组分C和/或所述有机组分C的残余物。
出于本发明的目的,术语“有机组分C的残余物”意指这样的一组化合物,其未经更好地表征,可能存在并且通过在煅烧过程期间的热分解或降解而源自所述有机组分C。
除先前描述的聚合物有机化合物之外,上述有机组分C可以包含可能用于根据本发明的混合氧化物的制备方法的源自金属源的有机部分(例如乙酸根离子、乙酰丙酮化物离子、乳酸根离子、醇盐)和乙酸。
有机组分C(和可能地上述有机组分C的残余物)可以通过使用Mettler热天平(型号TG50)在混合氧化物的样品上通过热重分析和差热分析(TG-DTA)来定量地测量。通过在空气流(200cm3/分钟)下使样品经受10℃/分钟的加热升温速率(从30℃至600℃)来进行测试。有机组分C(和可能地上述有机组分C的残余物)的含量表示为相对于混合氧化物的总重量的重量百分比(百分比“p”),并且其根据通过TG-DTA分析的样品在150℃至600℃范围内的重量损失来计算。
在一个优选方面中,在煅烧之后,在可通过本发明的方法获得的混合氧化物的组成中,所述有机组分C和可能地所述有机组分C的残余物的百分比“p”可以大于或等于0.01%且小于或等于30%。
在一个优选方面中,“p”可以大于或等于0.2%且小于或等于10%。
在本发明的一个优选实施方案中,根据本发明的方法提供了在步骤2中引入元素Me。
因此,根据本发明的一个优选实施方案,用于获得混合氧化物(所述混合氧化物包含Ni、Mo、W、Al、至少一种金属Me、和有机组分C或所述有机组分C的残余物,所述混合氧化物具有下式(I),
Mea Nib Moc Wd Ale Of·pC (I),
其中
-Me选自Zn、Cd、Mn及其混合物,
-C包含聚合物有机化合物,
-a、b、c、d、e和f大于0,
-f等于(2a+2b+6c+6d+3e)/2,
-(a+b)/(c+d)之比可以为0.9至1.1,
-a/b之比可以大于或等于0且小于或等于1.5,
-c/d之比可以为0.2至5,
-(a+b+c+d)/e之比可以为0.6至5,以及
-p为C相对于式(I)的混合氧化物的总重量的重量百分比,并且可以大于0%且小于或等于40%,
所述式(I)的混合氧化物包含与黑钨矿同构的假晶相和非晶相)的方法
包括以下步骤:
1)将至少一种可溶W源和至少一种可溶Mo源混合至合适体积的水中,直到获得澄清的水溶液;
2)向步骤1中获得的溶液中添加至少一种元素Me的至少一种源,优选可溶源;
3)向前一步骤中获得的混合物中添加至少一种Ni源,优选部分可溶的Ni源;
4)在搅拌下,使步骤3中获得的混合物在50℃至80℃的温度下经受第一热处理;
5)向步骤4中获得的混合物中添加至少一种可溶的、可水解的或可分散的Al源,和至少一种聚合物有机化合物;
6)在搅拌下,使前一步骤中获得的混合物在80℃至95℃的温度下经受第二热处理,获得悬浮体;
7)使步骤6中获得的悬浮体经受干燥,以这样的方式获得固相;
8)煅烧前一步骤中获得的所述固相,获得式(I)的混合氧化物。
在一个优选方面中,a、b、c、d和e可以大于0.1。
优选地,步骤4的第一热处理可以在搅拌下在50℃至80℃的温度下进行10分钟至1小时的时间。
优选地,步骤6的第二热处理可以在搅拌下在80℃至95℃的温度下进行5小时至30小时的时间。
相反地,根据一个替代实施方案,根据本发明的方法可以不包括在步骤2中引入元素Me。
在这种情况下,可以省略该方法的步骤2,并且式(I)中的“a”指数等于0。
本方法的一个优点在于其不涉及所获得的固相的分离和洗涤操作。没有这些步骤使得能够将存在于在整个方法期间反应的混合物中的金属之间的原子比保持到最终固体产物中:因此,不需要分析控制来确定对应于在该方法中使用的金属的原子比的混合氧化物金属的最终组成,即使在煅烧之后也如此。
此外,以这种方式避免产生被混合氧化物金属污染的水。这个方面具有特别的工业和环境相关性,因为这些金属通常是有毒的,并且其中的一些被归类为致癌化合物。
在本发明的另一个实施方案中,可以改变上述方法,以便提供至少一种无机粘合剂B的添加。
用于制备与至少一种无机粘合剂B结合的式(I)的混合氧化物的方法包括已经描述的方法的所有步骤,并且包括一个附加步骤5’,其紧接在所述方法的步骤5之后,即,在添加聚合物有机化合物之后,或者在将聚合物有机化合物与铝源混合地添加的情况下,在将所述混合物添加至步骤4中获得的混合物中之后,其中添加无机粘合剂B。
上述无机粘合剂B可以由常规用作催化剂用无机粘合剂的材料构成。无机粘合剂的非限制性实例可以包括例如二氧化硅、氧化铝、硅铝酸盐(silico-alumina)、涂覆有氧化铝的二氧化硅和涂覆有二氧化硅的氧化铝、三水铝石、二氧化钛、氧化锆、阴离子和阳离子粘土、皂石、膨润土、高岭土、海泡石或水滑石、或者其混合物。优选的粘合剂材料是二氧化硅、氧化铝、硅铝酸盐或其混合物。特别地,γ-氧化铝可以用作氧化铝源,可以以水性分散体的形式使用。
当本发明的混合氧化物与至少一种无机粘合剂B(其中B包含Al)结合时,在上述混合氧化物中可检测到所述金属的结构不同的两种形式,其与不同功能相关(分别为催化组合物的组分和无机粘合剂的功能)。
在上述混合氧化物中存在两种结构不同的铝形式通过经固态谱27Al MAS NMR比较式(I)的混合氧化物和相应的与基于Al的无机粘合剂B结合的混合氧化物来确定。使用Varian V-500仪器,0.2μs(10°脉冲)的脉冲时间和1秒的弛豫延迟(relaxing delay)进行测试。转子为4mm,包含以14kHz旋转的粉末。在130MHz下获得谱;化学位移参照在溶液中的三氯化铝(在0ppm处)。根据本发明的方法制备并在在在300℃至400℃的温度下煅烧之后分析的不含无机粘合剂的式(I)的混合氧化物的样品的27Al-MAS-NMR谱(谱a)和与基于Al的无机粘合剂B结合的式(I)的混合氧化物的样品的27Al-MAS-NMR谱(谱b)报告在图1中。忽略“旋转边带”(图1中由星号表示),可以注意到化学位移等于6±5ppm和64±5ppm的两个不同信号的存在,分别归属于八面体配位[AlO6]和四面体配位[AlO4]中的Al原子。表示为mol%的两种物质的相对丰度通过信号解卷积和计算下面的面积的过程获得并且报告在表2中。
显然,式(I)的混合氧化物的样品几乎仅具有在八面体配位中的Al,而对应于与基于Al的无机粘合剂B结合的混合氧化物的样品、以及铝八面体组分,具有有八面体和四面体配位的第二Al组分,与作为无机粘合剂存在的γ-氧化铝兼容。根据相对于γ-氧化铝样品的[AlO4]mol%的较低含量,作为γ-氧化铝存在的铝仅构成与至少一种无机粘合剂B结合的混合氧化物的样品中存在的全部铝的一部分。
表2
Figure BDA0001946797570000191
另外,在本发明的一个优选方面中,在制备与至少一种无机粘合剂B结合的式(I)的混合氧化物的过程中,可以包括在干燥获得的固相之后的成型步骤。
与上述类似地,出于该目的,根据本发明的方法可以包括紧接在步骤7的干燥之后的步骤7’,其中使所述步骤7中获得的经干燥固相经受成型。
同样地,在至少一种无机粘合剂B的存在下形成的式(I)的混合氧化物包含与黑钨矿同构的假晶相和非晶相。
在使用之前,可以使本发明的与至少一种无机粘合剂B结合的式(I)的混合氧化物在空气或惰性气氛中在高于250℃且低于或等于450℃的温度下经受煅烧,优选地可以在300℃至400℃的温度下经受煅烧。
煅烧可以在恒定温度下或者在温度梯度(或“程序”)下进行。煅烧时间可以从最短3小时至长至20小时变化。基于煅烧温度和煅烧时间,经煅烧的混合氧化物可以包含大于0且小于或等于40%的可变百分比的有机组分C和/或所述有机组分C的残余物。
本发明的第二个目是混合氧化物,其包含Ni、Mo、W、Al、至少一种金属Me、和有机组分C或所述有机组分C的残余物,所述混合氧化物具有下式(I),
Mea Nib Moc Wd Ale Of·pC (I),
其中
-Me选自Zn、Cd、Mn及其混合物,
-C包含聚合物有机化合物,
-a大于或等于0,
-b、c、d、e和f大于0,
-f等于(2a+2b+6c+6d+3e)/2,
-(a+b)/(c+d)之比为0.9至1.1,
-a/b之比大于或等于0且小于或等于1.5,
-c/d之比为0.2至5,
-(a+b+c+d)/e之比为0.6至5,以及
-p为C相对于式(I)的混合氧化物的总重量的重量百分比,并且大于或等于0%且小于或等于40%,
所述混合氧化物包含与黑钨矿同构的假晶相和非晶相。
在一个优选方面中,a大于0,更优选地,a大于0.1。
在一个优选方面中,b、c、d和e大于0.1。
在本发明的一个优选方面中,当a大于0时,元素Me可以为Zn。
在本发明的另一个方面中,当a大于0时,元素Me可以为Mn。
在本发明的另一个方面中,(a+b)/(c+d)之比可以为0.8至2。在一个进一步优选的方面中,所述(a+b)/(c+d)之比可以等于1。
在一个优选方面中,a/b之比可以大于或等于0且小于或等于1。在一个特别优选的方面中,a/b之比可以为0.1至0.4。
优选地,c/d之比可以为0.4至3。在一个特别优选的方面中,c/d之比可以为1至2.5。
优选地,p可以大于或等于0.01%且小于或等于30%。在一个进一步优选的方面中,p可以大于或等于0.2%且小于或等于10%。
在一个优选方面中,式(I)的混合氧化物可以通过上述的本发明的方法获得。
在一个优选方面中,所述混合氧化物可以与至少一种无机粘合剂B结合。
在一个优选方面中,在设想其中添加所述无机粘合剂B的附加步骤5’的实施方案中,通过本发明的方法可以获得所述与至少一种无机粘合剂B结合的式(I)的混合氧化物。如先前已经描述的,上述步骤5’设定在所述方法的步骤5之后,即,在添加聚合物有机化合物之后,或者在将聚合物有机化合物与铝源混合地添加的情况下,在添加所述混合物之后。
通过应用本领域技术人员已知的方法使用Cu Kα辐射(波长λ=0.154nm),借助于Philips型号X’Pert衍射仪(具有垂直测角仪,配备有脉冲计数电子系统)通过粉末的X射线衍射,在煅烧之前和之后对通过根据本发明的方法获得的式(I)的混合氧化物进行表征。
例如,在图2a中报告了其中不存在金属Me的式(I)的混合氧化物(“a”指数等于0)的XRD谱,而在图2b中报告了其中存在金属Me且其为Zn的式(I)的混合氧化物的XRD谱。在两种情况下,在相应混合氧化物在干燥之后(谱a)、在在300℃至400℃的温度下煅烧之后(谱b)和在在600℃下煅烧之后(谱c)分析的样品上获得谱。
在在300℃至400℃的温度下煅烧之后(图2a和2b,谱b),上述式(I)的混合氧化物的特征在于存在非晶相和假晶相。
通过在600℃下热处理,假晶相向着形成与黑钨矿同构的结晶相发展。因此,在在300℃至400℃的温度下煅烧之后存在于样品中的假晶相是与黑钨矿同构的结晶相的前体。在经在600℃下煅烧的样品的X射线衍射谱(图2a和2b,谱c)中,上表1中报告的信号被区分开。特别地,包含金属Me的混合氧化物(图2b)的特征还在于,在2θ角为25°至28°的范围内有至少两个另外的信号(在26.2°处强度非常弱的信号和在26.6°处强度弱的信号)。
在图2a和2b、谱a中,样品的X射线衍射谱突出了可归属于存在的混合铵盐的信号。因此,煅烧处理促进式(I)的混合氧化物的形成,其特征在于在600℃下处理之后很好地结晶出与黑钨矿同构的结晶相。
重要的是要注意,在包含Me金属的式(I)的混合氧化物中,在120℃、350℃至400℃和600℃下的X射线衍射谱(图2b)中总是存在在2θ角为25°至28°的范围内的至少三个信号。
通过应用本领域技术人员已知的方法,使用稀释在KBr中的粉末的片(在KBr中2重量%),通过用光谱仪Perkin-Elmer型号Spectrum BX进行傅里叶变换红外光谱法(FT-IR)对通过本发明的方法获得的式(I)的混合氧化物进行进一步表征。
通过根据本发明的方法获得的包含金属Me且其中Me=Zn的式(I)的混合氧化物在干燥(120℃)之后、在在300℃至400℃(350℃)的温度下煅烧之后和在完全煅烧(600℃)之后获得的FT-IR谱报告在图3a中。
通过比较,选择的用于制备上述混合氧化物的金属的前体的FT-IR谱报告在图3b中。
干燥之后固体中存在的主要信号FT-IR可归属于可用于合成的金属的前体:特别地,在约1400cm-1处的信号是Mo、W、Ni的前体典型的,并且在约1070cm-1处的信号是Al前体(假勃姆石)典型的。
在经煅烧的材料中不再存在该信号,因此表明金属组分之间在固态下的反应与混合氧化物的形成相关。特别地,在图3a(600℃)中不再能检测到氧化铝在约1070cm-1处的典型信号,因此表明氧化铝不是本身与Zn、Ni、Mo的混合氧化物混合存在。换言之,在通过根据本发明的方法获得的式(I)的混合氧化物中,作为可溶的、可水解的或可分散的铝源添加的铝不起负载物或粘合剂的功能并且然后用于其他金属组分的稀释,而是以相对于其他金属等同的方式在混合氧化物的组成中。特别地,式(I)的混合氧化物,与其包含或不包含金属Me的事实无关,产生这样的FT-IR谱:其中识别到在805±10cm-1、605±10cm-1和445±10cm-1处的信号,这是黑钨矿相典型的并且其清晰度随着煅烧温度而增加。
通过本发明的方法获得的式(I)的混合氧化物的表面积和孔隙率通过使用Micrometrics
Figure BDA0001946797570000231
表面积和孔隙率分析仪在-196℃的温度下由N2的吸附/解吸等温线来确定。在获得等温线之前,使样品(每次测试约0.3g)在真空下在150℃下经受预处理16小时。
比表面积(SSA)通过技术人员已知的BET法(Brunauer-Emmett-Taller)来确定,在0.05至0.3的P/P0相对压力范围内进行分析。
上述混合氧化物的特征在于,在350℃热处理之后确定的比表面积大于或等于80m2/g。优选地,比表面积在90m2/g至230m2/g的范围内,更优选地,其在90m2/g至190m2/g的范围内。
通过根据本发明的方法获得的式(I)的混合氧化物是介孔的,即,根据IUPAC术语(Pure&Appl.Chem.第66卷,第8期,第1739至1758页,1994),特征在于孔直径为2nm至50nm。优选地,平均孔直径的范围为4nm至10nm。
孔的比总体积(specific total volume)通过在0.99P/P0下使用Gurvitsch法来计算,并且孔分布通过在解吸曲线上应用BJH(Barret-Joyner-Hallender)法来确定。所有引用的方法都是本领域技术人员已知的。
通过本发明的方法获得的式(I)的混合氧化物的特征在于,孔的体积大于或等于0.15mL/g。优选地,孔的所述体积为0.15mL/g至0.35mL/g。
通过本发明的方法获得的可能与至少一种无机粘合剂B结合的式(I)的混合氧化物可以转化为相应的硫化物,并且所述硫化物可以有利地用作加氢处理催化剂。
因此,本发明的另一个目的是通过使可能与至少一种无机粘合剂B结合的式(I)的混合氧化物硫化而获得的金属硫化物催化剂。
在一个优选方面中,经受硫化以提供上述金属硫化物催化剂的式(I)的混合氧化物通过根据本发明的制备所述式(I)的混合氧化物的方法获得。
根据本发明的一个不同实施方案,金属硫化催化剂可以通过使与至少一种无机粘合剂B结合的式(I)的混合氧化物硫化获得。
在一个优选方面种,经受硫化以提供上述金属硫化物催化剂的与至少一种无机粘合剂B结合的式(I)的混合氧化物通过根据本发明的制备所述与至少一种无机粘合剂B结合的式(I)的混合氧化物的方法获得。
为了获得作为加氢处理催化剂的相应的硫化组合物,本发明的混合氧化物的硫化可以通过技术人员已知的任何一种技术通过使用任何硫化剂来进行,如例如J.H.Gary eG.E.Handwerk在“Petroleum Refining–Technology and Economics”(2001,M.Dekker)第177页中所描述的。
硫化可以原位进行(即,在其中随后进行加氢处理的同一反应器中进行),或者非原位进行。硫化过程可以在例如由H2S和H2或CS2和H2构成的还原气氛下在高温下进行足以使起始混合氧化物硫化的一段时间,优选地用H2S和H2在300℃至500℃的温度下进行足以使起始混合氧化物硫化的一段时间。例如,硫化可以进行1小时至100小时的时间,优选地进行15小时至50小时的时间。
或者,混合氧化物的硫化可以通过使用溶解在烃进料(例如石脑油或瓦斯油)中的二甲基二硫化物(DMDS)在300℃至500℃的温度下进行。
最后,在另一个优选方面中,硫化可以通过使本发明的混合氧化物与待处理的富含硫的烃进料直接接触进行,优选地在300℃至500℃的温度下进行。
如上所述,通过使式(I)的混合氧化物或者与至少一种无机粘合剂B结合的式(I)的混合氧化物硫化而获得的本发明的催化剂是非常活泼且稳定的催化剂,其在加氢处理方法中提供了特别高且广谱的催化性能,所述加氢处理方法除加氢脱硫和加氢脱氮之外还包括加氢脱芳构化,并且降低了被处理的烃混合物中的多环芳烃的含量。
相反地,上述催化剂显示出催化加氢裂化反应的差的倾向。
因此,本发明的另一个目的是包含一种或更多种烃的进料的加氢处理方法,其包括在通过使式(I)的混合氧化物或者与至少一种无机粘合剂B结合的式(I)的混合氧化物硫化而获得的催化剂的存在下,使所述进料与氢接触。
可以用本发明的催化剂处理包含含有硫和/或氮的杂质的烃混合物的任何进料:例如,可以使原油馏出物、原油残渣、石脑油等经受处理,优选地,加氢处理涉及包含含硫污染物和/或含氮污染物的烃馏分。
特别地,本发明的金属硫化物催化剂可以有利地用于加氢处理包含一种或更多种烃的进料,所述进料包含多至4%w/w的S、多至0.2%w/w的N和多至50%w/w的多环芳烃。
优选地,处理在100℃至450℃、更优选300℃至370℃的温度下,在5.0MPa至10.0MPa、更优选5.0MPa至7.0MPa的压力下发生。空速LHSV(液时空速)可以为0.5小时-1至5小时-1,优选为0.8小时-1至2小时-1。氢量可以是烃量的100至800倍,表示为Nl H2/l烃混合物。
鉴于其能够同时实现高活性的加氢脱硫、加氢脱氮、加氢脱芳构化和多核芳烃化合物的减少,本发明的催化剂也可以有利地用作加氢裂化方法中与酸组分相关的加氢组分。适于加氢裂化的进料为例如重质和超重质原油、减压瓦斯油(VGO)、减压渣油(VR)。
为了实施和更好地说明本发明,以下报告了其中制备作为催化剂前体的式(I)的混合氧化物的方法的一些非限制性实施例和催化测试。
在所有的实施例中,混合氧化物的组成摩尔配方相对于总和(Ni摩尔数+Zn摩尔数)=1.00进行归一化。
实施例1:根据本发明(组成为Me0.00Ni1.00Mo0.60W0.40Al1,04O5.56·6.0%C的混合氧化 物的制备)
混合氧化物的制备工序涉及在合适的温度条件下连续添加并搅拌含有组成元素的溶液或分散体。
首先,将49.4g偏钨酸铵水合物(NH4)6H2W12O40·xH2O添加至154g水中,并通过使用设定在180rpm(圆周速度=40m/分钟)的棒式搅拌器来促进盐溶解。在约15分钟之后,向溶液中添加51.9g七钼酸铵(NH4)6Mo7O24·4H2O,并将混合物在搅拌下在50℃下加热以促进钼盐的溶解。在30分钟之后添加62.7g碱式碳酸镍NiCO3·Ni(OH)2·4H2O(58重量%的NiO),使混合物温度达到70℃,并使该混合物在该温度下一直在持续搅拌下保持至少30分钟。
同时,将36.7g
Figure BDA0001946797570000251
P3Sasol(含有70%w/w Al2O3的假勃姆石)与188.1g0.6%w/w乙酸水溶液混合。将混合物在搅拌下保持约2小时,以获得均匀的氧化铝分散体。
同时,将4.7g甲基纤维素
Figure BDA0001946797570000252
MC Fluka添加至35.0g温度为50℃的水中。将混合物在50℃下在搅拌下保持约10分钟,以获得聚合物有机化合物的均匀分散体。
在搅拌并保持50℃的温度下将该聚合物有机化合物的分散体缓慢添加至氧化铝分散体中,直至获得包含氧化铝和聚合物有机化合物两者的均匀分散体。
将所述均匀分散体添加至上述的包含Ni、Mo和W的悬浮体中,进而在搅拌下保持在70℃。添加非常缓慢地并使用滴液漏斗进行。最后,使混合物的温度达到90℃,并将所得悬浮体在该温度下在搅拌下保持约18小时。在上述热处理结束时测量的悬浮体的pH等于5.6,并且相对于混合氧化物的理论含量,
Figure BDA0001946797570000261
MC的含量等于3.1重量%。
在该处理结束时,将由此获得的分散体(其氧化物的理论含量等于26重量%)冷却并在200℃的预加热烘箱中进行干燥约20分钟。根据以下程序温度在静态空气中煅烧部分所得固体(50g):在30分钟内以6℃/分钟的升温速率从室温至200℃,在200℃下保持等温10分钟,在2小时35分钟内以约1℃/分钟的升温速率加热直至350℃,在350℃下保持等温5小时。
27Al MAS NMR谱报告在图1a中,由此可以计算出99mol%的铝占据八面体配位。
将经350℃煅烧的一部分样品在600℃下进一步煅烧5小时。经受几次热处理的样品的XRD谱报告在图2a中。
然后将经200℃干燥的剩余部分样品置于机械混合器中并在约50℃的温度下混合约2小时,直至获得具有合适稠度的均匀糊状物以进行挤出。将挤出物在室温下老化15小时,然后以上述升温速率煅烧。
最终挤出的混合氧化物具有以下摩尔组成:Ni1.00Mo0.60W0.40Al1.04O5.56。相对于固体的总重量,混合氧化物包含6.0重量%的有机组分残余物。
由解吸等温线计算的,比表面积(SSA)为142m2/g,孔的总体积(Vp)为0.18cm3/g,平均孔径为4.0nm。
实施例2:根据本发明(组成为Me0.00Ni1.00Mo0.50W0.50Al1.04O5.56·6.3%C的混合氧化 物的制备)
通过改变偏钨酸铵水合物(NH4)6H2W12O40·xH2O(61.7g)和七钼酸铵(NH4)6Mo7O24·4H2O(43.2g)的量,重复实施例1的工序。
获得的混合氧化物具有以下摩尔组成:Ni1.00Mo0.50W0.50Al1.04O5.56。相对于固体的总重量,混合氧化物包含6.3重量%的有机组分残余物。由解吸等温线计算的,比表面积(SSA)为149m2/g,孔的总体积(Vp)为0.19cm3/g,平均孔直径为4.4nm。
实施例3:根据本发明(组成为Me0,50Ni0,50Mo0,50W0,50Al1,02O5,53·13.1%C的混合氧 化物的制备,其中Me=Zn)
将61.7g偏钨酸铵水合物(NH4)6H2W12O40·xH2O添加至154g水中,并通过使用设定在180rpm(圆周速度=40m/分钟)的棒式搅拌器来促进盐溶解。在约15分钟之后,向溶液中添加43.2g七钼酸铵(NH4)6Mo7O24·4H2O,并将混合物在搅拌下在50℃下加热以促进钼盐的溶解。在30分钟之后添加53.9g乙酸锌Zn(CH3COO)2·2H2O,然后将混合物在50℃下并在搅拌下保持另外30分钟。最后,添加31.7g碱式碳酸镍NiCO3·Ni(OH)2·4H2O(58重量%的NiO),使混合物温度达到70℃,并使该混合物在该温度下一直在持续搅拌下保持至少30分钟。
同时,将36.7g
Figure BDA0001946797570000271
P3Sasol(含有70%w/w Al2O3的假勃姆石)与188.1g0.6%w/w乙酸水溶液混合。将混合物在搅拌下保持约2小时,以获得均匀的氧化铝分散体。
同时,将4.2g甲基纤维素
Figure BDA0001946797570000272
MC Fluka添加至35.0g温度为50℃的水中。将混合物在50℃下在搅拌下保持约10分钟,以获得聚合物有机化合物的均匀分散体。
在搅拌并保持50℃的温度下将该聚合物有机化合物的分散体缓慢添加至氧化铝分散体中,直至获得包含氧化铝和聚合物有机化合物两者的均匀分散体。
将所述均匀分散体添加至上述的包含Zn、Ni、Mo和W的悬浮体中,进而在搅拌下保持在70℃。添加非常缓慢地并使用滴液漏斗进行。最后,使混合物的温度达到90℃,并将所得浆料在该温度下在搅拌下保持约18小时。在上述热处理结束时测量的悬浮体的pH等于5.6,并且相对于混合氧化物的理论含量,
Figure BDA0001946797570000273
MC的含量等于3.1重量%。
在该处理结束时,将由此获得的分散体(相对于分散体的总重量,其氧化物的理论含量等于22重量%)冷却并在200℃的预加热烘箱中进行干燥约20分钟。
然后根据以下温度程序在静态空气中煅烧回收的固相:在30分钟内以6℃/分钟的升温速率从室温至200℃,在200℃下保持等温10分钟,在2小时35分钟内以约1℃/分钟的升温速率加热直至350℃,在350℃下保持等温5小时。
最终的混合氧化物具有以下摩尔组成:Zn0.50Ni0.50Mo0.50W0.50Al1.02O5.53。相对于固体的总重量,混合氧化物包含13.1重量%的有机组分残余物。
由解吸等温线计算的,比表面积(SSA)为142m2/g,孔的总体积(Vp)为0.21cm3/g,平均孔径为9nm。
实施例4:根据本发明(组成为Me0.25Ni0.75Mo0.60W0.40Al1.03O5.55·14.9%C的混合氧 化物的制备,其中Me=Zn)
将49.4g偏钨酸铵水合物(NH4)6H2W12O40·xH2O添加至154g水中,并通过使用设定在180rpm(圆周速度=40m/分钟)的棒式搅拌器来促进盐溶解。在约15分钟之后,向溶液中添加51.9g七钼酸铵(NH4)6Mo7O24·4H2O,并将混合物在搅拌下在50℃下加热以促进钼盐的溶解。在30分钟之后添加27.2g乙酸锌Zn(CH3COO)2·2H2O,然后将混合物在50℃下并在搅拌下保持另外30分钟。最后,添加47.0g碱式碳酸镍NiCO3·Ni(OH)2·4H2O(58重量%的NiO),使混合物温度达到70℃,并使该混合物在该温度下一直在持续搅拌下保持至少30分钟。
同时,将36.7g
Figure BDA0001946797570000281
P3Sasol(含有70%w/w Al2O3的假勃姆石)与188.1g0.6%w/w乙酸水溶液混合。将混合物在搅拌下保持约2小时,以获得均匀的氧化铝分散体。
同时,将4.4g甲基纤维素
Figure BDA0001946797570000282
MC Fluka添加至35.0g温度为50℃的水中。将混合物在50℃下在搅拌下保持约10分钟,以获得聚合物有机化合物的均匀分散体。
在搅拌并保持50℃的温度下将该聚合物有机化合物的分散体缓慢添加至氧化铝分散体中,直至获得包含氧化铝和聚合物有机化合物两者的均匀分散体。
将所述均匀分散体添加至上述的包含Zn、Ni、Mo和W的悬浮体中,进而在搅拌下保持在70℃。添加非常缓慢地并使用滴液漏斗进行。最后,使混合物的温度达到90℃,并将所得浆料在该温度下在搅拌下保持约18小时。在上述热处理结束时测量的悬浮体的pH等于5.6,并且相对于混合氧化物的理论含量,
Figure BDA0001946797570000283
MC的含量等于3.1重量%。
在该处理结束时,将由此获得的分散体(其氧化物的理论含量等于24重量%)冷却并在200℃的预加热烘箱中进行干燥约20分钟。
然后根据以下温度程序在静态空气中煅烧回收的固相:在30分钟内以6℃/分钟的升温速率从室温至200℃,在200℃下保持等温10分钟,在2小时35分钟内以约1℃/分钟的升温速率加热直至350℃,在350℃下保持等温5小时。
最终的混合氧化物具有以下摩尔组成:Me0.25Ni0.75Mo0.60W0.40Al1.03O5.55。相对于固体的总重量,混合氧化物包含14.9重量%的有机组分残余物。
由解吸等温线计算的,比表面积(SSA)为175m2/g,孔的总体积(Vp)为0.21cm3/g,平均孔径为4.1nm。
将一部分样品在600℃下进一步煅烧5小时。经受几次热处理的样品的XRD谱报告在图2b中。由在120℃、350℃至400℃和600℃下的X射线衍射谱中观察到,在2θ角为25°至28°的范围内总是存在至少三个信号。
经受几次热处理的样品的FT-IR谱报告在图3a中。
实施例5:根据本发明(组成为Me0,25Ni0,75Mo0,60W0,40Al1,03O5,55·13,8%C·10%γ- Al2O3且与10%的无机粘合剂B结合的混合氧化物的制备,其中Me=Zn)
本实施例公开了包含Zn且与无机粘合剂B结合的混合氧化物的制备,其中使用的聚合物有机化合物是
Figure BDA0001946797570000291
MC。
所遵循的方法与先前实施例4中描述的方法相同,不同之处在于在最终的18小时热处理之前将58.0g可分散的γ-氧化铝(
Figure BDA0001946797570000292
W925,γ-Al2O325%w/w)添加至混合物中。
最终的混合氧化物具有以下摩尔组成:Zn0.25Ni0.75Mo0.6W0.4Al1O5.5·10%γ-Al2O3。相对于固体的总重量,混合氧化物包含13.8重量%的有机组分残余物。
由解吸等温线计算的,比表面积(SSA)为145m2/g,孔的总体积(Vp)为0.23cm3/g,平均孔径为4.0nm。
所得混合氧化物的X射线衍射谱在2θ角为21°至28°的范围内检测到至少三个信号。
27Al-MAS-NMR谱报告在图1b中,由此可以计算出81mol%的铝占据八面体配位。
比较例6(未根据本发明的组成为Ni1.0Mo0.5W0.54Al0.57O4.98·2.0%C的混合氧化物 的制备)
将7.56g辛胺溶解在40g纯乙醇中。在搅拌下向该溶液中添加包含溶解在50ml包含14.90g 10重量%勃姆石(SasolTM
Figure BDA0001946797570000301
P2)的水性溶胶中的14.89g六水合硝酸镍Ni(NO3)2·6H2O、4.52g七钼酸铵(NH4)6Mo7O24·4H2O和6.98g偏钨酸铵水合物(NH4)6H2W12O40·xH2O的溶液。辛胺/(Ni+Mo+W)摩尔比等于0.6。在搅拌下静置3小时,在70℃下加热,形成浅绿色凝胶。将其静置48小时。得到的凝胶没有上清液,并将其在90℃的烘箱中干燥48小时。将干燥的材料在空气中在400℃下进行热处理5小时。
该固体具有以下摩尔组成:Ni1.00Mo0.50W0.54Al0.57O4.98。相对于固体的总重量,混合氧化物包含2.0重量%的有机组分残余物。
由解吸等温线计算的,比表面积为151m2/g,孔的总体积为0.381cm3/g,孔的平均直径为6.3nm。
实施例7(催化测试)
使用根据实施例1、2、4、5、6制备的混合氧化物来进行实验,在其中验证它们作为加氢处理催化剂的有效性。
在每个实验中,将预先压制、造粒并筛分(10目至16目)的20cm3混合氧化物用20cm3惰性材料(碳化硅)稀释,并装入体积等于40ml的固定床反应器中。然后,用硫化混合物处理混合氧化物,所述硫化混合物由添加有二甲基二硫化物(DMDS)的“直馏瓦斯油”组成,以使S的浓度相对于硫化物混合物的总重量等于2.5重量%。使用的硫化条件是:
LHVS=3小时-1
P=3.0MPa
T=340℃
H2/硫化物混合物=200NL/L
硫化时间=26小时
对于其中混合氧化物获得催化性能的硫化阶段,在T=330℃下进行稳定化阶段60小时至100小时,保持催化床与“直馏”瓦斯油接触。
加氢处理反应通过进给由比例为75:25(w/w)的“直馏”瓦斯油和“减粘裂化物”组成并因此特征在于有大量硫(2%w/w)和多核芳烃(17%w/w)的混合物来进行。
反应条件如下:
P(H2)=4.9MPa
H2/进料比=230NL/L
LHSV=0.8小时-1
反应温度=340℃
以相对于比较例6的催化剂活性(设定为100%)的百分比评估每种催化剂的活性。
数据报告在下表4中。
表4
催化剂 组成 HDS HDN HDA
实施例1 Ni<sub>1.00</sub>Mo<sub>0.60</sub>W<sub>0.40</sub>Al<sub>1.04</sub>O<sub>5.56</sub>·6.0%C 100.1 100.1 253.8
实施例2 Ni<sub>1.00</sub>Mo<sub>0.50</sub>W<sub>0.50</sub>Al<sub>1.04</sub>O<sub>5.56</sub>·6.3%C 100.3 100.3 341.8
实施例4 Zn<sub>0.25</sub>Ni<sub>0.75</sub>Mo<sub>0.60</sub>W<sub>0.40</sub>Al<sub>1.03</sub>O<sub>5.55</sub>·14.9%C 100.3 100.4 303.3
实施例5 Zn<sub>0.25</sub>Ni<sub>0.75</sub>Mo<sub>0.60</sub>W<sub>0.40</sub>Al<sub>1.03</sub>O<sub>5.55</sub>·13.8%C·10%γ-Al<sub>2</sub>O<sub>3</sub> 100.1 100.3 224.2
比较例6 Ni<sub>1.0</sub>Mo<sub>0.5</sub>W<sub>0.54</sub>Al<sub>0.57</sub>O<sub>4.98</sub>·2.0%C 100.0 100.0 100.0
除了加氢脱硫(HDS)和加氢脱氮(HDN)的性能相当之外,所有样品均在加氢脱芳构化(HDA)中显示出显著提高的转化。
重要的是要注意,另外,相对于比较例的催化剂,特征在于金属含量较低(因为其包含10重量%的无机粘合剂B)的实施例5的催化剂主要对于加氢脱芳构化反应的目的是更活泼的。

Claims (22)

1.一种用于获得混合氧化物的方法,所述混合氧化物包含Ni、Mo、W、Al、任选地至少一种金属Me、和有机组分C或所述有机组分C的残余物,所述混合氧化物具有下式(I),
Mea Nib Moc Wd Ale Of·pC (I),
其中
-Me选自Zn、Cd、Mn及其混合物,
-C包含聚合物有机化合物,
-a大于或等于0,
-b、c、d、e和f大于0,
-f等于(2a+2b+6c+6d+3e)/2,
-(a+b)/(c+d)之比为0.9至1.1,
-a/b之比大于或等于0且小于或等于1.5,
-c/d之比为0.2至5,
-(a+b+c+d)/e之比为0.6至5,以及
-p为所述有机组分C和可能地所述有机组分C的残余物相对于式(I)的混合氧化物的总重量的重量百分比,并且大于0.2%且小于或等于40%,
其中所述聚合物有机化合物选自藻酸铵、甲基纤维素、羟丙基甲基纤维素、乙二醇和丙二醇共聚物、辛基酚乙氧基化物、聚氧乙烯十六烷基醚,
所述式(I)的混合氧化物包含与黑钨矿同构的假晶相和非晶相,
其中所述方法包括以下步骤:
1)将至少一种可溶W源和至少一种可溶Mo源混合至合适体积的水中,直到获得澄清的水溶液;
2)任选地,向步骤1)中获得的所述溶液中添加至少一种元素Me的至少一种源;
3)向前一步骤中获得的混合物中添加至少一种Ni源;
4)在搅拌下,使步骤3)中获得的混合物在50℃至80℃的温度下经受第一热处理;
5)向步骤4)中获得的混合物中添加至少一种可溶的、可水解的或可分散的Al源,和至少一种聚合物有机化合物;
6)在搅拌下,使前一步骤中获得的混合物在80℃至95℃的温度下经受第二热处理,获得悬浮体;
7)使步骤6)中获得的所述悬浮体经受干燥,以这样的方式获得固相;
8)煅烧前一步骤中获得的所述固相,获得所述式(I)的混合氧化物。
2.根据权利要求1所述的方法,其中b、c、d、e和f大于0.1。
3.根据权利要求1所述的方法,其中在所述方法的步骤2)中任选地添加的所述元素Me为Zn。
4.根据权利要求1所述的方法,其中在所述方法的步骤2)中任选地添加的所述元素Me为Mn。
5.根据权利要求1至4中任一项所述的方法,其中省略任选的步骤2)。
6.根据权利要求1至4中任一项所述的方法,其中步骤4)的所述第一热处理进行10分钟至1小时的时间。
7.根据权利要求1至4中任一项所述的方法,其中使用可分散氧化铝作为所述方法的步骤5)中的铝源。
8.根据权利要求7所述的方法,其中所述可分散氧化铝为特征在于平均直径小于100μm的颗粒的勃姆石或假勃姆石。
9.根据权利要求1至4中任一项所述的方法,其中在所述方法的步骤5)中添加的所述聚合物有机化合物为甲基纤维素。
10.根据权利要求1至4中任一项所述的方法,其中在所述方法的步骤5)中添加分散体,所述分散体单独制备并且包含所述至少一种可溶的、可水解的或可分散的Al源和所述至少一种聚合物有机化合物二者。
11.根据权利要求1至4中任一项所述的方法,其中步骤6)的所述第二热处理进行5小时至30小时的时间。
12.根据权利要求1至4中任一项所述的方法,包括紧接在步骤7)之后的附加步骤7’),其中使所述步骤7)中获得的经干燥固相经受成型。
13.根据权利要求1至4中任一项所述的方法,其中步骤8)的所述煅烧在惰性气氛或空气气氛下在高于或等于200℃且低于或等于450℃的温度下进行。
14.根据权利要求1至4中任一项所述的方法,其中在能够通过所述方法获得的所述混合氧化物的组成中,所述有机组分C和可能地所述有机组分C的残余物的百分比“p”大于0.2%且小于或等于30%。
15.根据权利要求1至4中任一项所述的方法,其中所述方法包括紧接在所述方法的步骤5)之后的附加步骤5’),其中添加无机粘合剂B。
16.一种通过根据权利要求1至14中任一项所述的方法获得的混合氧化物,包含Ni、Mo、W、Al、任选地至少一种金属Me、和有机组分C或所述有机组分C的残余物,所述混合氧化物具有下式(I),
Mea Nib Moc Wd Ale Of·pC (I)
其中
-Me选自Zn、Cd、Mn及其混合物,
-C包含聚合物有机化合物,
-a大于或等于0,
-b、c、d、e和f大于0,
-f等于(2a+2b+6c+6d+3e)/2,
-(a+b)/(c+d)之比为0.9至1.1,
-a/b之比大于或等于0且小于或等于1.5,
-c/d之比为0.2至5,
-(a+b+c+d)/e之比为0.6至5,以及
-p为所述有机组分C和可能地所述有机组分C的残余物相对于式(I)的混合氧化物的总重量的重量百分比,并且大于0.2%且小于或等于40%,
其中所述聚合物有机化合物选自藻酸铵、甲基纤维素、羟丙基甲基纤维素、乙二醇和丙二醇共聚物、辛基酚乙氧基化物、聚氧乙烯十六烷基醚,
所述混合氧化物包含与黑钨矿同构的假晶相和非晶相。
17.根据权利要求16所述的混合氧化物,其中当a大于0时,元素Me为Zn。
18.根据权利要求16所述的混合氧化物,其中当a大于0时,元素Me为Mn。
19.根据权利要求16至18中任一项所述的混合氧化物,与至少一种无机粘合剂B结合。
20.根据权利要求19所述的混合氧化物,能够通过根据权利要求15所述的方法获得。
21.一种金属硫化物催化剂,通过使根据权利要求16至20中任一项所述的混合氧化物或者与至少一种无机粘合剂B结合的根据权利要求16至20中任一项所述的混合氧化物硫化而获得。
22.一种加氢处理包含一种或更多种烃的进料的方法,其包括在根据权利要求21所述的金属硫化物催化剂的存在下使所述进料与氢接触。
CN201780044089.3A 2016-07-22 2017-07-21 加氢处理催化剂和用于制备所述催化剂的方法 Active CN109475845B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT102016000077340 2016-07-22
IT102016000077340A IT201600077340A1 (it) 2016-07-22 2016-07-22 Catalizzatori di idrotrattamento e procedimento di preparazione di detti catalizzatori.
PCT/IB2017/054439 WO2018015933A1 (en) 2016-07-22 2017-07-21 Hydrotreatment catalysts and process for preparing said catalysts

Publications (2)

Publication Number Publication Date
CN109475845A CN109475845A (zh) 2019-03-15
CN109475845B true CN109475845B (zh) 2022-04-12

Family

ID=57851137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780044089.3A Active CN109475845B (zh) 2016-07-22 2017-07-21 加氢处理催化剂和用于制备所述催化剂的方法

Country Status (8)

Country Link
US (3) US11311862B2 (zh)
EP (1) EP3487618A1 (zh)
CN (1) CN109475845B (zh)
CA (1) CA3029930C (zh)
IT (1) IT201600077340A1 (zh)
RU (1) RU2729655C1 (zh)
SA (1) SA519400882B1 (zh)
WO (1) WO2018015933A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600077340A1 (it) 2016-07-22 2018-01-22 Eni Spa Catalizzatori di idrotrattamento e procedimento di preparazione di detti catalizzatori.
US20200055024A1 (en) * 2018-08-14 2020-02-20 Uop Llc Hydroprocessing catalyst for heavy distillate streams, method of manufacture and application
WO2022201179A1 (en) 2021-03-20 2022-09-29 Hindustan Petroleum Corporation Limited A dispersed hydrotreating catalyst and a process of preparation thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6930219B2 (en) * 1999-09-07 2005-08-16 Abb Lummus Global Inc. Mesoporous material with active metals
US8058203B2 (en) * 2009-04-29 2011-11-15 Chevron U.S.A. Inc. Hydroconversion multi-metallic catalyst and method for making thereof
CN102413933B (zh) * 2009-04-29 2016-09-14 雪佛龙美国公司 加氢转化多金属催化剂及其制备方法
IT1398288B1 (it) * 2009-09-30 2013-02-22 Eni Spa Ossidi misti di metalli di transizione, catalizzatori di idrotrattamento da essi ottenuti, e processo di preparazione comprendente procedimenti sol-gel
ITMI20110510A1 (it) 2011-03-30 2012-10-01 Eni Spa Ossidi misti di metalli di transizione, catalizzatori di idrotrattamento da essi ottenuti, e processo di preparazione
CN103055881A (zh) * 2012-08-27 2013-04-24 王小英 煤焦油加氢精制催化剂及其制备方法
CN105312060A (zh) * 2014-07-17 2016-02-10 中国科学院大连化学物理研究所 一种层状结构多金属本体催化剂及制备和应用
IT201600077340A1 (it) 2016-07-22 2018-01-22 Eni Spa Catalizzatori di idrotrattamento e procedimento di preparazione di detti catalizzatori.

Also Published As

Publication number Publication date
IT201600077340A1 (it) 2018-01-22
RU2729655C1 (ru) 2020-08-11
US11878289B2 (en) 2024-01-23
US20200290025A1 (en) 2020-09-17
CN109475845A (zh) 2019-03-15
CA3029930C (en) 2023-12-12
CA3029930A1 (en) 2018-01-25
US20240050929A1 (en) 2024-02-15
US20220161238A1 (en) 2022-05-26
SA519400882B1 (ar) 2023-02-19
US11311862B2 (en) 2022-04-26
EP3487618A1 (en) 2019-05-29
WO2018015933A1 (en) 2018-01-25

Similar Documents

Publication Publication Date Title
US10005071B2 (en) Mixed oxides of transition metals, hydrotreatment catalysts obtained therefrom and preparation process
US9776174B2 (en) Process for preparing a catalytic composition for the hydroconversion of petroleum fractions
US8088706B2 (en) Catalyst composition preparation and use
CA2516691C (en) Catalyst composition, its preparation and use
AU2006308165B2 (en) Bulk hydroprocessing catalyst comprising a group VIII metal and molybdenum, preparation and use thereof
JP5089597B2 (ja) ニッケル・タングステン酸化物の粒子を含んで成る塊状触媒
US11878289B2 (en) Hydrotreatment catalysts and process for preparing said catalysts
KR101751923B1 (ko) 수첨탈황 촉매 및 이의 제조방법
KR101353807B1 (ko) Ⅴⅰ 족 및 ⅴⅲ 족의 금속 산화 입자를 포함하는 벌크촉매 및 이의 제조 방법
KR20180111868A (ko) 니켈 함유 혼합 금속-산화물/탄소 벌크 수소화 처리용 촉매 및 그 용도
TWI432261B (zh) 包含鎳鎢金屬氧化顆粒之整體觸媒(bulk catalyst)
KR20230146555A (ko) 다중-금속성 벌크 수첨가공 촉매

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant