一种基于光谱高差特征的水质参数预测方法
技术领域
本发明涉及水质监测技术领域,尤其涉及一种基于光谱高差特征的水质参数预测方法。
背景技术
饮水安全问题直接关系到广大人民群众的健康,积极探索采用先进可行的监测技术与方法,实时掌握重要饮用水水源地水质变化情况,加强突发水污染事件水质预警和应急处理能力是十分必要和迫切的。
中国国家水资源监控能力建设2012-2014年项目(以下简称一期项目)已于2015年完成全部建设内容。一期项目完成后,在填补中国水资源监控手段缺乏、改善水资源管理基础设施薄弱状况、提高水资源源管理信息化永平等方面发挥了重要作用。通过一期项目建设基本实现了列入《全国重要饮用水水源地名录》(水资源函[2011]109号)的重要地表水水源地水质在线监测全覆盖。
近年来,中国质相关指标仍然使用化学法,虽然测量较为准确,但是耗时长,所需化学试剂多,操作复杂,稳定性差,二次污染严重,因此光谱法应运而生,其监测周期短,速度快,是在线监测的必备手段。
发明内容
发明目的:本发明针对现有技术存在的问题,提供一种基于光谱高差特征的水质参数预测方法,能够有效区分不同水质的浊度,测算出较为精准的水质浊度和COD参数。
技术方案:本发明所述的基于光谱高差特征的水质参数预测方法包括:
(1)根据无浊度水样的光谱数据和COD参数值,在特征波段建立COD参数值与COD特征面积的相关性模型FC;
(2)根据普通水样的光谱数据以及COD参数值和浊度参数值,在特征波段建立浊度参数值与浊度特征面积的相关性模型FT,以及被描述为梯形的浊度特征面积的自由底边与可见光波段的吸光度高差值H的相关性模型Fh;
(3)对于待测水样,计算其光谱数据在特征波段的混合特征面积S'和在可见光波段的吸光度高差值H';
(4)根据可见光波段的吸光度高差值H'和模型Fh计算得到浊度特征面积,并将混合特征面积S'和浊度特征面积的差作为COD特征面积;
(5)将待测水样的浊度特征面积代入模型FT计算得到待测水样的浊度参数值,将待测水样的COD特征面积代入模型FC计算得到待测水样的COD参数值。
进一步的,步骤(1)具体包括:
(1.1)获取多条无浊度水样的光谱数据和COD参数值;
(1.2)计算每条无浊度水样在特征波段范围内的包络面积,作为COD特征面积SC;
(1.3)采用多条无浊度水样的COD参数值和COD特征面积SC数据进行拟合,得到COD参数值与COD特征面积SC的相关性模型FC。
进一步的,步骤(2)具体包括:
(2.1)获取多条普通水样的光谱数据以及其COD参数值和浊度参数值;
(2.2)计算每条普通水样在特征波段范围内的包络面积,作为包含浊度特征和COD特征的混合特征面积STC;
(2.3)将每条普通水样的COD参数值带入模型FC,从而得到对应COD特征面积SC;
(2.4)将每条普通水样的混合特征面积STC减去其COD特征面积SC,得到对应的浊度特征面积ST;
(2.5)采用多条普通水样的浊度参数值和浊度特征面积ST数据进行拟合,得到浊度参数值与浊度特征面积ST的相关性模型FT;
(2.6)计算每条普通水样的光谱数据在可见光波段的吸光度高差值H;
(2.7)计算每条普通水样的浊度特征面积ST的自由底边h;其中,浊度特征面积ST为梯形;
(2.8)采用多条普通水样的吸光度高差值H和自由底边h数据进行拟合,得到自由底边h与吸光度高差值H的相关性模型Fh。
进一步的,步骤(3)具体包括:
(3.1)计算待测水样光谱数据在特征波段范围内的包络面积,作为混合特征面积S';
(3.2)计算待测水样光谱数据在可见光波段的吸光度高差值,记为H'。
进一步的,步骤(4)具体包括:
(4.1)将可见光波段的吸光度高差值H'代入模型Fh,得到浊度特征面积的自由底边Fh(H');
(4.2)获取待测水样光谱数据在特征波段终点波长处的吸光度值h';
(4.3)将h'和Fh(H')作为梯形的浊度特征面积的两个底边,按照下式计算得到浊度特征面积S'T:
式中,λ1、λ2分别为特征波段的起点波长值和终点波长值;
(4.4)计算混合特征面积S'和浊度特征面积的差S'-S'T,作为COD特征面积S'C。
可选的,所述特征波段具体为[250nm,310nm],所述可见光波段具体为[310nm,680nm].
进一步的,所述无浊度水样是浊度测定值低于国标测定法检出限的水样,普通水样是参数测定值均在国标测定法可检测范围内的水样。
有益效果:本发明与现有技术相比,其显著优点是:本发明基于实际水样数据与其特征,能够最大程度避免浊度因素对于水质COD参数测算的影响,从而精确测算出水质浊度与COD参数值,为水质检测提供便利。
附图说明
图1是本发明的一个实施例的流程示意图;
图2为使用无浊度水样数据建模示意图;
图3为使用普通水样数据建模示意图。
具体实施方式
本实施例提供了一种基于光谱高差特征的水质参数预测方法,如图1所示,包括:
(1)根据无浊度水样的光谱数据和COD参数值,在特征波段建立COD参数值与COD特征面积的相关性模型FC。具体包括:
(1.1)获取多条无浊度水样的光谱数据和COD参数值;无浊度水样是浊度测定值低于国标测定法检出限的水样;
(1.2)计算每条无浊度水样在250nm-310nm范围内的包络面积,作为COD特征面积SC;如图2所示;
(1.3)采用多条无浊度水样的COD参数值和COD特征面积SC数据进行拟合,得到COD参数值与COD特征面积SC的相关性模型FC。
(2)根据普通水样的光谱数据以及COD参数值和浊度参数值,在特征波段建立浊度参数值与浊度特征面积的相关性模型FT,以及被描述为梯形的浊度特征面积的自由底边与可见光波段的吸光度高差值H的相关性模型Fh。具体包括:
(2.1)获取多条普通水样的光谱数据以及其COD参数值和浊度参数值;所述普通水样是参数测定值均在国标测定法可检测范围内的水样;
(2.2)计算每条普通水样在250nm-310nm范围内的包络面积,作为包含浊度特征和COD特征的混合特征面积STC;
(2.3)将每条普通水样的COD参数值带入模型FC,从而得到对应COD特征面积SC;
(2.4)将每条普通水样的混合特征面积STC减去其COD特征面积SC,得到对应的浊度特征面积ST;
(2.5)采用多条普通水样的浊度参数值和浊度特征面积ST数据进行拟合,得到浊度参数值与浊度特征面积ST的相关性模型FT;
(2.6)计算每条普通水样的光谱数据从310nm至680nm的吸光度高差值H,如图3所示;
(2.7)计算每条普通水样的浊度特征面积ST的自由底边h;其中,浊度特征面积ST为梯形,如图3所示,底边分别为h0和h,h为自由底边,h0为固定边;
(2.8)采用多条普通水样的吸光度高差值H和自由底边h数据进行拟合,得到自由底边h与吸光度高差值H的相关性模型Fh。
(3)对于待测水样,计算其光谱数据在250nm-310nm范围内的包络面积,作为混合特征面积S',并计算光谱数据从310nm至680nm的吸光度高差值,记为H'。
(4)根据可见光波段的吸光度高差值H'和模型Fh计算得到浊度特征面积,并将混合特征面积S'和浊度特征面积的差作为COD特征面积。具体包括:
(4.1)将可见光波段的吸光度高差值H'代入模型Fh,得到浊度特征面积的自由底边Fh(H');
(4.2)获取待测水样光谱数据在310nm的吸光度值h';
(4.3)将h'和Fh(H')作为梯形的浊度特征面积的两个底边,按照下式计算得到浊度特征面积S'T:
(4.4)计算混合特征面积S'和浊度特征面积的差S'-S'T,作为COD特征面积S'C。
(5)将待测水样的浊度特征面积S'T代入模型FT计算得到待测水样的浊度参数值TURB,将待测水样的COD特征面积S'C代入模型FC计算得到待测水样的COD参数值COD。
对公式进行整理得:
以上所揭露的仅为本发明一种较佳实施例而已,不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。