CN109459453B - 一种硅酸镧纳米粉体的表征方法 - Google Patents

一种硅酸镧纳米粉体的表征方法 Download PDF

Info

Publication number
CN109459453B
CN109459453B CN201811345526.8A CN201811345526A CN109459453B CN 109459453 B CN109459453 B CN 109459453B CN 201811345526 A CN201811345526 A CN 201811345526A CN 109459453 B CN109459453 B CN 109459453B
Authority
CN
China
Prior art keywords
sample
detection sample
powder
temperature
conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811345526.8A
Other languages
English (en)
Other versions
CN109459453A (zh
Inventor
洪卉
李媛
张婷婷
陈健
于斐斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yantai Engineering and Technology College
Original Assignee
Yantai Engineering and Technology College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yantai Engineering and Technology College filed Critical Yantai Engineering and Technology College
Priority to CN201811345526.8A priority Critical patent/CN109459453B/zh
Publication of CN109459453A publication Critical patent/CN109459453A/zh
Application granted granted Critical
Publication of CN109459453B publication Critical patent/CN109459453B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/207Diffractometry using detectors, e.g. using a probe in a central position and one or more displaceable detectors in circumferential positions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/08Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • G01N15/0893Investigating volume, surface area, size or distribution of pores; Porosimetry by measuring weight or volume of sorbed fluid, e.g. B.E.T. method
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
    • G01N5/02Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid by absorbing or adsorbing components of a material and determining change of weight of the adsorbent, e.g. determining moisture content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • G01N2021/3572Preparation of samples, e.g. salt matrices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Conductive Materials (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

本发明公开了一种硅酸镧纳米粉体的表征方法,属于硅酸镧表征领域。通过分析LCSO粉体的制备,Ce+3对硅酸镧的掺杂对La10Si6O27陶瓷片的组织结构的影响,以及不同含量的Ce+3的掺杂所带来的影响;制备具有较高的导电性质的LCSO陶瓷片,为之后与钙钛矿型电解质LSCM固体氧化物电解质和CeO2基型电解质材料SDC分别复合提供较优的LCSO陶瓷片,通过进行Ce的掺杂,改变La10Si6O7的物质结构,提高氧空轨道,降低SOFC的操作温度,维持较高的电导率,采用XRD和SEM对LCSO电解质陶瓷的物相结构进行分析,又通过孔隙率、热重分析和交流阻抗测试,获得电解质陶瓷的性能指数,从而对电解质陶瓷获得一个完整全面的分析。

Description

一种硅酸镧纳米粉体的表征方法
技术领域
本发明涉及硅酸镧表征领域,尤其涉及一种硅酸镧纳米粉体的表征方法。
背景技术
能源的探索随着经济技术的发展,日益成为热点话题,石油煤炭的过渡使用带来了环境的污染和有毒物的排放。固体氧化物燃料电池(SOFC)的研究发展成为当代科技研究的主要任务之一,在21世纪SOFC成为了清洁能源。SOFC燃烧是染料转化化学能为电能的一种装置。但是SOFC的操作温度达到1000℃左右才能有0.1S/m的导电性,高温操作会带来电极烧结退化的现象,一致损坏了电池的性能等一系列的问题,降低电池的操作温度,成为电池研究的首要任务。想要降低电池的操作温度,同时又能保证具有较好的导电性,电解质的研究成为了关键的课题。在电解质中提高氧离子的传输,能够提高电解质的性能,所以对电解质材料的选择提出了更高的要求。总的来讲,提高电解质的导电性有两种方式,一是制备新型的氧离子输送介质,二是更改原输送氧离子较差的介质,掺杂技术和纳米技术被认为是提高氧离子传输的较为有效的操作方式。
发明内容
本发明的目的是为了解决硅酸镧纳米粉体表征不明确,而提出的一种硅酸镧纳米粉体的表征方法,有效解决酸镧纳米粉体表征不明确的问题。
为了实现上述目的,本发明采用了如下技术方案:
一种硅酸镧纳米粉体的表征方法,包括以下步骤;
S1、将La10-x/3Cex/3Si6O26+§粉体与成型剂混合之后,进行研磨和造粒工作,之后放入粉末压片机中,压片成型之后放入马弗炉进行高温煅烧,获得检测试样,;
S2、取部分检测试样进行XRD测试,之后再将检测试样进行傅里叶红外光谱分析,利用不同的结构对不同的红外波长进行吸收,以致不同的结构都有一个特殊的吸收峰,定性定量地分析检测试样的结构;
S3、取部分检测试样,利用扫描电子显微镜观察材料的尺寸大小、形状和表面光滑程度;
S4、取部分检测试样放入电热鼓风干燥机中,在100-120℃下干燥1-1.5h后,在空气环境下的称量质量为G1,之后将检测试样放入沸水中称量悬浮质量为G2,取出检测试样之后,将检测试样的表面上的水分擦干之后在空气环境下称量质量为G3,通过以下公式可以计算出检测试样孔隙率Q为;
Q=(G3-G1)÷(G3-G2)
S5、取部分检测试样放入热重分析仪中,以5℃/min的速度对检测试样进行升温操作,并在同时记录样品的质量变化通过对样品的温度对质量的影响,并找出失重分析骤降点,记录其骤降温度为TG;
S6、取部分检测试样,通过电化学分析仪测得的交流阻抗数据,拟合得到样品的电阻值,电阻值与电导率的关系通常由欧姆定律和电阻定律表达,公式如下:
Figure GDA0001912810610000033
其中:
Figure GDA0001912810610000034
为样品的电导率,ρ为样品的电阻率,L为样品的厚度,S为样品的横截面积,R为电极的电阻;
并且固体氧化物电解质的电导率与温度的关系以下公式:
Figure GDA0001912810610000035
其中:
Figure GDA0001912810610000036
为指前因子,Ea为电导率活化能,K为Boltzmann常数,T为绝对温度;上式可转化为:
Figure GDA0001912810610000031
S7、将S4中的孔隙率Q,S5中的骤降温度TG,S6中的Ea电导率活化能,带入以下公式中:
Figure GDA0001912810610000032
得到比例因子η,并将计算结果进行比对分析。
优选地,所述La10-x/3Cex/3Si6O26+§粉体中的X为1、2、3或4,所述S1中的粉末压片机采用直径10mm,压力12MPa的操作条件,压制成胚体厚度为1mm的压片,之后在马弗炉中进行陶瓷片的烧结,烧结温度为1500℃,保温2.5h。
优选地,所述XRD分析法中采用的是X射线源Cu靶和Kα线。
优选地,所述S6中在接入电化学分析仪中之前在检测试样两侧涂银,之后将两电极铂丝与电解质的两侧相连,形成闭合回路,在400-800℃进行阻抗测试,其中每隔45-50℃会保温10-12min,使得温度稳定,之后通过电化学分析仪测得的交流阻抗数据。
优选地,所述电热鼓风干燥箱的型号为XMTD-8222,所述粉末压片机的型号为DF-4B,所述X-射线粉末衍射仪的型号为TD-3500。
优选地,所述S7中,若式中比例因子η≧4,则该La10-x/3Cex/3Si6O26+§粉体具有高电导率和高性能,若式中比例因子2.5≦η≦4,则该La10-x/3Cex/3Si6O26+§粉体具有较高的电导率和高性能,若式中比例因子η≦2.5,则该La10-x/3Cex/3Si6O26+§粉体电导率较低并且性能较差。
与现有技术相比,本发明提供了一种硅酸镧纳米粉体的表征方法,具备以下有益效果:
1.本发明方法通过分析LCSO粉体的制备,Ce+3对硅酸镧的掺杂对La10Si6O27陶瓷片的组织结构的影响,以及不同含量的Ce+3的掺杂所带来的影响;制备具有较高的导电性质的LCSO陶瓷片,为之后与钙钛矿型电解质LSCM固体氧化物电解质和CeO2基型电解质材料SDC分别复合提供较优的LCSO陶瓷片,通过进行Ce的掺杂,改变La10Si6O7的物质结构,提高氧空轨道,降低SOFC的操作温度,维持较高的电导率,采用XRD和SEM对LCSO电解质陶瓷的物相结构进行分析,又通过孔隙率、热重分析和交流阻抗测试,获得电解质陶瓷的性能指数,从而对电解质陶瓷获得一个完整全面的分析。
2.本发明通过对不同的含量的Ce所制备LCSO陶瓷片在1500℃下烧结后的XRD,从图2中可随着掺杂量的不同,峰形出现了差别,是LSO制备的过程,pH的大小影响了单相的形成。但是当x=3时,衍射峰与标准的LSO峰一致,晶体晶形相一致,同时衍射峰较尖锐,晶形较好,成为复合电解质材料的备用材料;而检测的红外光谱的主要吸收峰主要在650cm-1、800cm-1、950cm-1、1650cm-1、3400cm-1、3750cm-1的波峰位置。SiO4 4-的对应吸收带在860-1175cm-1之间,650cm-1为Ce-O、La-O的特征峰,1650cm-1是COO-1的伸缩振动峰,3400cm-1、3750cm-1的波峰位置可以定义为O-H的特征峰。其中O-H存在的原因可能是在磨粉压片时吸收空气中的水分,或者是乙二醇的羟基导致,无NO3-的存在说明凝胶中没有残余的NO3-
3.本发明理想情况下,在较低温度时,阻抗图是由两个半圆组成,谱图与实轴的交点为晶粒电阻Rgi,晶界电阻Rgb和电极极化电阻Rct是由两个半圆直径表示。随着温度的升高,晶粒电阻和晶界电阻会逐渐减小。由于晶粒电阻和晶界电阻是主体部分,则电解质的总电阻可以用晶粒电阻和晶界电阻表示,即:R=Rgi+Rgb。用ZSimDemo软件对交流阻抗谱图进行拟合分析,不同含量铈元素的LCSO陶瓷片的电导率,其中电导率随着Ce含量的增加先增后减,同时发现随着温度的升高,掺杂不同含量Ce的LCSO电导率逐渐增大,这是由于在较低温度下晶格振动减弱,离子远动减慢,随着温度的升高,具有较高迁移能的氧空位开始远动参与导电,因而电导率升高。掺杂离子浓度对电导率的影响与氧空位的浓度有关,在x>3时和掺杂金属Ce时,随着Ce掺杂含量的升高LCSO的电导率降低,是由于四价稀土金属铈离子取代了晶格结点上的La3+,与正常晶格相比,代替后的晶格带一个正电荷,用符号表示为Ce。为保持晶体的电中性,必然会产生另一种负电荷的缺陷来平衡上述替代所产生的正电荷,可知在CeO2掺杂硅酸镧中的La位时,存在着电解质晶体结构的改变,从氧空位模型方面,消耗了氧空位;从间隙离子模型方便,产生了空隙。
附图说明
图1为本发明提出的一种硅酸镧纳米粉体的表征方法的不同制备途径得到的LCSO的XRD图;
图2为本发明提出的一种硅酸镧纳米粉体的表征方法的LCSO烧结体的红外光谱图;
图3为本发明提出的一种硅酸镧纳米粉体的表征方法的不同制备途径得到的LCSO的SEM图;
图4为本发明提出的一种硅酸镧纳米粉体的表征方法的不同制备途径得到的LCSO的TG/DTA曲线图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。
在本发明的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1:
一种硅酸镧纳米粉体的表征方法,包括以下步骤;
S1、将La10-x/3Cex/3Si6O26+§粉体与成型剂混合之后,进行研磨和造粒工作,之后放入粉末压片机中,压片成型之后放入马弗炉进行高温煅烧,获得检测试样,;
S2、取部分检测试样进行XRD测试,之后再将检测试样进行傅里叶红外光谱分析,利用不同的结构对不同的红外波长进行吸收,以致不同的结构都有一个特殊的吸收峰,定性定量地分析检测试样的结构;
S3、取部分检测试样,利用扫描电子显微镜观察材料的尺寸大小、形状和表面光滑程度;
S4、取部分检测试样放入电热鼓风干燥机中,在100-120℃下干燥1-1.5h后,在空气环境下的称量质量为G1,之后将检测试样放入沸水中称量悬浮质量为G2,取出检测试样之后,将检测试样的表面上的水分擦干之后在空气环境下称量质量为G3,通过以下公式可以计算出检测试样孔隙率Q为;
Q=(G3-G1)÷(G3-G2)
S5、取部分检测试样放入热重分析仪中,以5℃/min的速度对检测试样进行升温操作,并在同时记录样品的质量变化通过对样品的温度对质量的影响,并找出失重分析骤降点,记录其骤降温度为TG;
S6、取部分检测试样,通过电化学分析仪测得的交流阻抗数据,拟合得到样品的电阻值,电阻值与电导率的关系通常由欧姆定律和电阻定律表达,公式如下:
Figure GDA0001912810610000071
其中:
Figure GDA0001912810610000072
为样品的电导率,ρ为样品的电阻率,L为样品的厚度,S为样品的横截面积,R为电极的电阻;
并且固体氧化物电解质的电导率与温度的关系以下公式:
Figure GDA0001912810610000082
其中:
Figure GDA0001912810610000083
为指前因子,Ea为电导率活化能,K为Boltzmann常数,T为绝对温度;上式可转化为:
Figure GDA0001912810610000084
S7、将S4中的孔隙率Q,S5中的骤降温度TG,S6中的Ea电导率活化能,带入以下公式中:
Figure GDA0001912810610000081
得到比例因子η,并将计算结果进行比对分析。
La10-x/3Cex/3Si6O26+§粉体中的X为1、2、3或4,S1中的粉末压片机采用直径10mm,压力12MPa的操作条件,压制成胚体厚度为1mm的压片,之后在马弗炉中进行陶瓷片的烧结,烧结温度为1500℃,保温2.5h;XRD分析法中采用的是X射线源Cu靶和Kα线;S6中在接入电化学分析仪中之前在检测试样两侧涂银,之后将两电极铂丝与电解质的两侧相连,形成闭合回路,在400-800℃进行阻抗测试,其中每隔45-50℃会保温10-12min,使得温度稳定,之后通过电化学分析仪测得的交流阻抗数据;电热鼓风干燥箱的型号为XMTD-8222,粉末压片机的型号为DF-4B,X-射线粉末衍射仪的型号为TD-3500;S7中,若式中比例因子η≧4,则该La10-x/ 3Cex/3Si6O26+§粉体具有高电导率和高性能,若式中比例因子2.5≦η≦4,则该La10-x/3Cex/ 3Si6O26+§粉体具有较高的电导率和高性能,若式中比例因子η≦2.5,则该La10-x/3Cex/3Si6O26+§粉体电导率较低并且性能较差。
本发明方法通过分析LCSO粉体的制备,Ce+3对硅酸镧的掺杂对La10Si6O27陶瓷片的组织结构的影响,以及不同含量的Ce+3的掺杂所带来的影响;制备具有较高的导电性质的LCSO陶瓷片,为之后与钙钛矿型电解质LSCM固体氧化物电解质和CeO2基型电解质材料SDC分别复合提供较优的LCSO陶瓷片,通过进行Ce的掺杂,改变La10Si6O7的物质结构,提高氧空轨道,降低SOFC的操作温度,维持较高的电导率,采用XRD和SEM对LCSO电解质陶瓷的物相结构进行分析,又通过孔隙率、热重分析和交流阻抗测试,获得电解质陶瓷的性能指数,从而对电解质陶瓷获得一个完整全面的分析。
实施例2:基于实施例1但有所不同的是;
根据图1、2和3,可以分析出随着掺杂量的不同,峰形出现了差别,是由于采用上述LSO制备的过程,pH的大小影响了单相的形成。但是当x=3时,衍射峰与标准的LSO峰一致,晶体晶形相一致,同时衍射峰较尖锐,晶形较好,成为复合电解质材料的备用材料;而检测的红外光谱的主要吸收峰主要在650cm-1、800cm-1、950cm-1、1650cm-1、3400cm-1、3750cm-1的波峰位置。SiO4 4-的对应吸收带在860-1175cm-1之间,650cm-1为Ce-O、La-O的特征峰,1650cm-1是COO-1的伸缩振动峰,3400cm-1、3750cm-1的波峰位置可以定义为O-H的特征峰。其中O-H存在的原因可能是在磨粉压片时吸收空气中的水分,或者是乙二醇的羟基导致,无NO3-的存在说明凝胶中没有残余的NO3-
实施例2:基于实施例1和2但有所不同的是;
根据由阿基米德原理测试的样品的孔隙率,LCSO的孔隙率及相对密度见下表;
Figure GDA0001912810610000101
根据图4分析进行差热分析(DTA)和失重分析(TG),对LCSO的热稳定性进行分析。有图可以看出温度在650℃左右时TG有一个骤降,说明在650℃左右时,样品发生了一个化学反应,可能是有机物分解导致。在整个测试阶段,样品的TG都在降低,说明LCSO在50-750℃时,可能是发生了硝酸盐、金属离子的氧化还原反应引起的,根据下表可以分析出交流阻抗测试结果
Figure GDA0001912810610000102
将上述结果带入公式,可以分析得出在X=3时,比例因子η≧4,该La10-x/3Cex/ 3Si6O26+§粉体具有高电导率和高性能。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (6)

1.一种硅酸镧纳米粉体的表征方法,其特征在于:包括以下步骤;
S1、将La10-x/3Cex/3Si6O26+§粉体与成型剂混合之后,放入研磨罐(12)中进行研磨,之后放入粉末压片机中,压片成型之后放入马弗炉进行高温煅烧,获得检测试样;
S2、取部分检测试样进行XRD测试,之后再将检测试样进行傅里叶红外光谱分析,利用不同的结构对不同的红外波长进行吸收,以致不同的结构都有一个特殊的吸收峰,定性定量地分析检测试样的结构;
S3、取部分检测试样,利用扫描电子显微镜观察材料的尺寸大小、形状和表面光滑程度;
S4、取部分检测试样放入电热鼓风干燥机中,在100-120℃下干燥1-1.5h后,在空气环境下的称量质量为G1,之后将检测试样放入沸水中称量悬浮质量为G2,取出检测试样之后,将检测试样的表面上的水分擦干之后在空气环境下称量质量为G3,通过以下公式可以计算出检测试样孔隙率Q为;
Q=(G3-G1)÷(G3-G2)
S5、取部分检测试样放入热重分析仪中,以5℃/min的速度对检测试样进行升温操作,并在同时记录样品的质量变化通过对样品的温度对质量的影响,并找出失重分析骤降点,记录其骤降温度为TG;
S6、取部分检测试样,通过电化学分析仪测得的交流阻抗数据,拟合得到样品的电阻值,电阻值与电导率的关系通常由欧姆定律和电阻定律表达,公式如下:
Figure FDA0003066497490000021
其中:
Figure FDA0003066497490000022
为样品的电导率,ρ为样品的电阻率,L为样品的厚度,S为样品的横截面积,R为电极的电阻;
并且固体氧化物电解质的电导率与温度的关系以下公式:
Figure FDA0003066497490000023
其中:
Figure FDA0003066497490000024
为指前因子,Ea为电导率活化能,K为Boltzmann常数,T为绝对温度;上式可转化为:
Figure FDA0003066497490000025
S7、将S4中的孔隙率Q,S5中的骤降温度TG,S6中的Ea电导率活化能,带入以下公式中:
Figure FDA0003066497490000026
得到比例因子η,并将计算结果进行比对分析得到检测试样的电导率性能。
2.根据权利要求1所述的一种硅酸镧纳米粉体的表征方法,其特征在于:所述La10-x/ 3Cex/3Si6O26+§粉体中的X为1、2、3或4,所述S1中的粉末压片机采用直径10mm,压力12MPa的操作条件,压制成胚体厚度为1mm的压片,之后在马弗炉中进行陶瓷片的烧结,烧结温度为1500℃,保温2.5h。
3.根据权利要求1所述的一种硅酸镧纳米粉体的表征方法,其特征在于:所述XRD分析法中采用的是X射线源Cu靶和Kα线。
4.根据权利要求1所述的一种硅酸镧纳米粉体的表征方法,其特征在于:所述S6中在接入电化学分析仪中之前在检测试样两侧涂银,之后将两电极铂丝与电解质的两侧相连,形成闭合回路,在400-800℃进行阻抗测试,其中每隔45-50℃会保温10-12min,使得温度稳定,之后通过电化学分析仪测得的交流阻抗数据。
5.根据权利要求1或2所述的一种硅酸镧纳米粉体的表征方法,其特征在于:所述电热鼓风干燥箱的型号为XMTD-8222,所述粉末压片机的型号为DF-4B,所述X-射线粉末衍射仪的型号为TD-3500。
6.根据权利要求2所述的一种硅酸镧纳米粉体的表征方法,其特征在于:所述S7中,若式中比例因子η≧4,则该La10-x/3Cex/3Si6O26+§粉体具有高电导率,若式中比例因子2.5≦η≦4,则该La10-x/3Cex/3Si6O26+§粉体具有较高的电导率,若式中比例因子η≦2.5,则该La10-x/ 3Cex/3Si6O26+§粉体电导率较低。
CN201811345526.8A 2018-11-13 2018-11-13 一种硅酸镧纳米粉体的表征方法 Active CN109459453B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811345526.8A CN109459453B (zh) 2018-11-13 2018-11-13 一种硅酸镧纳米粉体的表征方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811345526.8A CN109459453B (zh) 2018-11-13 2018-11-13 一种硅酸镧纳米粉体的表征方法

Publications (2)

Publication Number Publication Date
CN109459453A CN109459453A (zh) 2019-03-12
CN109459453B true CN109459453B (zh) 2021-06-25

Family

ID=65610155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811345526.8A Active CN109459453B (zh) 2018-11-13 2018-11-13 一种硅酸镧纳米粉体的表征方法

Country Status (1)

Country Link
CN (1) CN109459453B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110132939A (zh) * 2019-06-12 2019-08-16 江苏省特种设备安全监督检验研究院 一种共聚焦拉曼-光电流测试系统
CN112666038B (zh) * 2021-01-22 2023-02-28 山东大学 一种基于近红外光谱表征吸湿过程的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847725A (zh) * 2010-05-04 2010-09-29 中国矿业大学(北京) 一种a缺位型钙钛矿结构固体氧化物燃料电池阴极材料
CN102503549A (zh) * 2011-11-02 2012-06-20 上海大学 一种稀土离子掺杂硅酸镥多晶薄膜的制备方法
CN103825052A (zh) * 2014-02-24 2014-05-28 华中科技大学 一种nasicon型锂离子固体电解质的制备方法
CN104254394A (zh) * 2012-03-12 2014-12-31 南洋理工大学 制备用于手性选择性合成单壁碳纳米管的催化剂的方法
CN107093758A (zh) * 2017-04-18 2017-08-25 合肥学院 一种钼酸镧基中温固体氧化物燃料电池电解质材料及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2959246B1 (fr) * 2010-04-22 2013-01-11 Commissariat Energie Atomique Poudre composite et utilisation de cette poudre pour constituer des materiaux d'electrode
US10259714B2 (en) * 2015-03-19 2019-04-16 The University Of Akron Method of making mesoporous carbon from natural wood and mesoporous carbon hollow tubes made thereby

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101847725A (zh) * 2010-05-04 2010-09-29 中国矿业大学(北京) 一种a缺位型钙钛矿结构固体氧化物燃料电池阴极材料
CN102503549A (zh) * 2011-11-02 2012-06-20 上海大学 一种稀土离子掺杂硅酸镥多晶薄膜的制备方法
CN104254394A (zh) * 2012-03-12 2014-12-31 南洋理工大学 制备用于手性选择性合成单壁碳纳米管的催化剂的方法
CN103825052A (zh) * 2014-02-24 2014-05-28 华中科技大学 一种nasicon型锂离子固体电解质的制备方法
CN107093758A (zh) * 2017-04-18 2017-08-25 合肥学院 一种钼酸镧基中温固体氧化物燃料电池电解质材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CaxLa10-x(SiO4)6O3-X\2氧离子导体的制备及性能;王贵领 等;《哈尔滨工程大学学报》;20090531;第30卷(第5期);全文 *
Electrical conductivity studies of nanocrystalline lanthanum silicate synthesized by sol–gel route;N.Nallamuthu et al.;《Journal of Alloys and Compounds》;20101007;全文 *

Also Published As

Publication number Publication date
CN109459453A (zh) 2019-03-12

Similar Documents

Publication Publication Date Title
CN104591231B (zh) 含氟石榴石结构锂离子氧化物陶瓷
Simonenko et al. Microplotter printing of planar solid electrolytes in the CeO2–Y2O3 system
CN109459453B (zh) 一种硅酸镧纳米粉体的表征方法
Baral et al. Sintering aid (ZnO) effect on proton transport in BaCe0. 35Zr0. 5Y0. 15O3‐δ and electrode phenomena studied by distribution function of relaxation times
Ma et al. Ce0. 8Gd0. 2O2− δ ceramics derived from commercial submicron-sized CeO2 and Gd2O3 powders for use as electrolytes in solid oxide fuel cells
CN102842723B (zh) 钙钛矿结构中温固体氧化物燃料电池阴极材料的制备方法
Samson et al. Durability and performance of high performance infiltration cathodes
Xu et al. The effect of NiO addition on the grain boundary behavior and electrochemical performance of Gd-doped ceria solid electrolyte under different sintering conditions
Dong et al. Preparation of Y2O3–ZrO2–CeO2 solid solution by co-precipitation and its electrical property
Hou et al. Investigation of the stability of NASICON-type solid electrolyte in neutral-alkaline aqueous solutions
Xu et al. Electrochemical analysis of BaZr0. 8Y0. 2O3-δ-Gd0. 2Ce0. 8O2-δ composite electrolytes by distribution of relaxation time method
CN109437880B (zh) 一种超声波-微波溶胶凝胶法制备Ce-Sm-Fe系复合固体电解质陶瓷材料的方法
Aimbetova et al. An effect of hydrothermal synthesis time on the specific capacitance of vanadium pentoxide
Khandale et al. Nd1. 8Sr0. 2NiO4− δ: Ce0. 9Gd0. 1O2− δ composite cathode for intermediate temperature solid oxide fuel cells
Tang et al. A highly conductive Ce0. 8Nd0. 2O1. 9 electrolyte with double sintering aids for intermediate-temperature solid oxide fuel cells
JP6121764B2 (ja) 固体酸化物型燃料電池に用いられる空気極
Yenesew et al. Recycling and characterization of end-of-life solid oxide fuel/electrolyzer ceramic material cell components
La Rosa et al. Enhanced Ionic Conductivity in Planar Sodium‐β”‐Alumina Electrolyte for Electrochemical Energy Storage Applications
Ahmed et al. Proton conductivity in mixed B-site doped perovskite oxide BaZr0. 5In0. 25Yb0. 25O3− δ
CN109713347B (zh) 一种金属元素掺杂La2Mo2O9固体电解质的制备方法
Zhao et al. Preparation of ultra-fine Sm0. 2Ce0. 8O1. 9 powder by a novel solid state reaction and fabrication of dense Sm0. 2Ce0. 8O1. 9 electrolyte film
Li et al. Enhanced electrochemical activity in Ca3Co2O6 cathode for solid-oxide fuel cells by Cu substitution
Zhou et al. Effect of transition metal oxides doping on Ce 0.9 Sm 0.05 Nd 0.05 O 1.95 solid electrolyte materials
Magnone et al. Electrochemical impedance spectroscopy analysis of Pr0. 8Sr0. 2Co0. 5Fe0. 5O3− δ as cathode material for intermediate temperature solid oxide fuel cells
Virkar Low-temperature, anode-supported high power density solid oxide fuel cells with nanostructured electrodes

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant