CN109457229A - 一种硅基二氧化钒薄膜及其制备和应用 - Google Patents

一种硅基二氧化钒薄膜及其制备和应用 Download PDF

Info

Publication number
CN109457229A
CN109457229A CN201811582089.1A CN201811582089A CN109457229A CN 109457229 A CN109457229 A CN 109457229A CN 201811582089 A CN201811582089 A CN 201811582089A CN 109457229 A CN109457229 A CN 109457229A
Authority
CN
China
Prior art keywords
film
silicon substrate
preparation
temperature
vanadium dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811582089.1A
Other languages
English (en)
Inventor
徐晓峰
蒙奕帆
桑景新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Donghua University
National Dong Hwa University
Original Assignee
Donghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Donghua University filed Critical Donghua University
Priority to CN201811582089.1A priority Critical patent/CN109457229A/zh
Publication of CN109457229A publication Critical patent/CN109457229A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本发明涉及一种硅基二氧化钒薄膜及其制备和应用,包括:n型重掺杂硅衬底上使用磁控溅射法制备金属钒薄膜,得到硅基金属钒薄膜;将上述硅基金属钒薄膜在空气中进行氧化处理,冷却;然后再进行还原处理,冷却,即得。本发明提供的一种降低电控硅基二氧化钒薄膜微纳尺度相变开启电压的方法简单且容易操作,且具有极高的重复性,可广泛用于VO2薄膜器件的性能改善。

Description

一种硅基二氧化钒薄膜及其制备和应用
技术领域
本发明属于而氧化反应薄膜及其制备和应用领域,特别涉及一种硅基二氧化钒薄膜及其制备和应用。
背景技术
二氧化钒(VO2)是一种相变温度接近室温的材料。当材料温度接近68℃时,VO2的晶体结构会发生由低温绝缘态单斜晶系向高温金属态四方晶系转变。伴随着这一转变,其光学、电学、力学等物理学特性也随之改变。这种独特的相变特性使VO2在光电领域,存储领域和集成电路领域中具有得天独厚的开关优势。
其中,电极/二氧化钒薄膜/电极三明治结构具有器件结构简单,制备难度低,容易实现相变的优点。2017年,中科院宁波材料所的李润伟团队发现了在对氧化钒薄膜加电压时,会出现纳米氧化钒导电沟道,并将其用于制备相变储存器件,制备成了了超低功耗,超快速度的相变储存器(Xue,W.,Liu,G.,Zhong,Z.,Dai,Y.,Shang,J.,&Liu,Y.,et al.(2017).A1d vanadium dioxide nanochannel constructed via electric-field-induced ion transport and its superior metal-insulator transition.AdvancedMaterials,1702162.);国外Shukla,N.等人利用电驱动VO2相变特性,将其与MOSFET器件结合,使VO2成为MOSFET的整流开关,提高了MOSFET的开关比,大大降低了噪声的产生(Shukla,N.,Thathachary,A.V.,Agrawal,A.,Paik,H.,Aziz,A.,&Schlom,D.G.,et al.(2015).A steep-slope transistor based on abrupt electronic phasetransition.Nature Communications,6,7812.)。其中,对于相变存储器件和MOSFET整流开关而言,为了与相应的CMOS电路匹配,采取VO2作为开关材料时,其开启电压需要与其匹配,才能更好的发挥材料性能。Shukla,N.等人虽将电驱动VO2现象引入MOSFET中,但开启电压却高达4V,极大影响了MOSFET的应用。因此,使电驱动VO2薄膜的开启电压变得可调节,是一个先进的,也是重要的工艺技术。调节VO2开启电压的最简单的方式就是掺杂,但是掺杂会引发晶格畸变,通常需要高温退火才能修复晶格畸变。而氧化钒薄膜在600℃以上退火会产生还原反应,还原过程中氧的流失会导致薄膜开裂,引发极大缺陷,对电路造成性能上的挑战;而不修复晶格畸变,则得不到理想的电学性能。这些工艺上的挑战造成了VO2薄膜在应用上的限制。
为此,研究一种与现有复杂的集成电子系统和半导体工艺相兼容,又不影响VO2材料本身性质的工艺方法,对于推动VO2薄膜在器件中的广泛应用是具有极高的价值的。
发明内容
本发明所要解决的技术问题是提供一种硅基二氧化钒薄膜及其制备和应用,克服现有技术中二氧化钒掺杂会引起晶格畸变,高温修复导致薄膜开裂或不修复则性能差的缺陷,该方法提供一种重复性高,退火温度低,制备操作方法要求低,兼容性高且简单易行的一种降低电控硅基二氧化钒薄膜微纳尺度相变开启电压的工艺方法。
本发明的一种硅基二氧化钒薄膜的制备方法,包括:
(1)n型重掺杂硅衬底上使用磁控溅射法制备金属钒薄膜,得到硅基金属钒薄膜;
(2)将上述硅基金属钒薄膜在空气中进行氧化处理,冷却;然后再进行还原处理,冷却,即得硅基二氧化钒薄膜;
其中,通过调节在氢气和氮气混合气体中的退火时间来调节VO2薄膜的开启电压。
上述制备方法的优选方式如下:
所述步骤(1)中n型重掺杂硅的电阻率≤0.5Ω·m;n型重掺杂硅n+Si衬底为清洗后的衬底,具体为:第一次清洗液为:浓硫酸H2SO4和双氧水H2O2混合溶液,90℃水浴加热20-25min进行清洗;第二次清洗液为:氨水NH3·H2O和双氧水H2O2混合溶液,在超声震荡仪中震荡5-10min;第三次清洗液为:浓盐酸HCl和双氧水H2O2混合溶液,在超声震荡仪中震荡5-10min;第四次清洗液为:高纯乙醇溶液(纯度为95%),在超声震荡仪中震荡5-10min,清洗完毕后用干燥氮气吹干。
所述浓硫酸H2SO4和双氧水H2O2的体积比为3:1,其浓度分别为98%和30%;氨水NH3·H2O和双氧水H2O2混合溶液的体积比为1:5,其浓度分别为25%和30%;浓盐酸HCl和双氧水H2O2混合溶液的体积比为1:2,其浓度分别为35%和30%。
所述步骤(1)中磁控溅射法为直流磁控溅射法,具体工艺参数为:直流溅射功率为130~140W,氩气压为1~2×10-1Pa,本底真空为1.8~2×10-3Pa,溅射时间为5~6min。
优选,所述步骤(1)中磁控溅射法为直流磁控溅射法,具体工艺参数为:直流溅射功率为140W,氩气压为1×10-1Pa,本底真空为2×10-3Pa,溅射时间为6min。
所述步骤(2)中氧化处理为:采用快速热处理炉,在空气中进行470℃快速热退火处理。
优选,所述氧化处理具体为:分两个阶段,升温段:加热3-10s,温度由室温升值470℃,保持30~50s;降温段:冷却3-10s,温度降至200℃,保持10-30s。
更优选,所述氧化处理具体为:分两个阶段,升温段:加热5s,温度由室温升值470℃,保持30~50s;降温段:冷却5s,温度降至200℃,保持20s。
所述步骤(2)中还原处理为:采用快速热处理炉,先通入氢气和氮气混合气体后,进行470℃的退火处理50-200s,其中氢气和氮气的流量比为1:40,氢气纯度为99.9%,氮气纯度为99.99%。
优选,所述还原处理具体为:通入氢气和氮气混合气体保持1-3min后,然后分两个阶段处理,升温段:加热3-10s,温度由室温升值470℃,保持60~150s;降温段:冷却3-10s,温度降至200℃,保持10-30s。
更优选,所述还原处理具体为:通入氢气和氮气混合气体保持1-3min后,然后分两个阶段处理,升温段:加热5s,温度由室温升值470℃,保持60~150s;降温段:冷却5s,温度降至200℃,保持20s。
所述步骤(2)得到的硅基二氧化钒薄膜与C-AFM的Pt探针接触,硅基底接地,进行2μm×2μm的I-V特性曲线测试,其中探针基底材料为n型重掺杂硅,针尖镀有Pt/Ir(铱)镀层,针尖半径为20nm。
本发明的一种所述方法制备的硅基二氧化钒薄膜。
本发明提供一种电控二氧化钒薄膜相变的器件,所述器件结构为Pt/VO2/n+Si;VO2/n+Si为所述硅基二氧化钒薄膜(n+Si为n型重掺杂硅基底,VO2为二氧化钒薄膜),Pt是金属铂电极。
本发明提供一种所述硅基二氧化钒薄膜在相变器件中的应用。
有益效果
本发明提供的一种硅基二氧化钒薄膜,只需要调节在氢气和氮气混合气体中的退火时间(具体是指:在下述470℃所保持的时间),即可调节VO2薄膜的开启电压,是一种降低电控硅基二氧化钒薄膜微纳尺度相变开启电压的方法;
本发明制备的硅基二氧化钒薄膜样品,通过C-AFM(导电性原子力显微镜)的金属铂(Pt)探针与薄膜表面接触,基底接地,进行2μm×2μm微纳尺度下电流-电压(I-V)特性曲线测量,即可发现,样品在氢气和氮气氛围下退火后,相变开启电压明显下降低,如图5电控VO2的开启电压明显随退火时间增加而降低,由未退火近3.3V不明显的开启电压,退火2min后变为近0.4V开启电压;
该方法和操作简单易行,无需高温,与现有CMOS工艺可兼容性极高,沉积温度为470℃,退火温度也为470℃,时间均不超过4min,且都为快速退火。与CMOS工艺兼容是指,引入的工艺不能超过其沉积温度,不能对硅/氧化硅材料有影响,本例中VO2薄膜就是在硅基上生长,并且沉积温度远低于其SiN/SiO2所沉积的温度(~680℃为最低温度),因此引入本专利的工艺不会对CMOS工艺产生影响,因此可以与其兼容。
附图说明
图1为本实施例1中RTP-500型快速热处理炉内氧化过程示意图;
图2为本实施例1中RTP-500型快速热处理炉内还原过程示意图;
图3为本实施例1中对Pt电极/VO2薄膜/n+Si的C-AFM的测试示意图;
图4为本实施例1,2和3中所制备的VO2薄膜的升/降温变温电阻曲线;
图5为本实施例1,2和3中所制备的VO2薄膜在C-AFM下所测得的I-V特性曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。n型重掺杂硅的来源:由上海大恒光学精密机械有限公司所提供。
实施例1
首先,对硅片进行选择和清洗。硅片选择n型重掺杂硅,电阻率优选≤0.5Ω·m。然后进行4次清洗硅片。第一次清洗液为:浓硫酸(H2SO4)和双氧水(H2O2)混合溶液,90℃水浴加热25分钟进行清洗;第二次清洗液为:氨水(NH3·H2O)和双氧水(H2O2)混合溶液,在超声震荡仪中震荡10分钟;第三次清洗液为:浓盐酸(HCl)和双氧水(H2O2)混合溶液,在超声震荡仪中震荡10分钟;第四次清洗液为:高纯乙醇溶液,在超声震荡仪中震荡10分钟,清洗完毕后用干燥氮气吹干。
将清洗好的硅片放入JPGF400B-G型磁控溅射镀膜仪中,利用直流磁控溅射的方法在硅片上镀制金属钒薄膜。其中,直流溅射功率为140W,氩气压为1×10-1Pa,本底真空为2×10-3Pa,溅射时间为6分钟。金属钒薄膜的制备参数如下表1所示:
表1金属钒薄膜的制备参数
本底真空度 溅射功率 溅射气体 溅射气压 溅射时间
2×10<sup>-3</sup>Pa 140W 氩气(Ar) 1.0×10<sup>-1</sup>Pa 6min
将溅射好的样品放入RTP-500快速热处理炉内在空气中进行氧化处理,设定好程序参数后即可开始启动程序。加热结束后,令样品自然冷却。氧化详细参数如表2所示。随后,向热处理设备中通入氢气和氮气混合气体,流量比为1:40,保持两分钟后将温度升高再次对样品进行还原退火处理。还原退火详细参数如表3所示。
表2氧化处理参数设定
表3还原处理参数设定
本实施例中对Pt电极/VO2薄膜/n+Si的C-AFM测试方法,如图3所示,通过此方法可以测出微纳尺度下薄膜任意位置的I-V特性;
本实施例中所制备的VO2薄膜的升/降温变温电阻曲线,如图4所示,可以看出,退火后各温度区间电阻明显降低;
本实施例中所制备的VO2薄膜在C-AFM下所测得的I-V特性曲线,如图5所示,可以看出退火后,电控VO2的开启电压明显随退火时间(还原过程升温段的保持温度时间)增加而降低,由未退火近3.3V不明显的开启电压,退火2min后变为近0.4V开启电压。
实施例2
硅片选择n型重掺杂硅,电阻率优选≤0.5Ω·m。然后进行4次清洗硅片。第一次清洗液为:浓硫酸(H2SO4)和双氧水(H2O2)混合溶液,90℃水浴加热25分钟进行清洗;第二次清洗液为:氨水(NH3·H2O)和双氧水(H2O2)混合溶液,在超声震荡仪中震荡10分钟;第三次清洗液为:浓盐酸(HCl)和双氧水(H2O2)混合溶液,在超声震荡仪中震荡10分钟;第四次清洗液为:高纯乙醇溶液,在超声震荡仪中震荡10分钟,清洗完毕后用干燥氮气吹干。
将清洗好的硅片放入JPGF400B-G型磁控溅射镀膜仪中,利用直流磁控溅射的方法在硅片上镀制金属钒薄膜。其中,直流溅射功率为140W,氩气压为1×10-1Pa,本底真空为2×10-3Pa,溅射时间为6分钟。
氧化处理和还原处理均与实施例1相同,与实施例1不同之处在于,在实施例1中,样品在氢气和氮气的混合气体中470℃退火的保持时间约为2min(120s),而在实施例2中,VO2样品在氢气和氮气的混合气体中470℃退火的保持时间约为1min(60s)。
实施例3
硅片选择n型重掺杂硅,电阻率优选≤0.5Ω·m。然后进行4次清洗硅片。第一次清洗液为:浓硫酸(H2SO4)和双氧水(H2O2)混合溶液,90℃水浴加热25分钟进行清洗;第二次清洗液为:氨水(NH3·H2O)和双氧水(H2O2)混合溶液,在超声震荡仪中震荡10分钟;第三次清洗液为:浓盐酸(HCl)和双氧水(H2O2)混合溶液,在超声震荡仪中震荡10分钟;第四次清洗液为:高纯乙醇溶液,在超声震荡仪中震荡10分钟,清洗完毕后用干燥氮气吹干。
将清洗好的硅片放入JPGF400B-G型磁控溅射镀膜仪中,利用直流磁控溅射的方法在硅片上镀制金属钒薄膜。其中,直流溅射功率为140W,氩气压为1×10-1Pa,本底真空为2×10-3Pa,溅射时间为6分钟。
氧化处理和还原处理均与实施例1相同,与实施例1不同之处在于,在实施例1中,样品在氢气和氮气的混合气体中470℃退火的保持时间约为2min(120s),而在实施例3中,VO2样品不退火,即在氢气和氮气的混合气体中470℃退火的保持时间约为0min(0s)。
以上实例的电阻-温度测试结果如图4所示。图中所示,随着退火时间从0min到2min的增加,VO2薄膜的电阻逐渐降低。并且随着退火时间的增加,相变开启电压由未退火的约3.3V,降低到退火1min的约1.6V,最后再退火到2min时,开启电压降低到约0.4V。这表明,随着VO2薄膜样品再氢气和氮气的混合气体下的退火时间越长,样品的开启电压将会越来越小。

Claims (10)

1.一种硅基二氧化钒薄膜的制备方法,包括:
(1)n型重掺杂硅衬底上使用磁控溅射法制备金属钒薄膜,得到硅基金属钒薄膜;
(2)将上述硅基金属钒薄膜在空气中进行氧化处理,冷却;然后再进行还原处理,冷却,即得硅基二氧化钒薄膜;
其特征在于,通过调节在氢气和氮气混合气体中的退火时间来调节VO2薄膜的开启电压。
2.根据权利要求1所述制备方法,其特征在于,所述步骤(1)中n型重掺杂硅的电阻率≤0.5Ω·m;n型重掺杂硅衬底为清洗后的衬底,具体为:第一次清洗液为:浓硫酸H2SO4和双氧水H2O2混合溶液,90℃水浴加热20-25min进行清洗;第二次清洗液为:氨水NH3·H2O和双氧水H2O2混合溶液,在超声震荡仪中震荡5-10min;第三次清洗液为:浓盐酸HCl和双氧水H2O2混合溶液,在超声震荡仪中震荡5-10min;第四次清洗液为:乙醇溶液,在超声震荡仪中震荡5-10min,清洗完毕后用干燥氮气吹干。
3.根据权利要求1所述制备方法,其特征在于,所述步骤(1)中磁控溅射法为直流磁控溅射法,具体工艺参数为:直流溅射功率为140W,氩气压为1×10-1Pa,本底真空为2×10- 3Pa,溅射时间为6min。
4.根据权利要求1所述制备方法,其特征在于,所述步骤(2)中氧化处理为:在空气中进行470℃快速热退火处理。
5.根据权利要求4所述制备方法,其特征在于,所述氧化处理具体为:分两个阶段,升温段:加热3-10s,温度由室温升值470℃,保持30~50s;降温段:冷却3-10s,温度降至200℃,保持10-30s。
6.根据权利要求1所述制备方法,其特征在于,所述步骤(2)中还原处理为:先通入氢气和氮气混合气体后,进行470℃的退火处理50-200s,其中氢气和氮气的流量比为1:40~1:30,氢气纯度为99.9%,氮气纯度为99.99%。
7.根据权利要求6所述制备方法,其特征在于,所述还原处理具体为:通入氢气和氮气混合气体保持1-3min后,然后分两个阶段处理,升温段:加热3-10s,温度由室温升值470℃,保持60~150s;降温段:冷却3-10s,温度降至200℃,保持10-30s。
8.一种权利要求1所述方法制备的硅基二氧化钒薄膜。
9.一种电控二氧化钒薄膜相变的器件,其特征在于,所述器件结构为Pt/VO2/n+Si;其中VO2/n+Si为权利要求8所述硅基二氧化钒薄膜,Pt是金属铂电极。
10.一种权利要求8所述硅基二氧化钒薄膜在相变器件中的应用。
CN201811582089.1A 2018-12-24 2018-12-24 一种硅基二氧化钒薄膜及其制备和应用 Pending CN109457229A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811582089.1A CN109457229A (zh) 2018-12-24 2018-12-24 一种硅基二氧化钒薄膜及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811582089.1A CN109457229A (zh) 2018-12-24 2018-12-24 一种硅基二氧化钒薄膜及其制备和应用

Publications (1)

Publication Number Publication Date
CN109457229A true CN109457229A (zh) 2019-03-12

Family

ID=65614469

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811582089.1A Pending CN109457229A (zh) 2018-12-24 2018-12-24 一种硅基二氧化钒薄膜及其制备和应用

Country Status (1)

Country Link
CN (1) CN109457229A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284104A (zh) * 2019-06-20 2019-09-27 东华大学 超薄二氧化钒薄膜的简易制备方法
CN111533085A (zh) * 2020-05-13 2020-08-14 东华大学 一种二维材料超精密加工方法
CN117026193A (zh) * 2023-09-07 2023-11-10 无锡尚积半导体科技有限公司 一种高相变性能二氧化钒薄膜及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500573A (zh) * 2011-11-08 2012-06-20 哈尔滨工业大学 一种α-Al2O3单晶的清洗方法
CN102703873A (zh) * 2012-06-02 2012-10-03 东华大学 极窄回滞曲线宽度高电阻温度系数二氧化钒薄膜制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102500573A (zh) * 2011-11-08 2012-06-20 哈尔滨工业大学 一种α-Al2O3单晶的清洗方法
CN102703873A (zh) * 2012-06-02 2012-10-03 东华大学 极窄回滞曲线宽度高电阻温度系数二氧化钒薄膜制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YIFAN MENG ET AL: ""Micro-nano scale imaging and the effect of annealing on the perpendicular structure of electrical-induced VO2 phase transition"", 《APPLIED SURFACE SCIENCE》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110284104A (zh) * 2019-06-20 2019-09-27 东华大学 超薄二氧化钒薄膜的简易制备方法
CN111533085A (zh) * 2020-05-13 2020-08-14 东华大学 一种二维材料超精密加工方法
CN111533085B (zh) * 2020-05-13 2023-03-21 东华大学 一种二维材料超精密加工方法
CN117026193A (zh) * 2023-09-07 2023-11-10 无锡尚积半导体科技有限公司 一种高相变性能二氧化钒薄膜及其制备方法

Similar Documents

Publication Publication Date Title
CN109457229A (zh) 一种硅基二氧化钒薄膜及其制备和应用
CN106058047B (zh) 一种用于柔性低压驱动有机薄膜晶体管的高介电栅介质材料及其制备方法与应用
CN105489486B (zh) 一种基于超薄氧化镁高k介电层薄膜晶体管的制备方法
CN103839928B (zh) 一种高耐压、低漏电、高极化强度铁酸铋薄膜及其制备方法
CN106098937B (zh) 一种等离子体处理制备金属氧化物薄膜阻变存储器的方法
CN102154636B (zh) 一种p型高透射率(100)-取向的LaNiO3纳米薄膜的制备方法
CN106910776A (zh) 基于高k栅介质的大面积二硫化钼场效应晶体管及其制备
Ko et al. Ultra-thin film solid oxide fuel cells utilizing un-doped nanostructured zirconia electrolytes
Chang et al. ZnO-nanowire-based extended-gate field-effect-transistor pH sensors prepared on glass substrate
CN103833416B (zh) 一种镍酸镧导电薄膜的化学溶液沉积制备方法
CN109003895A (zh) 一种提高SiC MOSFET器件性能稳定性的制作方法
CN103928233B (zh) 具有稳定电极结构的薄膜电容器及其制备方法
CN108588693A (zh) 采用全无机前驱体溶液制备钇掺杂二氧化铪铁电薄膜的方法及应用
Liu et al. High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
CN109244239A (zh) 一种锆掺杂有机薄膜晶体管及其制备方法
CN108982600A (zh) 基于氧化镓/镓酸锌异质结纳米阵列的柔性气敏传感器及其制备方法
CN105200404B (zh) 外延生长的具有垂直相界的铌酸钾钠‑锆酸钡‑钛酸铋钠无铅压电薄膜的制备方法
CN114360929A (zh) 一种氧化铪基铁电薄膜电容器及其制备方法
CN103526263B (zh) 具有室温铁磁效应的Cr掺杂TiO2纳米磁性薄膜的制备方法
Kaur et al. Study of molarity concentration variation over optical, structural and gas sensing response for ZnO thin film based NOx gas sensor
CN109867304B (zh) 一种二氧化钒金属绝缘相变调控方法及应用
EP3157061A1 (en) Photodiode with intense photovoltage or photocurrents
CN109148593A (zh) 一种三元p型CuBi2O4薄膜晶体管及其制备方法
CN109553415B (zh) 具有高电热效应的硅掺杂锆钛酸铅非取向薄膜的制备方法
Chu et al. Plasma-enhanced flexible metal–insulator–metal capacitor using high-k ZrO2 film as gate dielectric with improved reliability

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20190312